
Magnetic resonance experiments: 

Standard experimental settings and theoretical concepts

Almost all modern approaches to dynamics and control of spins 

and qubits are based on magnetic resonance-type settings.

𝐵𝑄

𝜔𝐿

Single spin or ensemble of spins in a strong magnetic field 𝐵𝑄

“Quantizing field” – determines 

primary quantization axis
(why “primary”? Will see shortly)

Induces Larmor precession with the 

frequency 𝜔0

𝐻 = 𝜔𝐿 𝑆𝑧 +𝐻′

Informally we say that 𝐻′ ≪ 𝜔𝐿 , i.e. typical energies of 𝐻′ are much 

smaller than 𝜔𝐿.  But it is 𝐻′ that is usually of most interest.
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How do we excite (“drive”) spin dynamics?

xy

Rotating frame

S


Spin Oscillating field

co-rotating

(resonant)

counter-rotating

(negligible)

Pointer states | ۧ↑ and | ۧ↓ . How do we make spins move?

Oscillating field h along X, frequency 𝜔𝐿 – performs rotations.

Drives spins out of equilibrium state. How?

ℎ𝑥 𝑡 = 2ℎ cos𝜔𝐿𝑡

𝐵𝑄

𝜔𝐿

Key concept: Rotating frame

𝜔𝐿 𝜔𝐿 𝜔𝐿
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Rabi oscillations and rotating frame

𝐻 = 𝜔𝐿 𝑆𝑧 + ℎ𝑥 𝑡 𝑆𝑥 = 𝜔𝐿 𝑆𝑧 + 2ℎ 𝑆𝑥 cos(𝜔𝑡 + 𝛼)

We are interested only in dynamics at frequencies close to 𝜔𝐿

Driving at the frequency 𝜔 close to 𝜔𝐿 :  𝜔 − 𝜔𝐿 ≪ 𝜔𝐿 ,  ℎ ≪ 𝜔𝐿

Rotating frame transformation:  𝑊 = exp(−𝑖𝜔𝑡 𝑆𝑧)
Rotation with frequency 𝜔 (not 𝜔𝐿!) around the Z-axis

𝑈 𝑡 = 𝑊 ∙ 𝑈𝑅(𝑡) ,     𝑈𝑅 𝑡 – ev.op. in the rotating frame

𝑖 ሶ𝑈 = 𝐻 𝑈 𝑡 ⇒ 𝑖 ሶ𝑈𝑅 = 𝑊†𝐻𝑊 −𝜔 𝑆𝑧 𝑈𝑅 =

= 𝜔𝐿 − 𝜔 𝑆𝑧 + 2ℎ cos(𝜔𝑡 + 𝛼) e𝑖𝜔𝑡𝑆𝑧 𝑆𝑥 e
−𝑖𝜔𝑡𝑆𝑧 𝑈𝑅 =

= 𝜔𝐿 − 𝜔 𝑆𝑧 + ℎ 𝑆𝑥 cos 𝛼 + 𝑆𝑦 sin 𝛼 + {nonsec. terms} 𝑈𝑅

Secular Hamiltonian :  𝐻𝑅 = 𝜔𝐿 − 𝜔 𝑆𝑧 + ℎ 𝑆𝑥 cos 𝛼 + 𝑆𝑦 sin 𝛼
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Rabi oscillations and rotating frame

Isidor Rabi [Rah-bee], Nobel prize 1944

Weak ℎ ≪ 𝜔𝐿 time-dependent driving became strong ℎ~|𝜔𝐿 −𝜔|
and time-independent

ωL

ℎ𝑥(𝑡)

𝜔𝐿 − 𝜔

h

Driven spins rotate around 𝑛 ,  𝑆𝑧 oscillates: Rabi oscillations.

Lab
frame:

Rotating
frame:

𝑛lab
𝑛

Rotating frame: we transform 𝐻 → 𝐻𝑅 , density matrix 𝜌 → 𝜌𝑅 , …

But not the observables!

Different from interaction representation, rotating-wave approx., etc.

