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Chaos and hydrodynamics



® Hydrodynamics from the Boltzmann equation

of of  (0f
o m VitE: Op (E>c0u

Here | = f(X, P, t) one-particle distribution function

® Moments of the Boltzmann equation give Navier-Stokes

[ dpmsx.p.t) = plx.t dep+V - (pv) =0
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® The Boltzmann equation from statistical mechanics

The k-particle distribution function

fk — f(X17p17X27p27° . °7Xk7pk7t)

Time-evolution governed by BBGKY hierarchy
U=H;nu
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® Truncation of the BBGKY hierarchy

p n
Efn — /dgqn+1d3pn+1 Z {U, fn-l-l}PB wrt q;,pq

1=1

Assumption of molecular chaos
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® Linearized Boltzmann equation

10 = [(R™ (0,10 = R (p.10) (k.1
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® Transport from the Boltzmann equation

Maxwell

1

n = gmpgm-f-p- <UZ>



® Transport from the Boltzmann equation

Maxwell
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n = gm\/ (v?)
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Boltzmann is based on successive 2-2 collisions
This microscopic picture is also what encodes chaotic trajectories



® A very special feature of dilute gases .
van Zon, van Beijeren,

Maxwell Dellago
1 1 1 1 - \/ (v?

n = —m~/(v?) A= (= In(AT)?) ~ i) ~ py/ (V%) 02 t0-2
3 O02_to—2 Tave 2 Em.f.p.

® Transport follows from the Boltzmann equation

G0 = [(R" (.10~ R (p.10) (k.1



® A very special feature of dilute gases .
van Zon, van Beijeren,

Maxwell Dellago
1 1 1 1 - \/ (v?

n = —m~/(v?) A= —(=In(AD)?) ~ NACY ~ pr/ (V?) 09 t0-2
3 O02_to—2 Tave 2 Em.f.p.

e Can we understand chaos from a kinetic-like equation?

Ad hoc: clock equation

van Zon, van Beijeren,
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® Scrambling rate/Chaos is a microscopic “particle” property

® Transport diffusion is a macroscopic collective property



® A generic system

particle picture

applies

hydro applies
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® Special case: weakly coupled dilute gas

particle picture

applies ) hydro applies
l >I
| |
0 thydro—onset tmfp
1 1
n=5my/ (v?)




particle picture

applies ) hydro applies
| 0 .
t=20 thydro—onset tmfp t = 00
1 1
n = gmy (v?)
3 02—to—2

Implies hydro/Boltzmann/kinetic theory should also know about chaos!



scrambling=chaos=ergodicity is very different from local therm.=equilibration

There is a connection:
In classical thermalization chaos is the source of ergodicity
In special situations (weakly coupled dilute gas) they are set by the same physics



—Quantui chaos from an out-of-time correlation function
Semi-classical



e A QFT way to detect chaos

® Choose

Chaos : q(t) ~ dq(0)er? C(t) ~ h*e*M with A = ALy,



® Semi-classical computation of conductivity in weak disorder

e Semiclassical regime A\ < a

Larkin, Ovchinnikov



Semi-classical computation of conductivity in weak disorder

Semiclassical regime

C(1)

AN

e

= (W), VO)"[W (), V(0)]) ~ hr*e>

)\ < a variation on Sinai billiards

Larkin, Ovchinnikov



® Semi-classical computation of conductivity in weak disorder

e Semiclassical regime A\ < a

® Nevertheless: quantum physics takes over when Larkin, Ovchinnikov

O(t) = —([W ), VO [V (), V(O)) ~ 5262 1

Ehrenfest time:

, 11 1
r — v 1=



o Careful:
In the quantum regime chaotic behavior is hard.

i.e. most quantum analogues of classical systems with chaos do
not exhibit exponential growth in this OTOC correlator.

