
Everything you always wanted to know about OTOC (chaos, scrambling, hydrodynamics and all that)

Koenraad Schalm

Institute Lorentz for Theoretical Physics, Leiden University

Netherlands Organisation for Scientific Research

Saso Grozdanov

Vincenzo Scopelliti

Chaos and hydrodynamics

- Hydrodynamics from the Boltzmann equation

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f + \mathbf{F} \cdot \frac{\partial f}{\partial \mathbf{p}} = \left(\frac{\partial f}{\partial t} \right)_{\text{coll}}$$

Here $f = f(\mathbf{x}, \mathbf{p}, t)$ one-particle distribution function

- Moments of the Boltzmann equation give Navier-Stokes

$$\int d\mathbf{p} m f(\mathbf{x}, \mathbf{p}, t) = \rho(\mathbf{x}, t) \quad \partial_t \rho + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\int d\mathbf{p} \mathbf{p} f(\mathbf{x}, \mathbf{p}, t) = m \mathbf{v}(\mathbf{x}, t) \quad \partial_t (\rho \mathbf{v}_i) + \nabla_j (\rho \mathbf{v}_j \mathbf{v}_i + P_{ij}) = 0$$

- The Boltzmann equation from statistical mechanics

The k -particle distribution function

$$f_k = f(\mathbf{x}_1, \mathbf{p}_1, \mathbf{x}_2, \mathbf{p}_2, \dots, \mathbf{x}_k, \mathbf{p}_k, t)$$

Time-evolution governed by BBGKY hierarchy

$$\frac{d}{dt} f_n = \int d^3 q_{n+1} d^3 p_{n+1} \sum_{i=1}^n \{U, f_{n+1}\}_{\text{PB wrt } q_i, p_i}$$

- Truncation of the BBGKY hierarchy

$$\frac{d}{dt} f_n = \int d^3 q_{n+1} d^3 p_{n+1} \sum_{i=1}^n \{U, f_{n+1}\}_{\text{PB}} \text{ wrt } q_i, p_i$$

Assumption of molecular chaos

$$f_2 \sim f_1^2$$

$$\frac{\partial f}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla f = \int d^3 \mathbf{p}_1 d^3 \mathbf{p}_2 d^3 \mathbf{p}_3 \sigma(\mathbf{p}, \mathbf{p}_1 | \mathbf{p}_2, \mathbf{p}_3) (f(\mathbf{p}_2, t) f(\mathbf{p}_3, t) - f(\mathbf{p}, t) f(\mathbf{p}_1, t))$$

- Linearized Boltzmann equation

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} (R^{in}(\mathbf{p}, \mathbf{k}) - R^{out}(\mathbf{p}, \mathbf{k})) f(\mathbf{k}, t)$$

- Transport from the Boltzmann equation

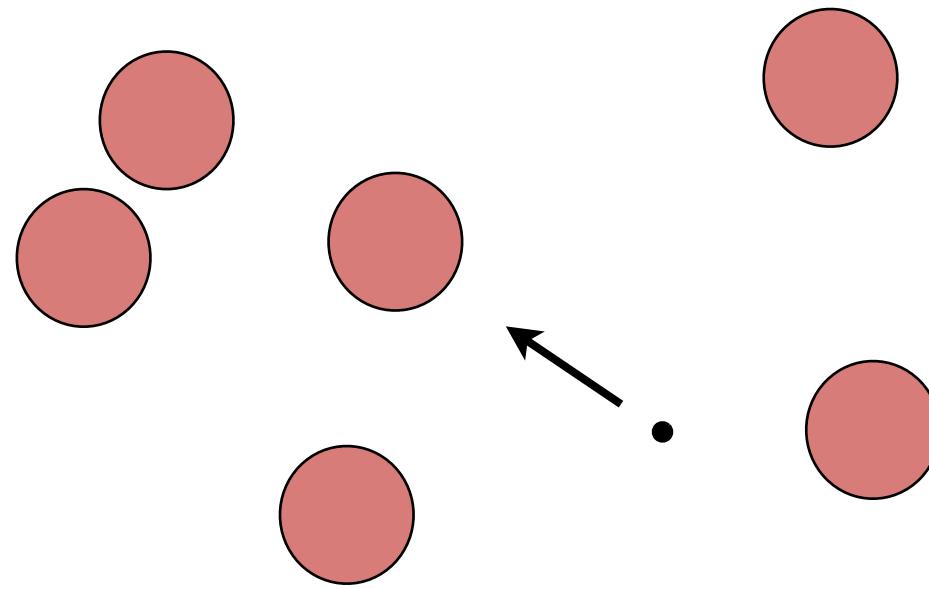
Maxwell

$$\eta = \frac{1}{3} m \rho \ell_{\text{m.f.p.}} \sqrt{\langle v^2 \rangle}$$

- Transport from the Boltzmann equation

Maxwell

$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2-to-2}}$$



Boltzmann is based on successive 2-2 collisions
This microscopic picture is *also* what encodes chaotic trajectories

- A very special feature of dilute gases

Maxwell

van Zon, van Beijeren,
Dellago

$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2\text{-to-}2}}$$

$$\lambda = \frac{1}{\tau_{\text{ave}}} \left\langle \frac{1}{2} \ln(\Delta \vec{v})^2 \right\rangle \simeq \frac{\sqrt{\langle v_{\text{rel}}^2 \rangle}}{\ell_{\text{m.f.p.}}} \simeq \rho \sqrt{\langle v^2 \rangle} \sigma_{2\text{-to-}2}$$

- Transport follows from the Boltzmann equation

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} (R^{in}(\mathbf{p}, \mathbf{k}) - R^{out}(\mathbf{p}, \mathbf{k})) f(\mathbf{k}, t)$$

- A very special feature of dilute gases

Maxwell

$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2\text{-to-}2}}$$

$$\lambda = \frac{1}{\tau_{\text{ave}}} \left\langle \frac{1}{2} \ln(\Delta \vec{v})^2 \right\rangle \simeq \frac{\sqrt{\langle v_{\text{rel}}^2 \rangle}}{\ell_{\text{m.f.p.}}} \simeq \rho \sqrt{\langle v^2 \rangle} \sigma_{2\text{-to-}2}$$

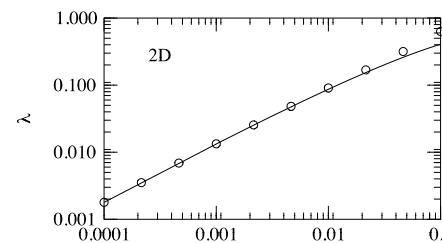
van Zon, van Beijeren,
Dellago

- Can we understand chaos from a kinetic-like equation?

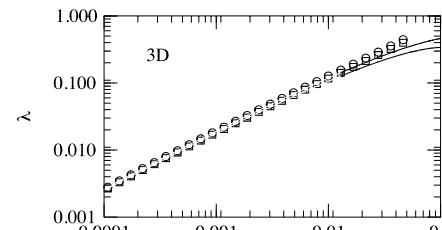
Ad hoc: clock equation

$$\frac{d}{dt} f_k = -f_k + f_{k-1}^2 + 2f_{k-1} \sum_{\ell=0}^{k-2} f_{\ell}$$

f_k the fraction of particles which have experienced k collisions



van Zon, van Beijeren,
Dorfman;
Saarloos



- Scrambling rate/Chaos is a microscopic “particle” property
- Transport diffusion is a macroscopic collective property

- A generic system

particle picture

applies

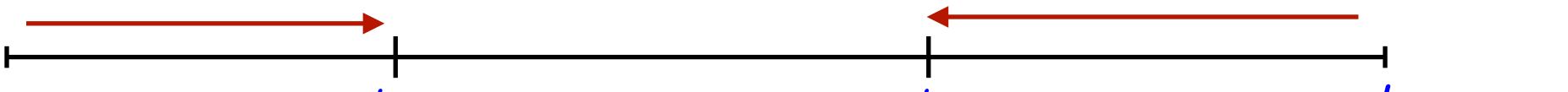
$t = 0$

t_{mfp}

hydro applies

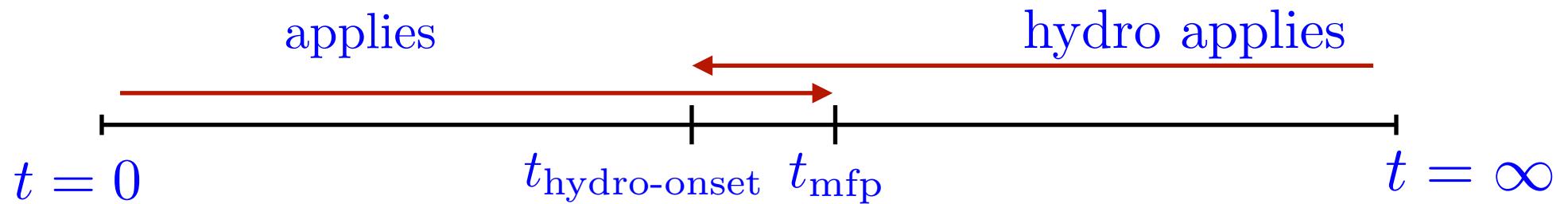
$t_{\text{hydro-onset}}$

$t = \infty$



- Special case: weakly coupled dilute gas

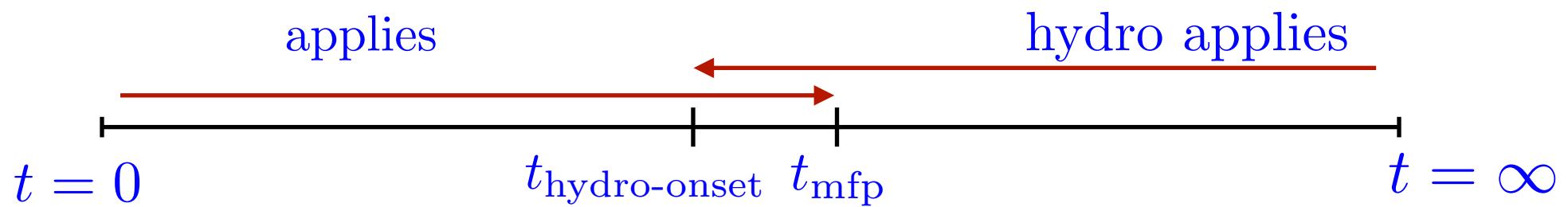
particle picture



$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2-to-2}}$$

particle picture

applies



$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2-to-2}}$$

Implies hydro/Boltzmann/kinetic theory should also know about chaos!