1) Inconvenient: time dependence of  𝑆𝑥,𝑦 , mutual dependence,…

2) Rotating-frame observables are what is actually detected in standard  

resonance experiments (I/Q channels)

See e.g. C. P. Slichter, “Principles of Magnetic Resonance”
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Spin driving: qualitative picture

Ideal:
෡𝐻 = 𝜔0

መ𝑆𝑧

| ۧ↑

| ۧ↓
𝜔

𝜔0

𝑃 𝜔 = 𝛿(𝜔 − 𝜔0)
Single 

sharp line

Noise:
෡𝐻 = 𝜔 መ𝑆𝑧

| ۧ↑

| ۧ↓
𝜔

𝜔0

𝑃 𝜔

𝜔

ℎ

Spins resonant

with driving

Broadened line,

determined by

𝑃 𝛽

Strong

driving:

𝜔

ℎ

Weak

driving:

Spins resonant

with driving
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Rabi oscillations: strong driving

𝜔𝐿 − 𝜔

h

Rotating frame:

𝑛 𝐻 = 𝐵 𝑆𝑧 + ℎ 𝑆𝑥 with   𝐵 = 𝜔𝐿 − 𝜔

How do we take noise into account ?

Weak non-resonant fields (𝜔′, 𝐵′) :    |𝜔0 −𝜔′| ≫ 𝐵′

If directed along X- and Y-axes: non-secular, neglect
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Therefore, only static noise along Z-axis matters: 𝐵 = 𝐵0 + 𝛽

𝜔𝐿 = 𝜔0 + 𝛽 , e.g.  𝑃 𝛽 =
1

2𝜋𝑏2
exp −

𝛽2

2𝑏2

Consider quasi-static noise:   inhomogeneous broadening

This is precisely what we studied in the previous lecture



Rabi oscillations: strong driving

Strong off-resonant driving: ℎ, 𝐵0 ≫ 𝑏

Initial state decays towards equilibrium (pointer) states

Pointer states – already analyzed earlier in detail

Decay of all components has Gaussian form, decay time 𝑇2
∗:

𝑇2
∗ = 𝑏−1 for 𝐵0 ≫ ℎ

𝑇2
∗ = 𝑏−1 ∙ ℎ/𝐵0 for  𝐵0 ≪ ℎ

V. Dobrovitski, L. 2

𝜔𝐿 − 𝜔

h

Rotating 
frame: 𝑛

𝐻 = 𝐵 𝑆𝑧 + ℎ 𝑆𝑥 ,

𝐵 = 𝜔𝐿 − 𝜔

𝑃 𝛽

Any questions?    Hint:   𝑇2
∗ = 𝑏−1 ℎ/𝐵0 for  𝐵0 ≪ ℎ. What about 𝐵0 = 0?



Rabi oscillations, strong driving

For 𝐵0 = 0 :  

First order in 𝛽 is gone, but there is second:

Ω = Ω0 + 𝐵0 ∙ Τ𝛽 Ω0 + Τℎ2 2Ω0 ∙ Τ𝛽 Ω0
2 +⋯

Ω = 𝐵2 + ℎ2 ≡ 𝛽2 + ℎ2 ≈ ℎ + Τ𝛽2 2ℎ

𝜑 ≈ ℎ𝑡 + Τ𝑡 𝛽2 2ℎ

න𝑃 𝛽 𝑑𝛽 e𝑖𝑡𝛽
2/(2ℎ) = 1

2𝜋𝑏2
නe𝑖

𝑡𝛽2

2ℎ e
−

𝛽2

2𝑏2 𝑑𝛽 = 1 − 𝑖 𝑏
2𝑡
2ℎ

−1/2
=

= 𝑟(𝑡) ∙ e𝑖𝜇(𝑡) ,   with  𝑟 = 1 + 𝑏2𝑡

2ℎ

2 −1/4

and  𝜇 = 1

2
tan−1

𝑏2𝑡

2ℎ

Strong resonant driving:   𝐵0 = 0 ,  ℎ ≫ 𝑏

Resonant: 𝜔 = 𝜔0 , i.e. exactly at resonance with the line center

Spectroscopic language: driving saturates the line

The integral which determines the form of decay:
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Initial decay at 𝑡 ≪ ℎ/𝑏2 : 

quadratic,  𝑟 𝑡 ≈ 1 − 𝐴𝑡2 , with linearly changing phase 𝜇(𝑡), i.e. 