= Need a small parameter e.g. Grozdanoy, Kukuljan, Prosen

" |n semi-classical systems A C(t) ~ h2eM
® |n holography: i C’(t) - L62>\t
N N2

Semi-classical single-trace lumps: large /N classicalization/
master field



A bound on chaos = a bound on diffusion?



® A bound on chaos Maldacena, Shenker, Stanford

= Related regulated function:

F(t) = (W(t)yV(0)yW(t)yV (0)y) ~ 1 —

= Not time ordered: but |T'F'D) = Z e_§E|n>\n>

mn

F(t) =Y (TFD|(W()V(0) ® 1)(1e W()V(0))|TFD)

F(t) ~ Y (W(HV )W @)V (0))
= Analyticity in QFT demands
A< 27T



® A bound on chaos Maldacena, Shenker, Stanford

= Related regulated function:

F(t) = (W)yV(0)yW (t)yV (0)y) ~ 1 — e*M

4 __
1k\\\\\\\\\\\\\\\\\\\]%/ — 7

= Not time ordered: but |T'F' D) = Z e 2P n)|n) Careful:

Answer depends
on regulating.

F(t) =Y (TFD|(W(t)V(0) ® 1)(1® W (t)V (0))|TFD) ' one encodes

chaos correctly

F(t) ~ S W)V O)T W (v (0) o

Scopelliti

= Analyticity in QFT demands
A< 27T



® Black holes saturate this bound: maximal chaos

)\BH — 27

m This observation is the driving force behind SYK

Kitaev
e.g. Stanford@Strings’ | 6

It would be nice to have a solvable model of holography.

theory || bulk dual anom. dim. | chaos solvable in 1/N
SYM Einstein grav. | large maximal | no
O(N) | Vasiliev 1/N 1/N yes
SYK “Us ~ lads” O(1) maximal | yes




Scrambling and diffusion

® A refined version

C(t,x) = —{[W(t,2), V(O W (¢, 2), V(0)]) ~ hZestemvent
gives you a “scrambling” velocity
fULR = 2
= First pioneered in |+| dimension systems

= Lieb-Robinson proved:

The velocity U1, p is an absolute upper bound on information
spreading.

" UL R acts as en emergent lightcone.

® |dea:also in other systems this butterfly/Lieb-Robinson velocity is
the maximum “speed” at which information spreads



e Diffusion is characterized by a velocity

v? v?

D~ — o~ —
T A

® Long sought goal: a fundamental quantum bound on diffusion

Q i Kovtun, Son, Starinets
s — A4m
2 Hartnoll
D > Yine Hartman, Hartnoll, Mahajan
A

® (Unstated) Hypothesis: U, R provides this fundamental velocity



e Diffusion is characterized by a velocity

v? v?

D~ — o~ —
T A

® Long sought goal: a fundamental quantum bound on diffusion

Q i Kovtun, Son, Starinets
s — 4

V2 V2 Hartman II_—IIaar;*ticrl]'\zllll Mahajan
D > ?Z:LC or D< ZA;?,C ’ Lucas, |

® (Unstated) Hypothesis: U, R provides this fundamental velocity



Is there a fundamental Quantum Limit on diffusion?

Koenraad Schalm and Kaveh Lahabi
LION, Leiden University




This proposal:

A dedicated experiment to probe the quantum limits on diffusion directly
in strongly correlated quantum matter.

m Theoretical basis:

Shock front (OTOC) travels at UB
Linear response travels at UDiff

Quantum Limits are reached when these become the same




® Semi-classical chaos in weakly coupled systems

“Surprisingly a relation of the form D) ~ ?}%RT shows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.



® Scrambling rate/Chaos is a microscopic “particle” property

e Diffusion is a macroscopic collective property



A kinetic equation for semi-classical chaos



® Semi-classical chaos in weakly coupled systems

“Surprisingly a relation of the form D) ~ U%RT shows up in a number
of non-holographic contexts”

® Most of these are weakly coupled zero density field theory
results.

This should not be a surprise. This is the classical dilute gas
computation.