scrambling=chaos=ergodicity is very different from local therm.=equilibration

There is a connection:

In classical thermalization chaos is the source of ergodicity

In special situations (weakly coupled dilute gas) they are set by the same physics

- ~~Quantum~~ chaos from an out-of-time correlation function
- Semi-classical

- A QFT way to detect chaos

$$C(t) = -\langle [W(t), V(0)]^\dagger [W(t), V(0)] \rangle$$

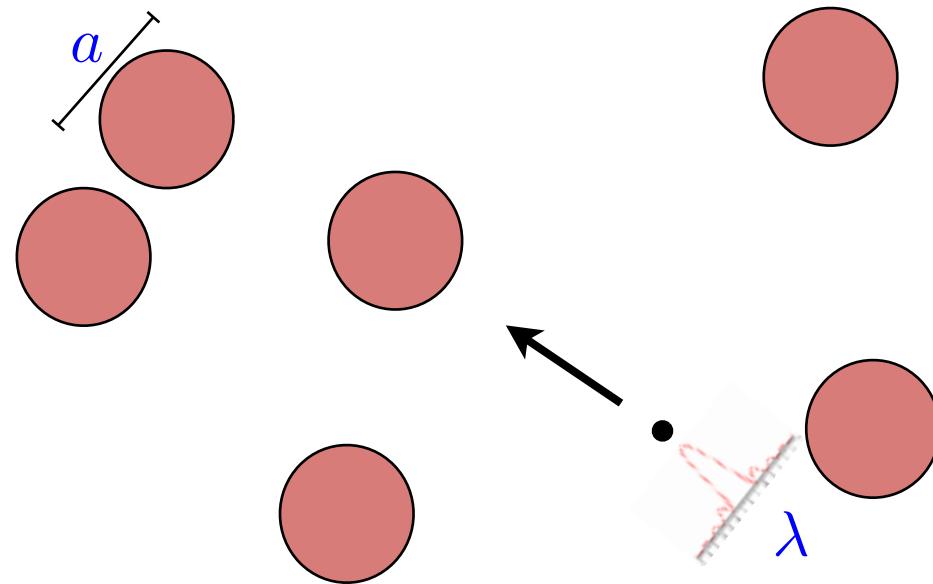
- Choose

$$W = q(t) \quad V = p(0)$$

$$[W(t), V(0)] = [q(t), p(0)] = i\hbar\{q(t), p(0)\} = i\hbar \frac{\partial q(t)}{\partial q(0)}$$

$$\text{Chaos : } q(t) \sim \delta q(0) e^{\lambda_L t} \quad C(t) \sim \hbar^2 e^{2\lambda t} \text{ with } \lambda = \lambda_{\text{Lya}}$$

- Semi-classical computation of conductivity in weak disorder

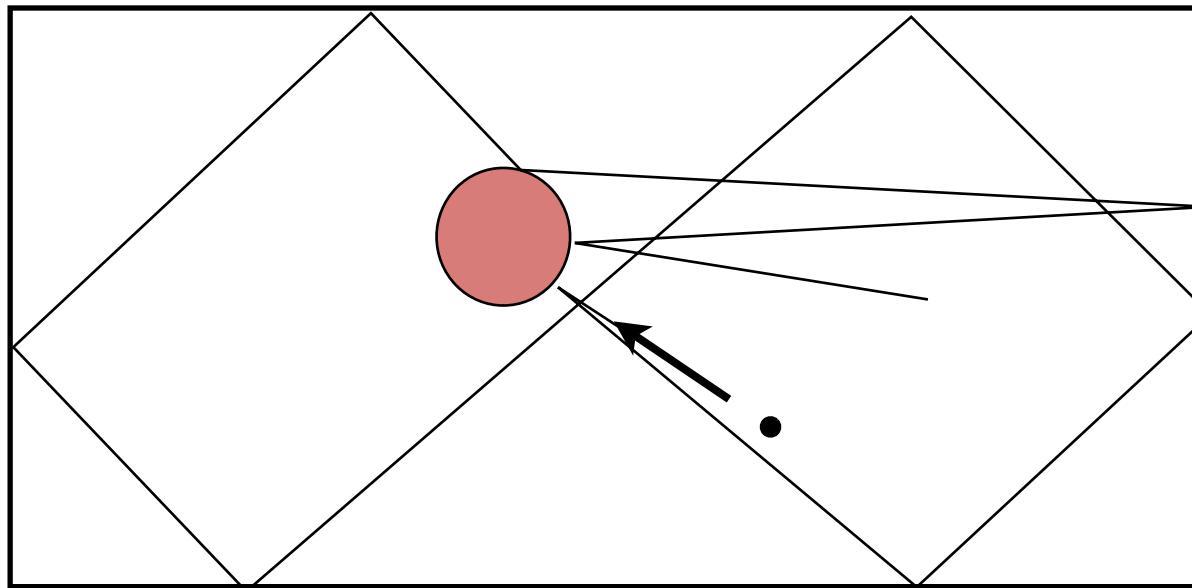


- Semiclassical regime $\lambda \ll a$

Larkin, Ovchinnikov

$$C(t) = -\langle [W(t), V(0)]^\dagger [W(t), V(0)] \rangle \sim \hbar^2 e^{2\lambda t}$$

- Semi-classical computation of conductivity in weak disorder

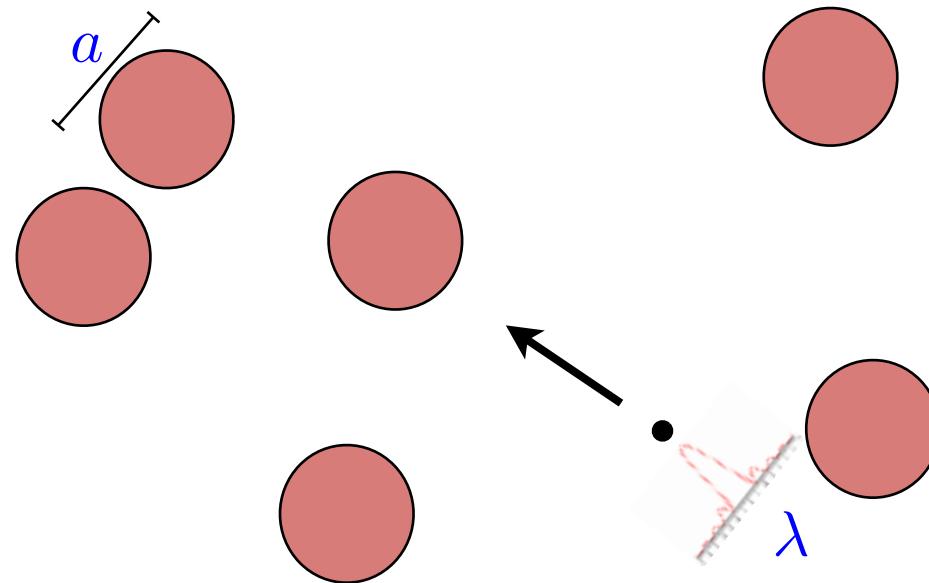


- Semiclassical regime $\lambda \ll a$ variation on Sinai billiards

Larkin, Ovchinnikov

$$C(t) = -\langle [W(t), V(0)]^\dagger [W(t), V(0)] \rangle \sim \hbar^2 e^{2\lambda t}$$

- Semi-classical computation of conductivity in weak disorder



- Semiclassical regime $\lambda \ll a$
- Nevertheless: quantum physics takes over when Larkin, Ovchinnikov

$$C(t) = -\langle [W(t), V(0)]^\dagger [W(t), V(0)] \rangle \sim \hbar^2 e^{2\lambda t} \sim 1$$

Ehrenfest time:

$$t_{Ehr} = \frac{1}{\lambda} \ln \frac{1}{\hbar}$$

- Careful:

In the quantum regime chaotic behavior is hard.

i.e. most quantum analogues of classical systems with chaos do not exhibit exponential growth in this OTOC correlator.

- Need a small parameter e.g. Grozdanov, Kukuljan, Prosen
- In semi-classical systems \hbar $C(t) \sim \hbar^2 e^{2\lambda t}$

- In holography: $\frac{1}{N}$ $C(t) \sim \frac{1}{N^2} e^{2\lambda t}$

Semi-classical single-trace lumps: large N classicalization/master field

A bound on chaos = a bound on diffusion?