Rabi frequency is renormalized by Τ𝑏2 (2ℎ).
Looks like regular Gaussian, but…

Long-time decay at 𝑡 ≫ ℎ/𝑏2 :  

extremely slow power-law decay,   𝑟(𝑡) ∝ 𝑡−1/2 with  𝜇 ≈ 𝜋/4

where

𝜗 = ℎ𝑡 + 𝜇(𝑡)

መ𝑆𝑥 𝑡 = መ𝑆𝑥 (constant in time),  

መ𝑆𝑧 𝑡 = 𝑟 𝑡 መ𝑆𝑧 cos 𝜗 + መ𝑆𝑦 sin 𝜗

መ𝑆𝑦 𝑡 = 𝑟 𝑡 መ𝑆𝑦 cos 𝜗 − መ𝑆𝑧 sin 𝜗

All operators are understood as averaged over the noise, the symbol … 𝛽 omitted

Rabi oscillations, strong resonant driving

Leading order in 𝑏/ℎ ≪ 1 :  decaying rotation around X-axis

Explicit

results:
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Rabi oscillations, strong resonant driving

Leading order in 𝑏/ℎ ≪ 1 :  quantization axis 𝑛 along X-axis

Note 1: this is in the rotating frame! In the lab frame the quantization 

axis is precessing around the Z-axis, and the pointer states have 

explicit time dependence.

Recall the comments from the previous lecture: pointer states can 

depend on time.

Note 2: we have quasi-equilibriuim (pointer) states along the

rotating-frame X axis:   1
2
(| ۧ↑ ± | ۧ↓ )

Same idea is used in quantum optics: the concept of “dressed states”. 

Atomic states change under strong optical driving, become an equal-

weight superposition of  | ۧ𝑔 and  | ۧ𝑒 . 

But the theory is more complex: quantum photons instead of classical

driving field, account of spontaneous decay, etc.
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 Transition from resonant to non-resonant regime occurs when first 

and second orders are similar:  𝐵0 ∙ Τ𝛽 Ω0 ~ Τℎ2 2Ω0 ∙ Τ𝛽 Ω0
2

In this case 𝐵0 is small, and the transition occurs when 𝐵0~𝑏

 Strong driving changes the oscillation frequency of 𝑆𝑥,𝑦 : 

from 𝐵0 to  Ω0 = 𝐵0
2 + ℎ2 ≈ 𝐵0 + ℎ2/(2𝐵0)

Similar phenomenon in quantum optics: ac Stark shift of atomic

levels under strong optical driving

 The power-law decay 𝑡−1/2 has no well-defined lifetime
(formally, Rabi rotations in this regime have infinitely long lifetime)

Jumping ahead: cw spectroscopy would show two lines, split by ℎ
These lines are narrow: Fourier transform of  𝑡−1/2 is 𝜔−1/2

(formally, infinitely narrow)

Similar phenomenon in quantum optics: Autler-Townes splitting

Rabi oscillations, strong driving: comments
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Rabi oscillations: weak driving

Strong driving, weak noise (ℎ ≫ 𝑏) : driving saturates the line

Weak driving: the regime of continuous-wave (cw) spectroscopy
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𝜔

ℎ

Spins resonant

with driving

Strong

driving:

𝜔

ℎ

Weak

driving:

Spins resonant

with driving

Typical initial state: along Z-axis, with  𝑆𝑥(0) = 𝑆𝑦(0) = 0

𝑆𝑧 𝑡 = 𝑆𝑧
0 ∙ 1 − 2 𝑛𝑥

2 sin2 Τ𝜑 2

𝜑 = Ω𝑡 ,   Ω = ℎ2 + 𝐵2 ,   𝑛𝑥 = ℎ/Ω

Driving at frequency 𝜔 : can use previous results 



Rabi oscillations: weak driving

𝑆𝑧(𝑡) = 𝑆𝑧(0) ∙ 1 − ℎ2 𝑃׬ 𝛽 𝑑𝛽 ∙ 2
sin2

𝑡

2
ℎ2+𝛽2

ℎ2+𝛽2

We focus on “perturbative long” times:  ℎ𝑡 ≪ 1, but  𝑏𝑡 ≫ 1

Consider general line shape 𝑃(𝛽) with characteristic width 𝑏

𝑃 𝛽 is assumed to vary smoothly with 𝛽, on a scale 𝛽~𝑏

In contrast, 2
sin2

𝑡

2
ℎ2+𝛽2

ℎ2+𝛽2
at large 𝑡 (but small ℎ𝑡!) has a 

sharp peak of small width (∝ 𝑡−1)  and large height (∝ 𝑡) at 𝛽 = 0;

decays fast as |𝛽| grows.

V. Dobrovitski, L. 2

If you have a déjà vu feeling – you are right.

This is just standard time-dependent perturbation theory, 

derivation of the Fermi Golden Rule



If you want more mathematical clarity (optional).  

Important: 𝑃(𝛽) is dimensional quantity, with dimensionality [rad/s]−1

Because ׬𝑃 𝛽 𝑑𝛽 = 1 ,  and 𝑑𝛽 = 𝛽 =
rad

s

Thus, 𝑝 𝑥 = 𝑏 ∙ 𝑃(𝑏𝑥) and   𝑝 𝑥 𝑑𝑥 = 𝑃 𝛽 𝑑𝛽

1) Set ℎ𝑡 = 0 for convenience: this just means that we are working in the leading 

order w.r.t. the small parameter ℎ𝑡. We should study 𝐼 = 𝑃׬ 𝛽
sin2 𝛽𝑡/2

𝛽2
𝑑𝛽. 

2) 𝑃(𝛽) has a typical scale 𝑏:  means that it depends on  dimensionless quantity 

𝑥 = 𝛽/𝑏, and there are no other parameters in this function, large or small. 

So we re-write 𝐼 = 𝑃׬ 𝛽
sin2 𝛽𝑡/2

𝛽2
𝑑𝛽 = 𝑝׬ 𝑥

sin2 𝑥∙𝑏𝑡/2

(𝑥∙𝑏)2
𝑑𝑥

3) Use large dimensionless parameter 𝜃 = 𝑏𝑡, consider 𝜃 → ∞.

𝐼 = 𝑝׬ 𝑥
sin2 𝑥∙𝑏𝑡/2

(𝑥∙𝑏)2
𝑑𝑥 =

𝑡

𝑏
∙ ׬ 𝑝 𝑥

sin2 𝜃∙𝑥/2

𝜃∙𝑥2
𝑑𝑥 , and Τ𝑡 𝑏 is a parameter 

(it is dimensional, so it is neither small nor large – just a quantity)

4) Can show: 𝑔 𝑥 = 2
sin2 𝜃∙𝑥/2

𝜃∙𝑥2
=

1−cos 𝜃𝑥

𝜃𝑥2
→ 𝜋 ∙ 𝛿(𝑥) when   𝜃 → ∞

Consider the integral 𝐼 at 𝜃 → ∞,  extend it to complex plane, calculate the residue at 𝑥 = 0.

Get the answer  𝐼 = 𝜋 Τ𝑡 𝑏 ∙ 𝑝 0 = 𝜋𝑡 ∙ 𝑃(0)

Note: condition 𝑏𝑡 ≫ 1 is the key here;  ℎ𝑡 ≪ 1 is not crucial, can set ℎ𝑡 = 0
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𝑆𝑧(𝑡) = 𝑆𝑧(0) ∙ [1 − 𝜋 ℎ2𝑡 𝑃(0)]

Weak driving and cw spectroscopy

So we obtain:

Physical meaning? Initially, the spin is along quantizing field

Start driving it, 𝑆𝑧 decreases: spin flipped, energy absorbed.