From the point of view what you compute it is a surprise



Scrambling in weakly coupled QFT is classical dilute gas

e Object of interest for \,vrr

C(t) = (W), VOI' W), V(0)]) ~e mr

growing mode

e Object of interest for D = g
. 1
n = lim ——Im{Tey (W), Toy(—w)) R

Boltzmann transport only supports decaying modes:
viscosity set by smallest decay mode — relaxation time approximation



® Transport ® Scrambling/Chaos
GR(t) ~ PaDylay ([P PY, 0a])s  CO(t) ~ ([@°, *][@ap, Ped]) 5

Schwinger-Keldysh contour OTOC contour




® Transport ® Scrambling/Chaos
GR(t) ~ PaDylay ([P PY, 0a])s  CO(t) ~ ([@°, *][@ap, Ped]) 5

Schwinger-Keldysh contour OTOC contour

" |n free field theory

C(t) ~ Gr(t) = —2G3* (1) + O(\)

. . Stanford, Jeon
" |n perturbation theory Transport and Scrambling sum the same

ladder diagrams

O+ D+AD +

FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator

T is denoted by the crossed dots and black dots are the vertices with the coupling constant .



Schwinger Keldysh Con

G (plk) =

Ansatz

This Bethe-Salpeter eqgn
is the QFT version of the
Boltzmann equation

O+ D+ +-

E, —iw + 2l (27)4

G(plk) = 6(p3 — E2) f(p|k)

1

T 5@3—E§,) [1+/ d4/ R(g—p)é(ﬂk)]-

[1 + /(R(El —E, 1—p)+ R(E + Ep,1— p))f(l|k)] .

 f(p.t / (Ri"(p, k) — R (p, k) f(k. 1)
k



This Bethe-Salpeter eqgn

Schwinger Keldysh vs OTOC is the QFT version of the
Boltzmann equation

. sctheldQ‘|‘@+@ T

~ m 0(pg — E3) d*l ~

Gl = 5=t [1 4 / i B p)G(e\k)] |
o OTOC
~ 7 0(pg — E) d*¢ sinh(B8p°/2) ~
G0k = 5~ T, [1 +/ (2m)t sinh(50/2) _p)g(zyk)] |
® Ansatz

G(plk) = 6(ps — E2)f(p|k)

(o4 20 )f(plR) = [ SRR (R ~ RO) Fb

1




This Bethe-Salpeter eqgn
Schwinger Keldysh vs OTOC is the QFT version of the

Boltzmann equation

. SctheIdQ+@+@ T

G(plk) = ];Tp 5_(2‘3;5153 [1+ / (;ZW§4R(€—p)é(€\k)].
- 0o — E3) déﬁh(ﬁ /?
5 T 0(pg — Ep 4¢ [sinh(BpY /2
S = g, i ar, [H / (2m)tsinh (50 /2 VPN W‘“)]
- )
® Ansatz

G(plk) = 6(pf — E3)f(plk)
( )
(o4 20 )f(pIR) = [| SRS (R — RO) fb

L D,




Grozdanov, Schalm, Scopelliti,
® Transport ® Scrambling/Chaos

GR(t) ~ piﬂpyCIfBquq)abq)ab? (I)qu)cdbﬁ C(t) ~ <[(I)ab7 (I)Cd] [(I)abv (I)Cd]>5

Schwinger-Keldysh contour OTOC contour
O+ D+ +-

Boltzmann equation (net density) Kinetic equation (gross collisions)
Lip.t) = [(R 10— B k) ft) 0= [P R + R (p )00
dt p7 T p) p? ) dt ) E(k) ) )

k k
purely relaxational front propagation into unstable states
f(p, t) ~ 6)\t with A <0 f(p,t) ~ e with A < Amaz > 0

Saarloos, vBeijeren,
Aleiner, Faoro, loffe

«: Rout(p, k) = R°(p,k) — 20(p — k)R (k k)