- A bound on chaos

Maldacena, Shenker, Stanford

- Related regulated function:

$$F(t) = \langle W(t)yV(0)yW(t)yV(0)y \rangle \sim 1 - e^{2\lambda t}$$

$$y^4 = \frac{e^{-\beta H}}{Z}$$

- Not time ordered: but $|TFD\rangle = \sum_n e^{-\frac{\beta}{2}E} |n\rangle |n\rangle$

$$F(t) = \sum \langle TFD | (W(t)V(0) \otimes \mathbb{1})(1 \otimes W(t)V(0)) | TFD \rangle$$

$$F(t) \sim \sum \langle W(t)V(0) \rangle^\dagger \langle W(t)V(0) \rangle$$

- Analyticity in QFT demands

$$\lambda \leq 2\pi T$$

- A bound on chaos

Maldacena, Shenker, Stanford

- Related regulated function:

$$F(t) = \langle W(t)yV(0)yW(t)yV(0)y \rangle \sim 1 - e^{2\lambda t}$$

$$y^4 = \frac{e^{-\beta H}}{Z}$$

- Not time ordered: but $|TFD\rangle = \sum_n e^{-\frac{\beta}{2}E} |n\rangle |n\rangle$

Careful:
Answer depends
on regulating.
This one encodes
chaos correctly

$$F(t) = \sum \langle TFD | (W(t)V(0) \otimes \mathbb{1})(1 \otimes W(t)V(0)) | TFD \rangle$$

$$F(t) \sim \sum \langle W(t)V(0) \rangle^\dagger \langle W(t)V(0) \rangle$$

Romero-Bermudez,
Schalm,
Scopelliti

- Analyticity in QFT demands

$$\lambda \leq 2\pi T$$

- Black holes saturate this bound: maximal chaos

$$\lambda_{BH} = 2\pi T$$

- This observation is the driving force behind SYK

Kitaev
e.g. Stanford@Strings'16

It would be nice to have a solvable model of holography.

theory	bulk dual	anom. dim.	chaos	solvable in $1/N$
SYM	Einstein grav.	large	maximal	no
$O(N)$	Vasiliev	$1/N$	$1/N$	yes
SYK	“ $\ell_s \sim \ell_{AdS}$ ”	$O(1)$	maximal	yes

- A refined version

$$C(t, x) = -\langle [W(t, x), V(0)]^\dagger [W(t, x), V(0)] \rangle \sim \hbar^2 e^{\xi(x - v_{LR}t)}$$

gives you a “scrambling” velocity

$$\xi v_{LR} = 2\lambda$$

- First pioneered in 1+1 dimension systems
- Lieb-Robinson proved:

The velocity v_{LR} is an absolute upper bound on information spreading.

- v_{LR} acts as an emergent lightcone.
- Idea: also in other systems this butterfly/Lieb-Robinson velocity is the maximum “speed” at which information spreads

- Diffusion is characterized by a velocity

$$D \sim \frac{v^2}{T} \sim \frac{v^2}{\lambda}$$

- Long sought goal: a fundamental quantum bound on diffusion

$$\frac{\eta}{s} \geq \frac{1}{4\pi}$$

Kovtun, Son, Starinets

$$D \geq \frac{v_{inc}^2}{T}$$

Hartnoll
Hartman, Hartnoll, Mahajan

- (Unstated) Hypothesis: v_{LR} provides this fundamental velocity

- Diffusion is characterized by a velocity

$$D \sim \frac{v^2}{T} \sim \frac{v^2}{\lambda}$$

- Long sought goal: a fundamental quantum bound on diffusion

$$\frac{\eta}{s} \geq \frac{1}{4\pi}$$

Kovtun, Son, Starinets

$$D \geq \frac{v_{inc}^2}{T} \quad \text{or} \quad D \leq \frac{v_{inc}^2}{T}$$

Hartnoll

Hartman, Hartnoll, Mahajan
Lucas,

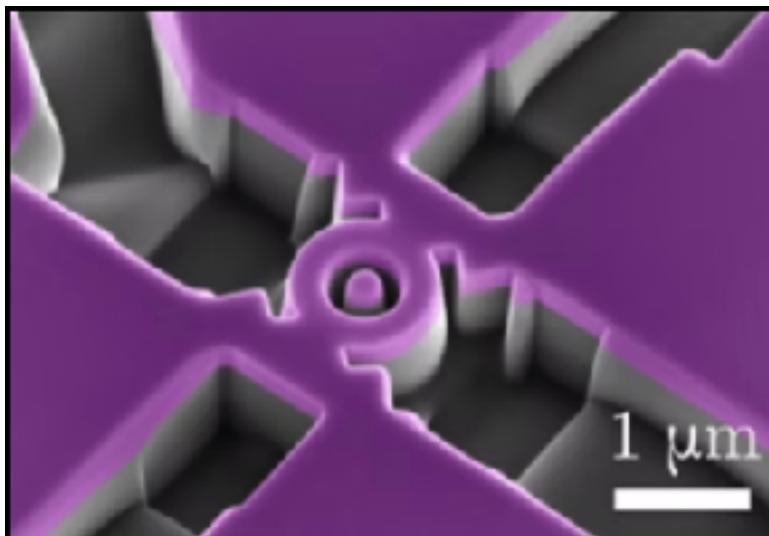
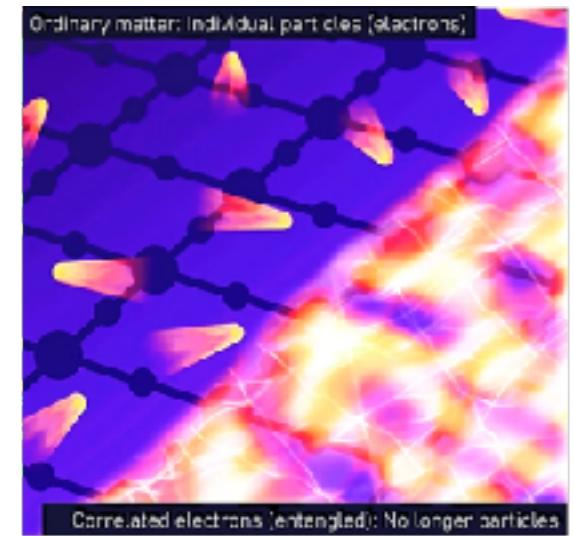
.....

- (Unstated) Hypothesis: v_{LR} provides this fundamental velocity

Is there a fundamental *Quantum Limit* on diffusion?

Koenraad Schalm and Kaveh Lahabi

LION, Leiden University



- This proposal:

A dedicated **experiment** to probe the quantum limits on diffusion directly in strongly correlated quantum matter.

- Theoretical basis:

Shock front (OTOC) travels at v_B

Linear response travels at v_{Diff}

Quantum Limits are reached when these become the same

- Semi-classical chaos in weakly coupled systems

“Surprisingly a relation of the form $D \sim v_{LR}^2 \tau$ shows up in a number of non-holographic contexts”

- Most of these are weakly coupled zero density field theory results.

This should not be a surprise. This is the classical dilute gas computation.

- Scrambling rate/Chaos is a microscopic “particle” property
- Diffusion is a macroscopic collective property

A kinetic equation for semi-classical chaos

- Semi-classical chaos in weakly coupled systems

“Surprisingly a relation of the form $D \sim v_{LR}^2 \tau$ shows up in a number of non-holographic contexts”

- Most of these are weakly coupled zero density field theory results.

This should not be a surprise. This is the classical dilute gas computation.

From the point of view what you compute it is a *surprise*

Scrambling in weakly coupled QFT is classical dilute gas

- Object of interest for λ, v_{LR}

$$C(t) = -\langle [W(t), V(0)]^\dagger [W(t), V(0)] \rangle \sim e^{2\lambda(t - \frac{x}{v_{LR}})}$$

growing mode

- Object of interest for $D = \frac{\eta}{\chi}$

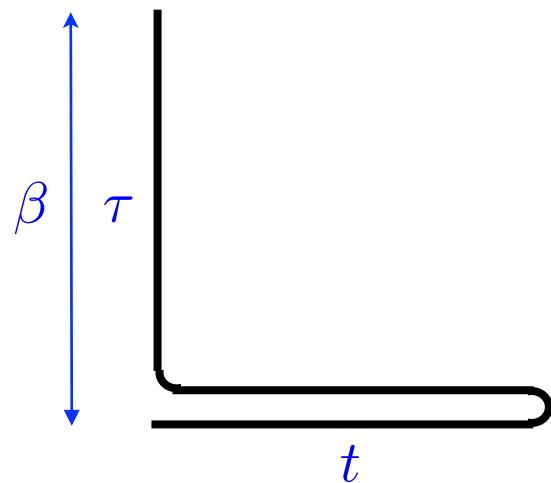
$$\eta = \lim_{\omega \rightarrow 0} \frac{1}{i\omega} \text{Im} \langle T_{xy}(\omega), T_{xy}(-\omega) \rangle_R$$

*Boltzmann transport only supports decaying modes:
viscosity set by smallest decay mode — relaxation time approximation*

- Transport

$$G_R(t) \sim p_x p_y q_x q_y \langle [\Phi^{ab} \Phi^{ab}, \Phi^{cd} \Phi_{cd}] \rangle_\beta$$

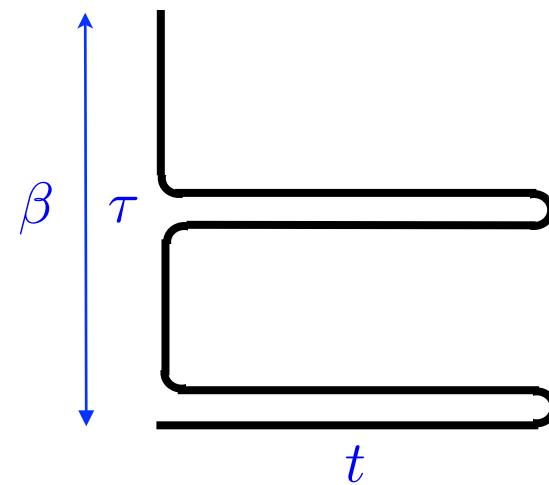
Schwinger-Keldysh contour



- Scrambling/Chaos

$$C(t) \sim \langle [\Phi^{ab}, \Phi^{cd}] [\Phi_{ab}, \Phi_{cd}] \rangle_\beta$$

