Image
Home Labs and Groups Terhal Group

Terhal Group

The theory group led by Barbara Terhal works, in collaboration with experimental teams, on the realization of quantum error correction in various hardware platforms. Besides work on error correction, the group is interested in the theoretical description of superconducting qubit devices in general and the design of `different’ superconducting qubits. Other strands of theoretical research in which group members engage in is the use of quantum and classical algorithms for (approximate) optimization problems.

Image

Research Themes:

+ Quantum Error Correction and Fault-Tolerance

+ Superconducting Qubits

+ Quantum Computational Advantage, Algorithms and Complexity

 

Significant Publications

B.M. Terhal, “Bell Inequalities and The Separability Criterion”, Physics Letters A 271, 319 (2000)

B.M. Terhal and D.P. DiVincenzo, “Adaptive quantum computation, constant depth quantum circuits, and Arthur Merlin games”, Quant. Inf. and Comp. 4:2, pp. 134-145 (2004)

R. Oliveira and B.M. Terhal, “The Complexity of Quantum Spin Systems on a Two-dimensional Square Lattice”, Quant. Inf. Comp. Volume 8, No. 10, pp. 0900-0924 (2008)

S. Bravyi and B.M. Terhal, “A No-Go Theorem for a Two-Dimensional Self-Correcting Memory Based on Stabilizer Codes”, New J. Phys. 11 (2009) 043029

B.M. Terhal, F. Hassler and D.P. DiVincenzo, “From Majorana Fermions to Topological Order”, Phys. Rev. Lett. 108, 260504 (2012)

B.M. Terhal, “Quantum Error Correction for Quantum Memories”, Rev. Mod. Phys. 87, 307 (2015)

K. Duivenvoorden, B.M. Terhal and D. Weigand, “Single-mode Displacement Sensor”, Phys. Rev. A 95, 012305 (2017)

E.T. Campbell, B.M. Terhal and C. Vuillot, “Roads towards fault-tolerant universal quantum computation”, Nature 549, 172 (2017)

Cookie policy

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

3rd Party Cookies

This website uses Google Analytics to collect anonymous information such as the number of visitors to the site, and the most popular pages.

Keeping this cookie enabled helps us to improve our website.