® Chaos follows from kinetic equation for gross energy exchange

im0 = [ ig (R (p. k) + R (p, k) — 20(p — k) R (k. k)) (k)

m This is derived as opposed to ad hoc clock model

k—2
d
%sz = —fu+ fi 1 +2fk1 ;_% fe

Qualitatively physics is similar (unstable front dynamics)



blue: eigenvalues A\ for SchwKeld /Boltzmann
red: eigenvalues A for OTOC /Energy-exchange
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® This explicitly shows in weakly coupled dilute QFT scrambling
and diffusion are set by the same dynamics --- even though
they are not identical.

1 1 V2
1= 3my/@?) A= (G (AT = Y T

02—to—2 Tave




® Chaos follows from kinetic equation for gross (energy) exchange

0.0 = [ SR (R (p.k) + R (p. ) — 26(p ~ 1 R™ (k. ) F(k)

® We have now shown that this holds in general:
® For bosonic and fermionic systems (Gross-Neveu model)

® Models near a QCP approached from perturbative regime
(Wilson-Fisher O(N) model)

= Shorter derivation using 2Pl formalism

® In all cases off-shell Bethe-Salpeter contains both chaos and
Boltzmann transport.

®  One solution ansatz: Boltzmann. Complement: Chaos
= pQFT analogue of Maxwell relation: weakly coupled dilute gas.

m Pole-skipping.... Grozdanov, Schalm, Scopelliti,
arXiv:2 103.xxxx



Ultra strongly correlated systems are similar to dilute gases



® |Is scrambling rate related to diffusion?

2 2
(Y (Y
D~ —~ 2R

T A



String Theory for Condensed Matter

AdS-CFT duality

strongly coupled field theories without an energy scale (CFT) have a dual description
as a weakly coupled string theory in negatively curved space time (AdS).

&y . -
144
' ™l

e g

Cerformalficlds Hnt radiztion
Al FRFN T KAMAIAN

Maldacena ATMP2, 231 (1998);Witten ATMP2,253 (1998); Gubser, Klebanov, Polyakov, PLB428,105 (1998)



Holography for Strongly coupled systems

works best when d.o.f. are matrices ®;; 1, jl 1...N with N > 1

semi-classical limit — — 0
N
N d-1,1
N
g i\\\ AdS,., minkowski
i\\\\\\\
| \\\\\\\\
b \\\:\\\\
\\ N \\\\\\
\\\\\\\\
\ \\\\
L
IR uv - W
Z IR z

Zorr(J) = expiSTg N (@($oaas = J))

Quantum numbers
AdS Black hole
Extremal AdS black hole

Gauge field
Gravity dynamics

Quantum numbers
Finite Temp
Finite Density
Conserved Current
Energy dynamics




OTOC in holography

® Shockwave calculation in AdS BH Roberts, Stanford, Susskind

F(t) =Y (TFD|(W()V(0) ® 1)(1® W()V(0))|TFD)

W (¢)

tSchw

V(0)




® |Is scrambling rate related to diffusion?

2 2
(Y (Y
D~ —~ 2R

T A



Blake;

® |Is scrambling rate related to diffusion? Davison, Fu, Georges, Gu,
Jensen, Sachdev.

For “relevant diffusion” (=irrelevant suscep)

d—0vi,

D =
Ay 27T

..similar results for massive gravity (mean-field disorder), but fails in general

Lucas, Steinberg;

Gu, Lucas, Qi
e Refinement: charged systems with mean-field disorder
® Thermal diffusivity set by horizon properties only
Dp = 77/3T Policastro, Son, Starinets
2
Z U
Dr = LR Blake, Davison, Sachdev

2z — 2 )\L



® From a physics perspective these are puzzling results:

Zorr(J) = expiSTg N (@($oaas = J))