OTOC contour



- Transport

$$G_R(t) \sim p_x p_y q_x q_y \langle [\Phi^{ab} \Phi^{ab}, \Phi^{cd} \Phi_{cd}] \rangle_\beta$$

Schwinger-Keldysh contour

- In free field theory

- Scrambling/Chaos

$$C(t) \sim \langle [\Phi^{ab}, \Phi^{cd}] [\Phi_{ab}, \Phi_{cd}] \rangle_\beta$$

OTOC contour

$$C(t) \sim G_R(t) = -2G_R^{\Phi\Phi}(t) + \mathcal{O}(\lambda)$$

- In perturbation theory Transport and Scrambling sum the same ladder diagrams

Stanford, Jeon

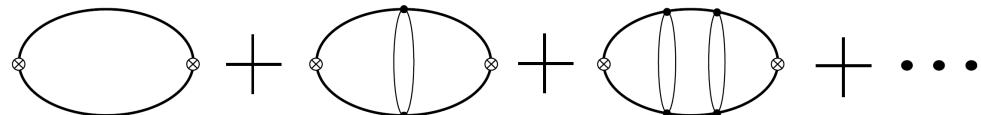
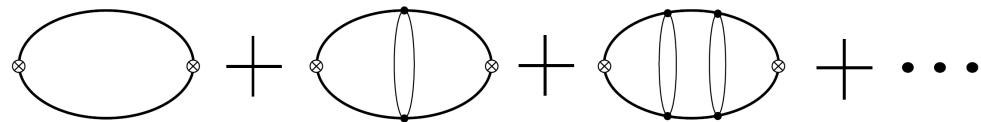


FIG. 2: Resummation of ladder diagrams. The insertions of the energy-momentum tensor operator \hat{T}^{xy} is denoted by the crossed dots and black dots are the vertices with the coupling constant λ .

Schwinger Keldysh Contour

This Bethe-Salpeter eqn
is the QFT version of the
Boltzmann equation



$$\tilde{G}(p|k) = \frac{\pi}{E_p} \frac{\delta(p_0^2 - E_p^2)}{-i\omega + 2\Gamma_p} \left[1 + \int \frac{d^4 \ell}{(2\pi)^4} R(\ell - p) \tilde{G}(\ell|k) \right].$$

- Ansatz

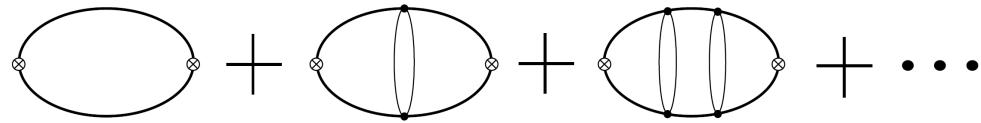
$$\tilde{G}(p|k) = \delta(p_0^2 - E_p^2) f(\mathbf{p}|k)$$

$$(-i\omega + 2\Gamma_p) f(\mathbf{p}|k) = \frac{\pi}{E_p} \left[1 + \int_{\mathbf{l}} (R(E_{\mathbf{l}} - E_p, \mathbf{l} - \mathbf{p}) + R(E_{\mathbf{l}} + E_p, \mathbf{l} - \mathbf{p})) f(\mathbf{l}|k) \right].$$

gives

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} (R^{in}(\mathbf{p}, \mathbf{k}) - R^{out}(\mathbf{p}, \mathbf{k})) f(\mathbf{k}, t)$$

- SchwKeld



$$\tilde{G}(p|k) = \frac{\pi}{E_p} \frac{\delta(p_0^2 - E_p^2)}{-i\omega + 2\Gamma_p} \left[1 + \int \frac{d^4 \ell}{(2\pi)^4} R(\ell - p) \tilde{G}(\ell|k) \right].$$

- OTOC

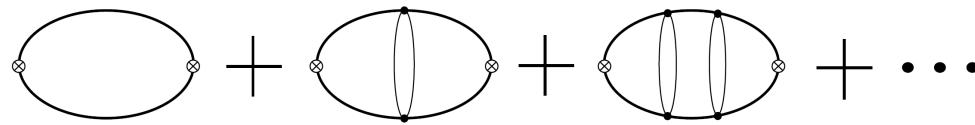
$$\tilde{\mathcal{G}}(p|k) = \frac{\pi}{E_p} \frac{\delta(p_0^2 - E_p^2)}{-i\omega + 2\Gamma_p} \left[1 + \int \frac{d^4 \ell}{(2\pi)^4} \frac{\sinh(\beta p^0/2)}{\sinh(\beta \ell^0/2)} R(\ell - p) \tilde{\mathcal{G}}(\ell|k) \right].$$

- Ansatz

$$\tilde{\mathcal{G}}(p|k) = \delta(p_0^2 - E_p^2) f(\mathbf{p}|k)$$

$$(-i\omega + 2\Gamma_p) f(\mathbf{p}|k) = \int \frac{\sinh(\beta p^0/2)}{\sinh(\beta \ell^0/2)} (R(\ell_+) - R(\ell_-)) f(\mathbf{k}|k)$$

- SchwKeld



$$\tilde{G}(p|k) = \frac{\pi}{E_p} \frac{\delta(p_0^2 - E_p^2)}{-i\omega + 2\Gamma_p} \left[1 + \int \frac{d^4\ell}{(2\pi)^4} R(\ell - p) \tilde{G}(\ell|k) \right].$$

- OTOC

$$\tilde{\mathcal{G}}(p|k) = \frac{\pi}{E_p} \frac{\delta(p_0^2 - E_p^2)}{-i\omega + 2\Gamma_p} \left[1 + \int \frac{d^4\ell}{(2\pi)^4} \frac{\sinh(\beta p^0/2)}{\sinh(\beta \ell^0/2)} R(\ell - p) \tilde{\mathcal{G}}(\ell|k) \right].$$

- Ansatz

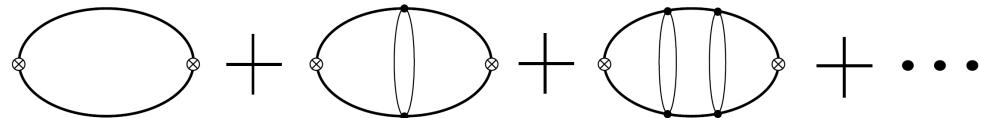
$$\tilde{\mathcal{G}}(p|k) = \delta(p_0^2 - E_p^2) f(\mathbf{p}|k)$$

$$(-i\omega + 2\Gamma_p) f(\mathbf{p}|k) = \int_1 \frac{\sinh(\beta p^0/2)}{\sinh(\beta \ell^0/2)} (R(l_+) - R(l_-)) f(\mathbf{k}|k)$$

- Transport

$$G_R(t) \sim p_x p_y q_x q_y \langle [\Phi^{ab} \Phi^{ab}, \Phi^{cd} \Phi_{cd}] \rangle_\beta$$

Schwinger-Keldysh contour



Boltzmann equation (net density)

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} (R^{in}(\mathbf{p}, \mathbf{k}) - R^{out}(\mathbf{p}, \mathbf{k})) f(\mathbf{k}, t)$$

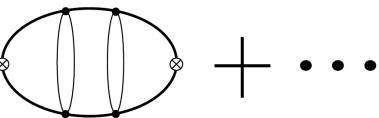
purely relaxational

$$f(\mathbf{p}, t) \sim e^{\lambda t} \text{ with } \lambda \leq 0$$

- Scrambling/Chaos

$$C(t) \sim \langle [\Phi^{ab}, \Phi^{cd}] [\Phi_{ab}, \Phi_{cd}] \rangle_\beta$$

OTOC contour



Kinetic equation (gross collisions)^{*}

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} \frac{\epsilon(\mathbf{p})}{\epsilon(\mathbf{k})} (R^{in}(\mathbf{p}, \mathbf{k}) + \widehat{R^{out}}(\mathbf{p}, \mathbf{k})) f(\mathbf{k}, t)$$

front propagation into unstable states

$$f(\mathbf{p}, t) \sim e^{\lambda t} \text{ with } \lambda \leq \lambda_{max} > 0$$

- Chaos follows from kinetic equation for gross energy exchange

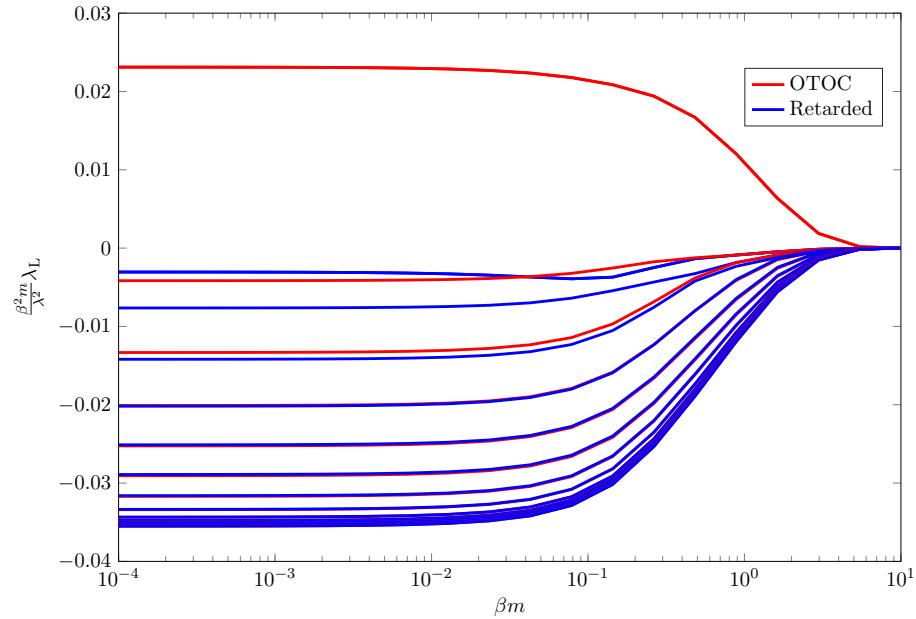
$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} \frac{\epsilon(\mathbf{p})}{\epsilon(\mathbf{k})} (R^{in}(\mathbf{p}, \mathbf{k}) + R^{out}(\mathbf{p}, \mathbf{k}) - 2\delta(\mathbf{p} - \mathbf{k})R^{out}(\mathbf{k}, \mathbf{k})) f(\mathbf{k})$$

- This is derived as opposed to ad hoc clock model

$$\frac{d}{dt} f_k = -f_k + f_{k-1}^2 + 2f_{k-1} \sum_{\ell=0}^{k-2} f_{\ell}$$

Qualitatively physics is similar (unstable front dynamics)

blue: eigenvalues λ for SchwKeld/Boltzmann
 red: eigenvalues λ for OTOC/Energy-exchange



- This explicitly shows in weakly coupled dilute QFT scrambling and diffusion are set by the same dynamics --- even though they are not identical.

