To thermalize or not thermalize, that is the question

how equilibration dictates the landscape
of out-of-equilibrium phenomena

Francisco Machado (QuTech)

Partitioned
@] @ ©

Everything You Always Wanted to Know About Many-Body Dynamics* -- Feb 3



Goals for today:

* Build a language and intuition for what thermalization is in
iIsolated quantum systems and how it can be studied

e Connect different ideas to stimulate discussions

Not Goals for today:

* Proving statements — some statements will be ~hand-wavy~
* Try to build quantum chaos from classical chaos



Today’s plan:

1) Whatis thermalization?
2) Thermalization as a dynamical process in isolated quantum systems

3) Connections between thermalization and random matrix theory

4) Thermalization Landscape:

Different flavors = different non-equilibrium phases

MBL Time Crystal and Prethermal Time Crystals



What is thermalization?

\
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The process under which a system approaches an equilibrium steady state



What is an equilibrium steady state?

A state that remains unchanged by the dynamics of the system
characterized by a few macroscopic quantities

But under this definition, do systems thermalize?



But under this definition, do systems thermalize?
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Yes, but need to focus on the right thing!
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Global properties behave differently



Need some form of averaging

Classical Equilibrium
Trajectory : ensemble in time
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Chaos and ergodicity lead to thermalization in classical systems




Quantum changes the rules of the game

Unfortunately: Classical trajectory != quantum state dynamics
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Fortunately: Entanglement = new approach to “average”




Seeing the equilibrium state in a different way
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Thermalization as a dynamical ProCeESS (inisolated quantum systems)
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Thermalization of local observables
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eigenstates and diagonal matrix elements terms each with its own frequency
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Thermalization of local observables
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Necessary ingredients:
- Fluctuations must be small
Large number of terms (thermodynamic limit)
Frequencies are different

- Constant term must match thermal value

These features are encoded in the Eigenstate Thermalization Hypothesis



Eigenstate Thermalization Hypothesis (ETH)

Review: D’Alessio et al Advances in Physics (2016)

Posits that:
thermalization occurs because each eigenstate
is a good micro-canonical ensemble
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Equilibrium values Fluctuations are Random variables
suppressed by the
entropy S Rmn — N(O, 1)
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ETH as a refinement of Random Matrix Theory

What are the properties of observables if the Hamiltonian is a purely random matrix?

D - Hilbert Space size

1) Every eigenstate is equivalent
2) Diagonal term encodes the trace of the operator
3) Fluctuations in off-diagonal terms are suppressed by D

In ETH, the average and fluctuation size depend on the energy of the eigenstate

Omn — O(E)émn + e_S(E)/QfO(an)Rmn



GOE: Hij = N(O, 1)

RMT, level statistics and ergodicity idependent moes
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RMT, level statistics and ergodicity -- GOE

Easier to understand in terms of
perturbing the spectrum H - H() _|_ €A
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Nearby states push each other apart and
gaps do not close!
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RMT, level statistics and ergodicity -- Poisson

Easier to understand in terms of
perturbing the spectrum H - H() _|_ €A

Symmetry, particle
number, etc...

Different states live in different ’sectors”; unless A connects
different sectors, the off-diagonal matrix elementis, in general, zero

(| Ajm) =0

Locally, state’s energy is independent:
Poisson statistics!
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Quick Summary

* In quantum systems, thermalization is naturally defined in terms of
subsystems, and as a dynamical process of observables relaxing

e A Hamiltonian whose statistics match that of a random matrix
thermalizes

* Computing these statistics for specific instances help us diagnose the
presence of structure that prevent thermalization



[Quick Aside 1] Proving thermalization

Can you prove thermalization? For the curious:
Can simulate a Turing machine in the dynamics of a
specific Hamiltonian and initial state, maping the

NOt in general: it iS an undeCideable prOblem question of thermalizing into a halting problem
Examples:
- *Quantum mechanical evolution towards thermal equilibrium
However, by looking at typical states, in certain classes Linden et al PRE (2009)
of Hamiltonians one can make headway! - Quantum thermalization must occur in translation-invariant

systems at high-temperature
Pilatowsky-Cameo, Choi in Nature Comm (2025)

“We emphasize that the restriction to Hamiltonians that have no degenerate
energy gaps is an extremely natural and weak restriction.””*

Common assumption:

Structured eigenspectra exhibit stronger and faster recurances that prevent thermalization



[Quick Aside 2] Where did the information go?

Store 1-bit of information: Is still present at late time
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Operator grows more complex, and more
extended in space
This is known as scrambling

Heisenberg evolution iO(t) _ i[H, O(t)] . O(t)

of the operator: dt
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What s the operator | need to measure to recover the information?
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Beyond Hamiltonian dynamics

Random Unitary Circuit Hamiltonian evolution
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Hamiltonian evolution w/
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Landscape of Thermalizing Dynamics

Fully Thermalizing Fully Non-Thermalizing

Periodically driven system
H(t)y=H(t+ 1) Many-Body Localization

| Hamiltonian evolution Hilbert space fragmentation
Random Unitary

Circuit Hamiltonian evolution w/
Floquet symmetries or constraints Integrable systems

prethermalization

Many-body scars

Different thermalization regimes yield different kinds of out-of-equilibrium phases



[— GOE: (r)=0.53
[ Poisson : {r)=0.38

Parting words 1.0F

- Thermalization as a complex yet generic feature
in quantum systems 1

Admits a statistical framework 0_8 IO 0|5 1IO e

|tho) Fn =0p+1/6n
HEEEEE

_iH - Thermalization comes in many shapes and sizes:
geo.de.qed [ e J

EEEEEE not yet have a full understanding of the landscape
W_/

pa~e P

- Different thermalization dynamics enable

different out-of-equilibrium phenomena
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Thank you!