Quantum numbers
AdS Black hole
Extremal AdS black hole

Gauge field
Gravity dynamics

Quantum numbers
Finite Temp
Finite Density
Conserved Current
Energy dynamics




® Shock waves are sound
m General metric
ds;. o = A(UV)AUAV + B(UV)g;;dz*dx? — A(U,V)h(U, Z)dUdU

® Shock wave equation

5(U) (Agh - d%h) = 32rEA%(Z2)S(U)




® Shock waves are sound
= General metric
ds;. o = A(UV)AUAV + B(UV)g;;dz*dx? — A(U,V)h(U, Z)dUdU
® Shock wave equation
B/
5(U) (Agh - dzh) = 32r EASY(Z)6(U)
= Sound perturbation from AdS/CFT

B B0
A (U, ) — 2d=h(U, ) —

WU, &) = 0

for h(U,x) ~ 6(U)h(Z) reduces to shock



Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k*=—p?=—61°T2 = -

UB
Hydrodynamical sound (known up to 3rd order analytically)

1 7}
Y= 4+—k — ——k*+ ...
w(k) V3 6T +

= Relaxational modes: real momentum, complex/imaginary
frequency

measures relaxation time

m Penetration depth: real frequency, complex/imaginary momentum

measures relaxation length (penetration depth)

® Doubly imaginary:“temporal response” to “spatial profile”



Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k*=—p?=—61°T2 = -

UB
Hydrodynamical sound (known up to 3rd order analytically)

1 7}
Y= 4+—k — ——k*+ ...
w(k) V3 6T *

Im to

)\L/27TT
3/4
1/2

1/4

~1/4




Sound at imaginary values of frequency and momentum

)\2
w=2miT =i\ , k*=—p?=—61°T2 = -

UB
Hydrodynamical sound (known up to 3rd order analytically)

1 1
w(k) — :l:ﬁk‘ — 67T—Tk2 4+ ... Pole-skipping:
QNM mode residue
Im to vanishes precisely at
Ay /2T w = 2mid’
L/ &T
Also happens in SYK.
3/4 [Gu, Qi, Stanford]
Direct consequence of the
1/2 existence of the shockwave
solution.
1/4 [Blake, Lee, Liu]
B Beautiful GR story:

non-unique BC
at the horizon

~1/4

[Blake, Davison, Grozdanoy, Liu]



® In generality

S = 2%2 d°x\/—¢ [R + B + Ematter]
g(r)dr? 1 5
ds® = —f(r)dt* + ) + b(r) (dg;2 + dy* + dz2) _ [f(T)Cj:Wj: (dt + ) dr)

W;I: (t, 2 7“) e—zw [t:l:fr e ,) ] +i1kz hj: (7“)

W £, = FD02Wil|,, tr-Einstein Eq.
2
D — _LE



® s scrambling related to diffusion?



® s scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2
D — VLR
AL
m This explains Blake’s observation and all previous results.

e However,

= This does not equal the diffusion constant in the CFT

n 3 D 3V (rp)
D —_— T — _D — =
CFT ST A hor D T )
= Even though this also computed on the horizon (special to
momentum diffusion) Davison, Fu, Georges, Gu,

Jensen, Sachdev.
Blake, Davison, Sachdev



Im to

)\L/27TT

Physical diffusion 3/4
is given by the

behavior near 1/2

w1 /4

by now verified in
many models —1/4
[Blake, Davison,
Grozdanov,Liu]

Pole-skipping:

QNM mode residue
vanishes precisely at

w = 2m T’

Also happens in SYK.
[Gu, Qi, Stanford]
Direct consequence of the
existence of the shockwave
solution.

[Blake, Lee, Liu]
Beautiful GR story:
non-unique BC
at the horizon

[Blake, Davison, Grozdanoy, Liu]



® A generic system

particle picture

applies

hydro applies
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(conformal/long range entangled)

ultra strongly

coupled physics

hydro applies

—

L I I
A
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® s scrambling related to diffusion?

