Simulated Majorana states
Scalable quantum technologies have the potential to reach scientific and technological goals that are otherwise deemed impossible, such as truly secure communication, development of tailored molecules, or exponential speedup of machine learning algorithms. However, quantum states are inherently fragile, and their coherence is easily lost due to interaction with the environment.
Geresdi (QuTech) and his team will build their research efforts based on the concept of topological protection: there are unique electronic states, called Majorana bound states, that are protected from a noisy environment and hence can be the robust building blocks of quantum computers.
How to reach these Majorana states? Geresdi proposes to utilize a well-understood and flexible platform: a linear array of quantum dots. In this system, the quantum behaviour of the electrons in the dots maps to a one-dimensional topological superconductor, hosting a Majorana state on each end of the chain. This concept of analogue quantum simulation enables the investigation and control of complex quantum systems, even those that are inaccessible for classical computer simulations.
Click here for a list of all selected researchers by The European Research Council.