$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2-to-2}}$$

$$\lambda = \frac{1}{\tau_{\text{ave}}} \left\langle \frac{1}{2} \ln(\Delta \vec{v})^2 \right\rangle \simeq \frac{\sqrt{\langle v_{\text{rel}}^2 \rangle}}{\ell_{\text{m.f.p.}}} \simeq \rho \sqrt{\langle v^2 \rangle} \sigma_{2-to-2}$$

- Chaos follows from kinetic equation for gross (energy) exchange

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} \frac{\epsilon(\mathbf{p})}{\epsilon(\mathbf{k})} (R^{in}(\mathbf{p}, \mathbf{k}) + R^{out}(\mathbf{p}, \mathbf{k}) - 2\delta(\mathbf{p} - \mathbf{k})R^{out}(\mathbf{k}, \mathbf{k})) f(\mathbf{k})$$

- We have now shown that this holds in general:
 - For bosonic and fermionic systems (Gross-Neveu model)
 - Models near a QCP approached from perturbative regime (Wilson-Fisher $\mathcal{O}(N)$ model)
 - Shorter derivation using 2PI formalism
- In all cases *off-shell* Bethe-Salpeter contains both chaos and Boltzmann transport.
 - One solution ansatz: Boltzmann. Complement: Chaos
 - pQFT analogue of Maxwell relation: weakly coupled dilute gas.
 - Pole-skipping....

Ultra strongly correlated systems are similar to dilute gases

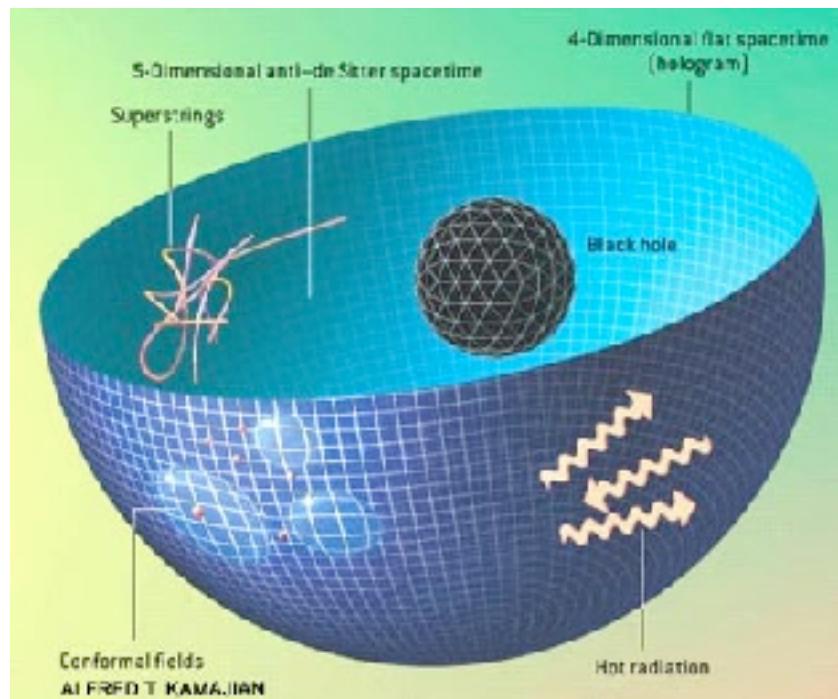
- Is scrambling rate related to diffusion?

$$D \sim \frac{v^2}{T} \sim \frac{v_{\text{LR}}^2}{\lambda}$$

String Theory for Condensed Matter

AdS-CFT duality

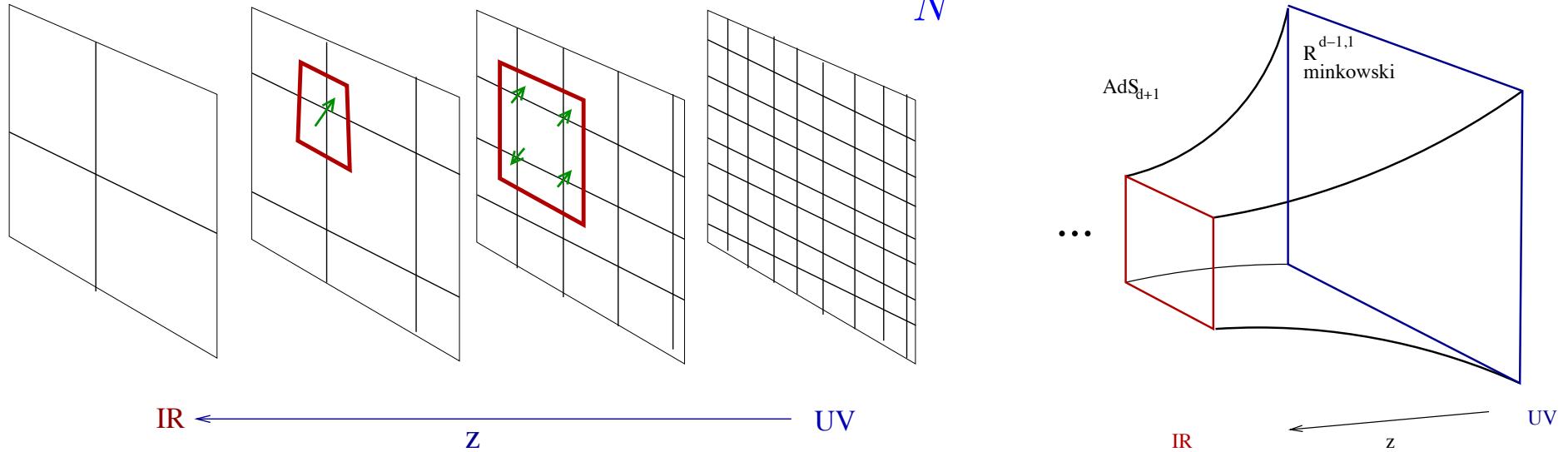
strongly coupled field theories without an energy scale (CFT) have a dual description as a weakly coupled string theory in negatively curved space time (AdS).



Holography for Strongly coupled systems

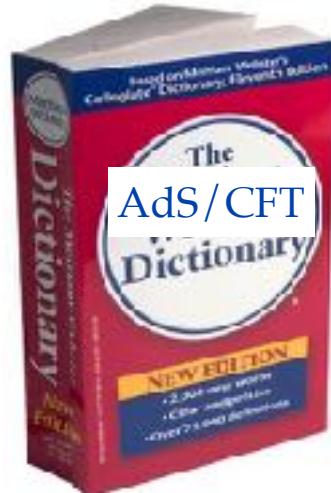
works best when d.o.f. are matrices Φ_{ij} $i, j = 1 \dots N$ with $N \gg 1$

semi-classical limit $\frac{1}{N} \rightarrow 0$



$$Z_{CFT}(J) = \exp i S_{AdS}^{\text{on-shell}}(\phi(\phi_{\partial AdS} = J))$$

Quantum numbers
 Finite Temp
 Finite Density
 Conserved Current
 Energy dynamics

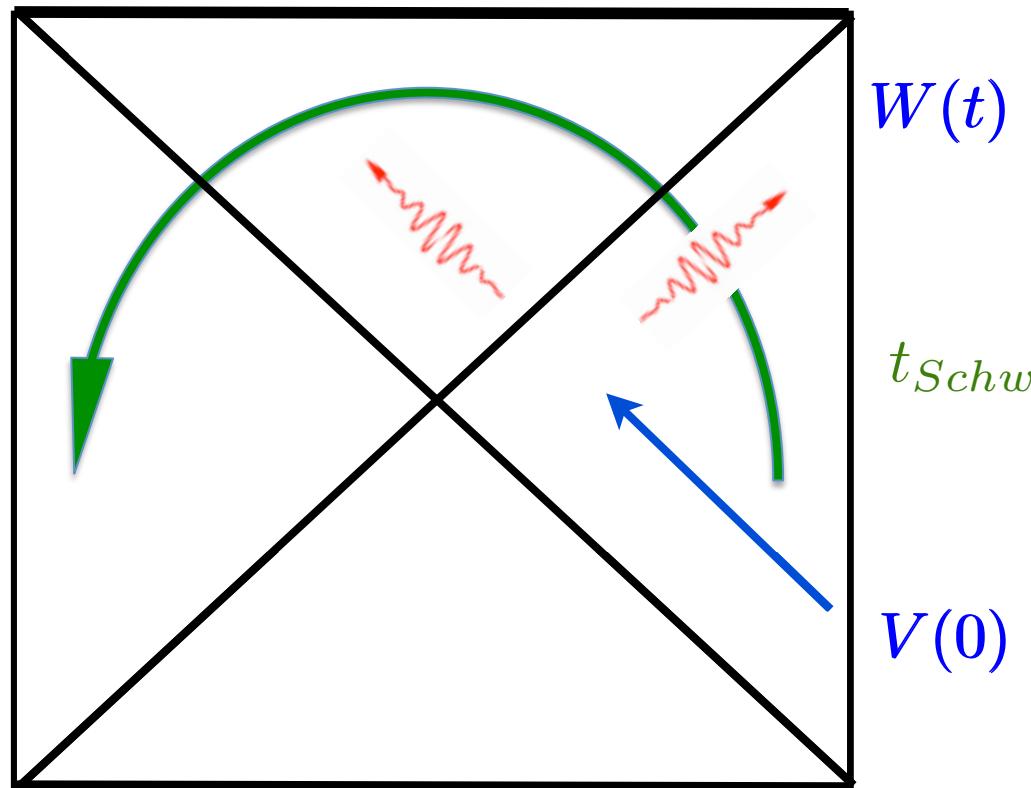


Quantum numbers
 AdS Black hole
 Extremal AdS black hole
 Gauge field
 Gravity dynamics