= |n two-derivative gravity scrambling is a diffusive sound wave
on the horizon with

2
D — VLR
AL
m This explains Blake’s observation and all previous results.

e However,

= This does not equal the diffusion constant in the CFT

n 3 D 3V (rp)
D —_— T — _D — =
CFT ST A hor D T ,
= Even though this also computed on the horizon (special to
momentum diffusion) Davison, Fu, Georges, Gu,

Jensen, Sachdev.
Blake, Davison, Sachdey;
Blake, Davison,
Grozdanoy, Liu



® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except:a weakly coupled dilute gas.

Maxwell
1 2
n= gmpém.f.p. (v?)

Famous “first” result of molecular kinetic theory



® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except:a weakly coupled dilute gas. van Zon, van Beijeren
Maxwell Dellago
1 1 Loy oV (V)
n=gm /(02) A= ——(5 In(A7)?) ~ ; L=~ py/(02) 094002
O02_to—2 ave m.f.p.

Famous “first” result of molecular kinetic theory



® Black hole scrambling is hydrodynamics
= A revolutionary result:
Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

® A priori these are set by very different physics

= Except:a weakly coupled dilute gas. van Zon, van Beijeren
Maxwell Dellago
1 1 Loy oV (V)
n=gm /(02) A= ——(5 In(A7)?) ~ ; L=~ py/(02) 094002
O02_to—2 ave m.f.p.

= Except: two-derivative holography

but now it is the macroscopic properties that set ergodicity



Two open questions...



particle picture

applies

hydro applies
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particle picture

applies ) hydro applies
t=20 thydro—onset tmfp t = 00
1 ~ 1
= 3mv (v?)
02—to—2

And there is also a kinetic equation computing chaos!

P) (R (p.K) + B (p.K) — 20(p — k)R (k. k) F(k)

&.|Q‘
Py
i
N

|

—

JugPal
=



(conformal/long range entangled)

ultra strongly
coupled physics hydro applies

1

t:Otmfp i = o0

thydro—onset

Ultra strongly coupled systems are similar to weakly coupled dilute gases:
chaos and transport are set by the same physics.



® Crucially these two exceptions rely on the existence of a small
parameter.

A

N Pole-skipping

Boltzmann -  e.g.spin systems

g



OTOC in kicked Ising rotor

Weak Quantum Chaos

Ivan Kukuljan,! Saso Grozdanov,? and Tomaz Prosen'

Y University of Ljubljana, Faculty of Mathematics and Physics, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
2 Instituut-Lorentz for Theoretical Physics, Leiden University,
Niels Bohrweg 2, Leiden 2333 CA, The Netherlands
(Dated: February 1, 2017)

The OTOC is polynomially bounded...

In such models the physics of scrambling is
different
from the physics of thermalization



e Relation to complexity (inspired by circuit complexity).

Krylov complexity:

O — |0) in doubled Hilbert space

0
Z§|O> = Hdoubled|O)

Claim
On) = Hioupteal Qo) >\L S 20é
construct an orthonormal basis out of|O,,)
Parker, Cao, Avdoshkin,
O(t)) = AO Scaffidi, Altman;
O()) %:qbn( )|On) Avdoshkin, Dymarsky.

Kty =S nloa(t)]?

’C (t) ~ 620415



Conclusion

|. Quantum Chaos from an out-of-time-correlation function
C(t) = —(W ). VO] [W (), V(0)]) ~ h%e* ~ 1
2. Chaos and diffusion
different time scales: exception dilute gas

3. A bound on chaos = a bound on diffusion?

No, here, or trivial, or ...

4. Ultra strongly correlated systems are similar dilute gases

Scrambling and diffusion are set by the same semi-classical physics.

5. A kinetic equation for semi-classical chaos  Grozdanov, Schalm, Scopelliti,
in graphene: Klug, Scheurer, Schmalian

Gpt) = [ S8 (R (9,10 + B (p. k) — 26(p — 1R (k. K) (10



Thank you