- Shockwave calculation in AdS BH

Roberts, Stanford, Susskind

$$F(t) = \sum \langle TFD | (W(t)V(0) \otimes \mathbb{1})(\mathbb{1} \otimes W(t)V(0)) | TFD \rangle$$



- Is scrambling rate related to diffusion?

$$D \sim \frac{v^2}{T} \sim \frac{v_{\text{LR}}^2}{\lambda}$$

- Is scrambling rate related to diffusion?

Blake;
Davison, Fu, Georges, Gu,
Jensen, Sachdev.

For “relevant diffusion” (=irrelevant suscep)

$$D = \frac{d - \theta}{\Delta_\chi} \frac{v_{LR}^2}{2\pi T} \quad \Delta_\chi \equiv [\rho] - [\mu] > 0$$

..similar results for massive gravity (mean-field disorder), but fails in general

- Refinement: charged systems with mean-field disorder
 - Thermal diffusivity set by horizon properties only

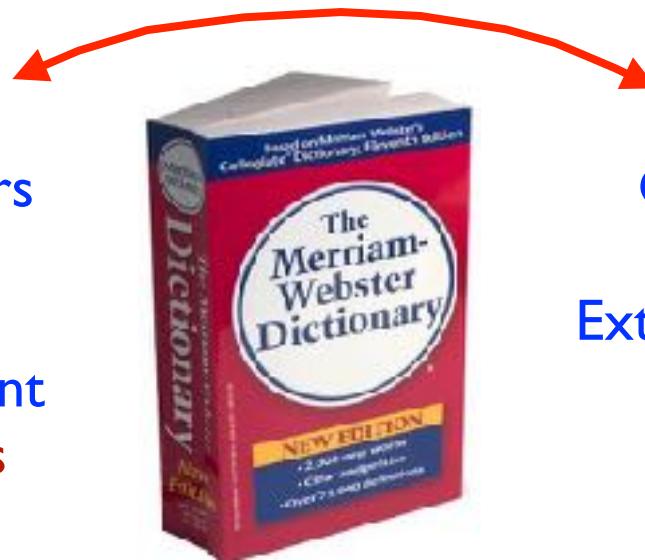
$D_P = \eta/sT$ PolICASTRO, Son, Starinets

$D_T = \frac{z}{2z-2} \frac{v_{LR}^2}{\lambda_L}$ Blake, Davison, Sachdev

- From a physics perspective these are puzzling results:

$$Z_{CFT}(J) = \exp iS_{AdS}^{\text{on-shell}}(\phi(\phi_{\partial AdS} = J))$$

Quantum numbers
Finite Temp
Finite Density
Conserved Current
Energy dynamics



Quantum numbers
AdS Black hole
Extremal AdS black hole
Gauge field
Gravity dynamics

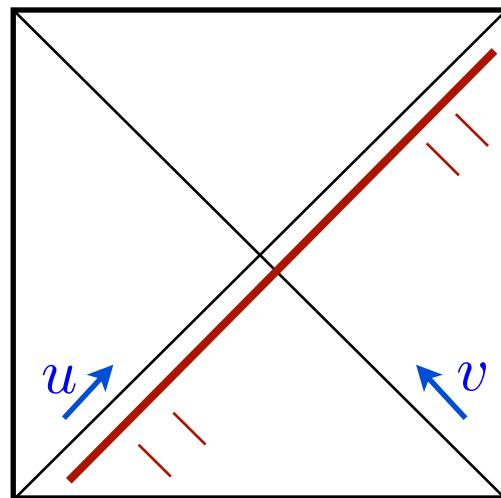
- Shock waves are sound

- General metric

$$ds_{d+2}^2 = A(UV)dUdV + B(UV)g_{ij}dx^i dx^j - A(U, V)h(U, \vec{x})dUdU$$

- Shock wave equation

$$\delta(U) \left(\Delta_g h - d \frac{B'}{A} h \right) = 32\pi E A \delta^d(\vec{x}) \delta(U)$$



- Shock waves are sound

- General metric

$$ds_{d+2}^2 = A(UV)dUdV + B(UV)g_{ij}dx^i dx^j - A(U, V)h(U, \vec{x})dUdU$$

- Shock wave equation

$$\delta(U) \left(\Delta_g h - d \frac{B'}{A} h \right) = 32\pi E A \delta^d(\vec{x}) \delta(U)$$

- Sound perturbation from AdS/CFT

$$\Delta_g h(U, \vec{x}) - 2d \frac{B}{A} h(U, \vec{x}) - d \frac{B'}{A} U \frac{\partial}{\partial U} h(U, \vec{x}) = 0$$

for $h(U, \vec{x}) \sim \delta(U)h(\vec{x})$ reduces to shock

- Sound at *imaginary* values of frequency and momentum

$$\omega = 2\pi iT = i\lambda \quad , \quad k^2 = -\mu^2 = -6\pi^2 T^2 = -\frac{\lambda^2}{v_B^2}$$

- Hydrodynamical sound (known up to 3rd order analytically)

$$\omega(k) = \pm \frac{1}{\sqrt{3}}k - \frac{i}{6\pi T}k^2 + \dots$$

- Relaxational modes: real momentum, complex/imaginary frequency

measures relaxation time

- Penetration depth: real frequency, complex/imaginary momentum

measures relaxation length (penetration depth)

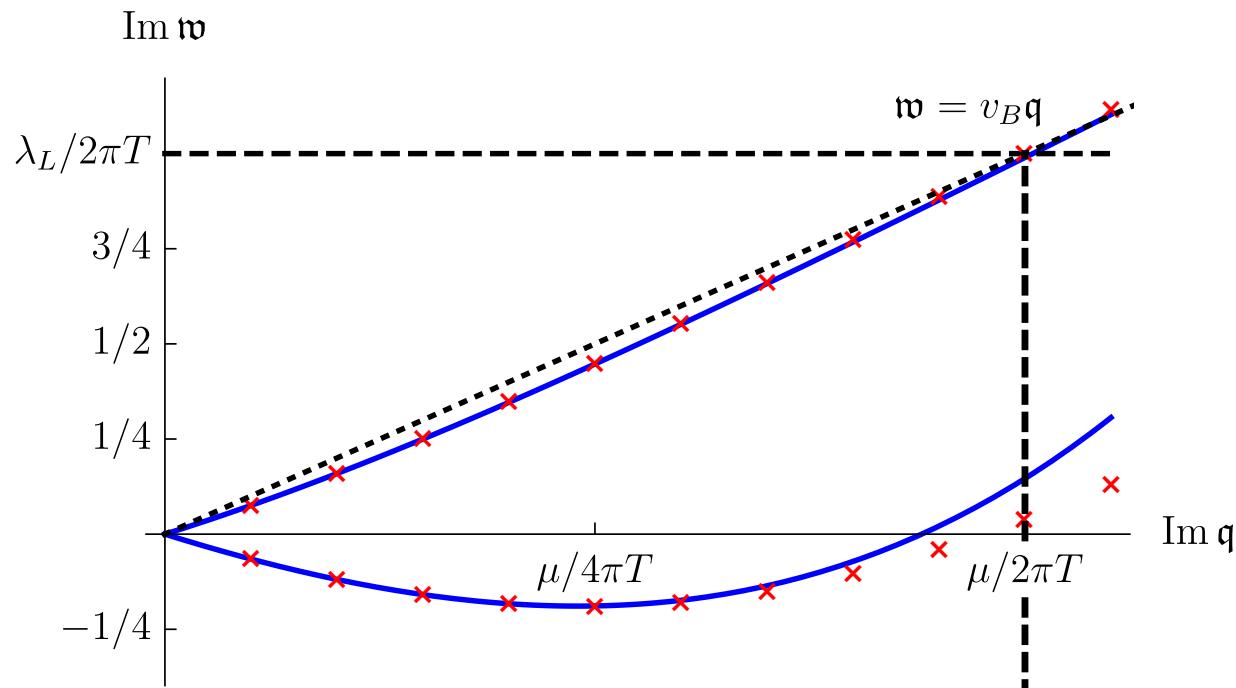
- Doubly imaginary: “temporal response” to “spatial profile”

- Sound at *imaginary* values of frequency and momentum

$$\omega = 2\pi iT = i\lambda \quad , \quad k^2 = -\mu^2 = -6\pi^2 T^2 = -\frac{\lambda^2}{v_B^2}$$

- Hydrodynamical sound (known up to 3rd order analytically)

$$\omega(k) = \pm \frac{1}{\sqrt{3}}k - \frac{i}{6\pi T}k^2 + \dots$$

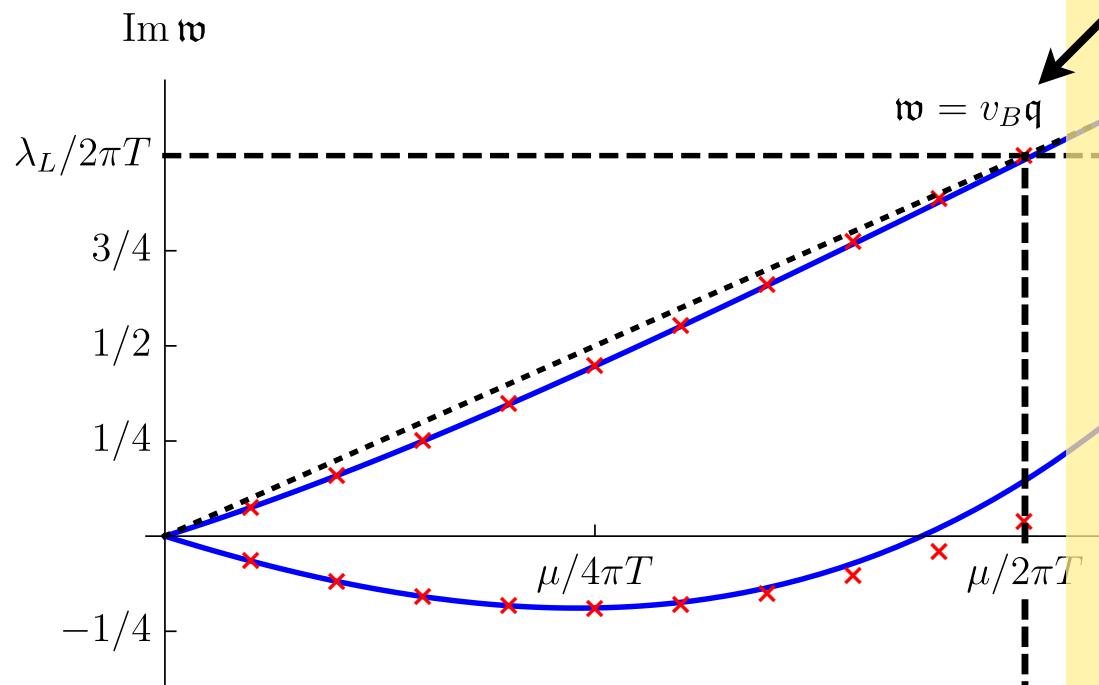


- Sound at *imaginary* values of frequency and momentum

$$\omega = 2\pi iT = i\lambda \quad , \quad k^2 = -\mu^2 = -6\pi^2 T^2 = -\frac{\lambda^2}{v_B^2}$$

- Hydrodynamical sound (known up to 3rd order analytically)

$$\omega(k) = \pm \frac{1}{\sqrt{3}}k - \frac{i}{6\pi T}k^2 + \dots$$



Pole-skipping:

QNM mode residue vanishes precisely at
 $\omega = 2\pi iT$

Also happens in SYK.
[Gu, Qi, Stanford]

Direct consequence of the
existence of the shockwave
solution.
[Blake, Lee, Liu]

Beautiful GR story:
non-unique BC
at the horizon
[Blake, Davison, Grozdanov, Liu]

- In generality

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{-g} \left[R + \frac{12}{L^2} + \mathcal{L}_{matter} \right]$$

$$ds^2 = -f(r)dt^2 + \frac{g(r)dr^2}{f(r)} + b(r)(dx^2 + dy^2 + dz^2) - \left[f(r)C_{\pm}W_{\pm}(dt \pm \frac{1}{f(r)}dr)^2 \right]$$

$$W_{\pm}(t, z, r) = e^{-i\omega \left[t \pm \int^r \frac{dr'}{f(r')} \right] + ikz} h_{\pm}(r)$$

$$\partial_t W \pm |_{rh} = \mp \mathfrak{D} \partial_z^2 W_I |_{rh} \quad tr\text{-Einstein Eq.}$$

$$\mathfrak{D} \equiv \frac{v_{LR}^2}{\lambda_L}$$

- Is scrambling related to diffusion?

- Is scrambling related to diffusion?
 - In two-derivative gravity scrambling is a diffusive sound wave on the horizon with

$$\mathfrak{D} = \frac{v_{LR}^2}{\lambda_L}$$

- This *explains* Blake's observation and all previous results.
- However,

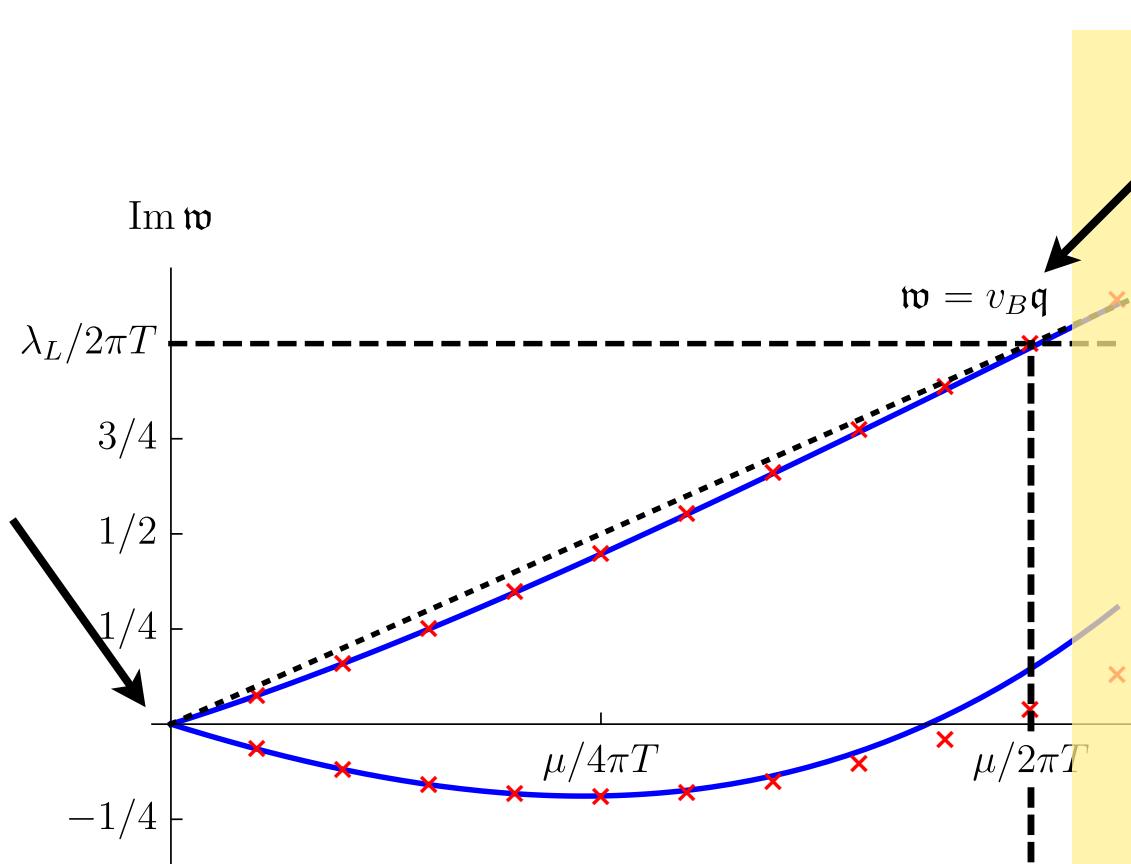
- This does not equal the diffusion constant in the CFT

$$D_{CFT} = \frac{\eta}{sT} = \frac{3}{4} D_{hor} \quad \quad \frac{D}{\mathfrak{D}} = \frac{3 b'(r_h)}{8\pi T},$$

- Even though this is also computed on the horizon (special to momentum diffusion)

Davison, Fu, Georges, Gu,
Jensen, Sachdev.
Blake, Davison, Sachdev

Physical diffusion is given by the behavior near $\omega \ll 1$ by now verified in many models [Blake, Davison, Grozdanov, Liu]



Pole-skipping:

QNM mode residue vanishes precisely at $\omega = 2\pi iT$

Also happens in SYK.

[Gu, Qi, Stanford]

Direct consequence of the existence of the shockwave solution.

[Blake, Lee, Liu]

Beautiful GR story: non-unique BC at the horizon

[Blake, Davison, Grozdanov, Liu]

- A generic system

particle picture

applies

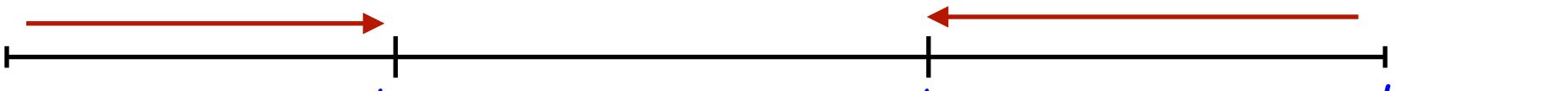
$t = 0$

t_{mfp}

hydro applies

$t_{\text{hydro-onset}}$

$t = \infty$



(conformal/long range entangled)

ultra strongly

coupled physics

hydro applies

$t = 0$

$t_{\text{hydro-onset}}$

$t = \infty$

- Is scrambling related to diffusion?
 - In two-derivative gravity scrambling is a diffusive sound wave on the horizon with

$$\mathfrak{D} = \frac{v_{LR}^2}{\lambda_L}$$

- This *explains* Blake's observation and all previous results.
- However,

- This does not equal the diffusion constant in the CFT

$$D_{CFT} = \frac{\eta}{sT} = \frac{3}{4} D_{hor} \quad \quad \frac{D}{\mathfrak{D}} = \frac{3 b'(r_h)}{8\pi T},$$

- Even though this also computed on the horizon (special to momentum diffusion)

Davison, Fu, Georges, Gu,
Jensen, Sachdev.
Blake, Davison, Sachdev;
Blake, Davison,
Grozdanov, Liu

- Black hole scrambling is hydrodynamics
 - **A revolutionary result:**
 - Scrambling rate/Chaos is a microscopic “particle” property
 - Diffusion is a macroscopic collective property
- A priori these are set by very different physics
 - Except: a weakly coupled dilute gas.

Maxwell

$$\eta = \frac{1}{3} m \rho \ell_{\text{m.f.p.}} \sqrt{\langle v^2 \rangle}$$

Famous “first” result of molecular kinetic theory

- Black hole scrambling is hydrodynamics

- **A revolutionary result:**

- Scrambling rate/Chaos is a microscopic “particle” property

- Diffusion is a macroscopic collective property

- A priori these are set by very different physics

- Except: a weakly coupled dilute gas.

van Zon, van Beijeren,
Dellago

Maxwell

$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2\text{-}to\text{-}2}}$$

$$\lambda = \frac{1}{\tau_{\text{ave}}} \left\langle \frac{1}{2} \ln(\Delta \vec{v})^2 \right\rangle \simeq \frac{\sqrt{\langle v_{\text{rel}}^2 \rangle}}{\ell_{\text{m.f.p.}}} \simeq \rho \sqrt{\langle v^2 \rangle} \sigma_{2\text{-}to\text{-}2}$$

Famous “first” result of molecular kinetic theory

- Black hole scrambling is hydrodynamics

- **A revolutionary result:**

Scrambling rate/Chaos is a microscopic “particle” property

Diffusion is a macroscopic collective property

- A priori these are set by very different physics

- Except: a weakly coupled dilute gas.

van Zon, van Beijeren,
Dellago

Maxwell

$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2\text{-to-}2}}$$

$$\lambda = \frac{1}{\tau_{\text{ave}}} \left\langle \frac{1}{2} \ln(\Delta \vec{v})^2 \right\rangle \simeq \frac{\sqrt{\langle v_{\text{rel}}^2 \rangle}}{\ell_{\text{m.f.p.}}} \simeq \rho \sqrt{\langle v^2 \rangle} \sigma_{2\text{-to-}2}$$

- Except: two-derivative holography

but now it is the macroscopic properties that set ergodicity

Two open questions...

particle picture

applies

$t = 0$

t_{mfp}

hydro applies

$t_{\text{hydro-onset}}$

$t = \infty$

particle picture



$$\eta = \frac{1}{3} m \sqrt{\langle v^2 \rangle} \frac{1}{\sigma_{2-to-2}}$$

And there is also a kinetic equation computing chaos!

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} \frac{\epsilon(\mathbf{p})}{\epsilon(\mathbf{k})} (R^{in}(\mathbf{p}, \mathbf{k}) + R^{out}(\mathbf{p}, \mathbf{k}) - 2\delta(\mathbf{p} - \mathbf{k})R^{out}(\mathbf{k}, \mathbf{k})) f(\mathbf{k})$$

(conformal/long range entangled)

ultra strongly

coupled physics

hydro applies

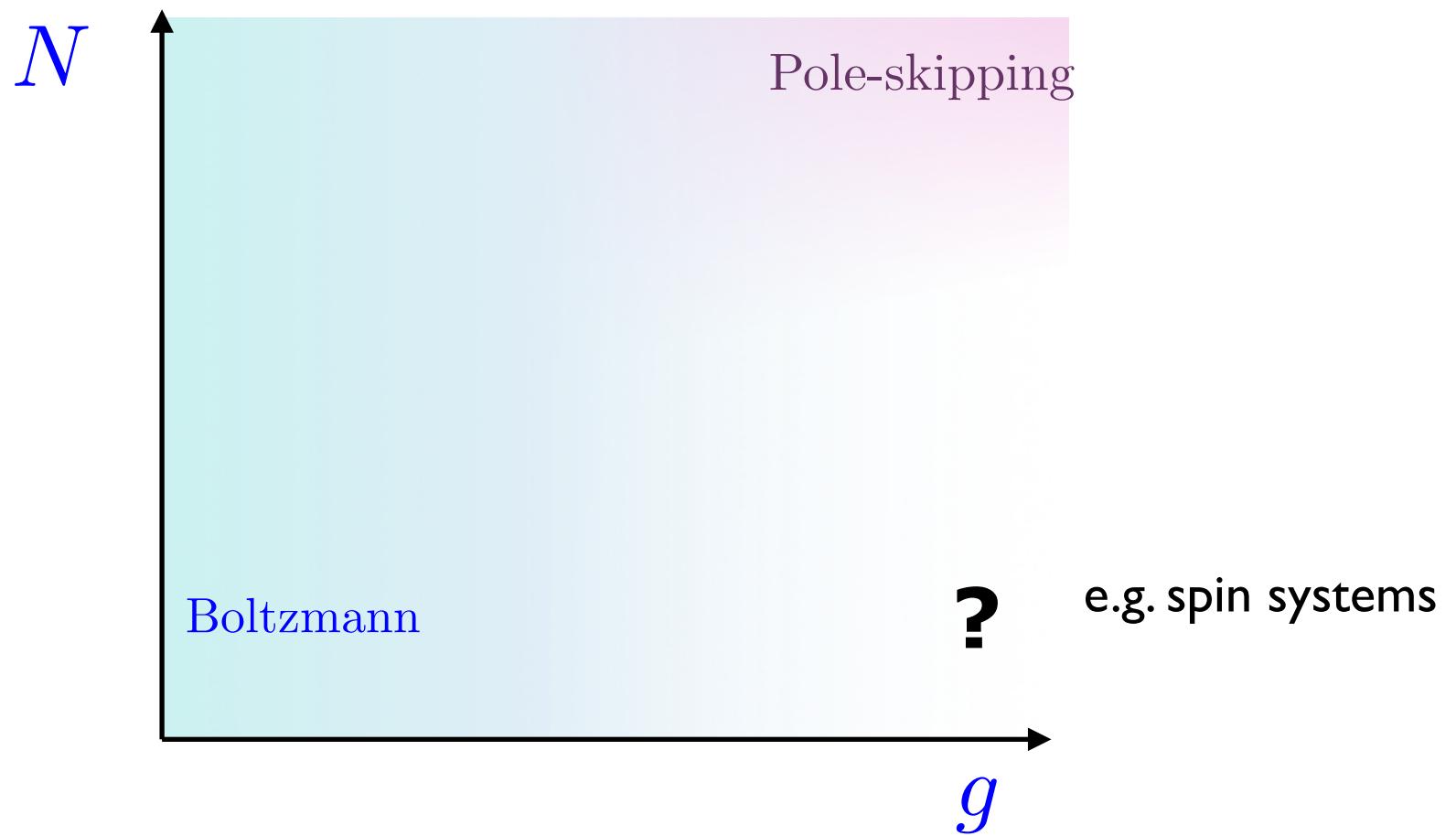
$t = 0$

$t_{\text{hydro-onset}}$

$t = \infty$

Ultra strongly coupled systems are similar to weakly coupled dilute gases:
chaos and transport are set by the same physics.

- Crucially these two exceptions rely on the existence of a small parameter.



- OTOC in kicked Ising rotor

Weak Quantum Chaos

Ivan Kukuljan,¹ Sašo Grozdanov,² and Tomaž Prosen¹

¹*University of Ljubljana, Faculty of Mathematics and Physics, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia*

²*Instituut-Lorentz for Theoretical Physics, Leiden University,
Niels Bohrweg 2, Leiden 2333 CA, The Netherlands*

(Dated: February 1, 2017)

$$C(t) \leq t^{\#}$$

The OTOC is polynomially bounded...

In such models the physics of scrambling is
different
from the physics of thermalization

- Relation to complexity (inspired by circuit complexity).

Krylov complexity:

$\hat{O} \rightarrow |\mathcal{O}\rangle$ in doubled Hilbert space

$$i \frac{\partial}{\partial t} |\mathcal{O}\rangle = \mathcal{H}_{\text{doubled}} |\mathcal{O}\rangle$$

$$|\mathcal{O}_n\rangle = H_{\text{doubled}}^n |\mathcal{O}_0\rangle$$

construct an orthonormal basis out of $|\mathcal{O}_n\rangle$

$$|\hat{O}(t)\rangle = \sum_n \phi_n(t) |\mathcal{O}_n\rangle$$

$$\mathcal{K}(t) \equiv \sum_n n |\phi_n(t)|^2$$

$$\mathcal{K}(t) \sim e^{2\alpha t}$$

Claim

$$\lambda_L \leq 2\alpha$$

Parker, Cao, Avdoshkin,
Scaffidi, Altman;
Avdoshkin, Dymarsky.

Conclusion

I. Quantum Chaos from an out-of-time-correlation function

$$C(t) = -\langle [W(t), V(0)]^\dagger [W(t), V(0)] \rangle \sim \hbar^2 e^{2\lambda t} \sim 1$$

2. Chaos and diffusion

different time scales: exception dilute gas

3. A bound on chaos = a bound on diffusion?

No, here, or trivial, or ...

4. Ultra strongly correlated systems are similar dilute gases

Scrambling and diffusion are set by the same **semi-classical** physics.

5. A kinetic equation for semi-classical chaos

Grozdanov, Schalm, Scopelliti,
in graphene: **Klug, Scheurer, Schmalian**

$$\frac{d}{dt} f(\mathbf{p}, t) = \int_{\mathbf{k}} \frac{\epsilon(\mathbf{p})}{\epsilon(\mathbf{k})} (R^{in}(\mathbf{p}, \mathbf{k}) + R^{out}(\mathbf{p}, \mathbf{k}) - 2\delta(\mathbf{p} - \mathbf{k})R^{out}(\mathbf{k}, \mathbf{k})) f(\mathbf{k})$$

Thank you