Absorbed power  𝑊 ∝ Τ𝑑 𝑆𝑧 𝑑𝑡

Measuring absorption while continuously driving spins at 

frequency 𝜔 directly measures the line shape 𝑃(𝜔)

𝑑 𝑆𝑧
𝑑𝑡

= −𝜋ℎ2𝑃(0) or, in the lab frame:
𝑑 𝑆𝑧
𝑑𝑡

∝ 𝑃(𝜔)

𝜔

ℎ
Continuous-wave (cw) spectroscopy

𝑏

𝑃(𝜔)

This is for 𝑡 ≪ 1/ℎ . What happens later, when ℎ𝑡~1 ?

V. Dobrovitski, L. 2

Most basic characterization of noise and 

relaxation.
NMR, ESR, optics, IR,… – idea is the same



V. Dobrovitski, L. 2

Weak driving and cw spectroscopy

 Energy absorbed – from where? From the cw driving field

𝐻 𝑡 = Ԧ𝑒𝑥 ∙ 2ℎ cos(𝜔𝑡 + 𝛼)

Absorbed power, average per oscillation period:  𝑊 = −𝑀 ∙ Τ𝑑𝐻 𝑑𝑡
I.e., there must be non-zero components 𝑆𝑥(𝑡) and 𝑆𝑦(𝑡)

More detailed theory is needed, will discuss later (Bloch-Redfield)

 Our system : ensemble of non-interacting energy-conserving spins

Initially absorb energy as described, but this cannot go on forever

Equlibrium state is not well defined. Spins keep precessing, 

unhindered perpetual rotation: energy flows back and forth.

There must be some process that “resets” 𝑆𝑧(𝑡)

It could be slow fluctuations of 𝛽, interaction between spins, coupling to 

environment, … The same problem as in standard statistical physics: origins of 

stochasticity, thermalization, etc.

Serious problems with the current treatment
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Phenomenological Bloch equations

Phenomenological approach: there must be some relaxation process 

that continually resets the spins and steers them to equilibrium.

Postulate that such a process is linear and memoryless, so the 

system’s relaxation towards equilibrium (without driving) :

𝑑𝑀𝑧

𝑑𝑡
= −

1

𝑇1
(𝑀𝑧−𝑀𝑧

0)
𝑑𝑀𝑥,𝑦

𝑑𝑡
= −

1

𝑇2
𝑀𝑥,𝑦

Relaxation time 𝑇1 – rate of longitudinal relaxation

Relaxation of the energy of spins in the quantizing field along Z.

How fast is the energy brought to or taken away from spins. 

𝑀𝑧
0 – equilibrium magnetization along the quantizing field

Relaxation time 𝑇2
′ – transverse relaxation. Does not involve energy 

exchange, purely internal spin relaxation (e.g. spin-spin coupling)

1

𝑇2
=

1

2𝑇1
+

1

𝑇2
′ i.e. 𝑇2 ≤ 2𝑇1 – to ensure correctness
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Phenomenological Bloch equations

Example: 

two-level system 

(e.g. spin 1/2)

| ۧ𝑎

| ۧ𝑏

Γ𝑏𝑎 Γ𝑎𝑏
𝑑

𝑑𝑡

𝑁𝑎
𝑁𝑏

=
−Γ𝑎𝑏 Γ𝑎𝑏
Γ𝑎𝑏 Γ𝑎𝑏

𝑁𝑎
𝑁𝑏

Rate equation:

Gives Bloch equation for 𝑀𝑧.  But may not work for more levels!

Depends on rates, things may get complicated.

But the main idea holds: equilibrium requires equilibration mechanism

| ۧ↑

| ۧ↓
𝜔

𝑃 𝜔 | ۧ↑

| ۧ↓

Many lines 

of zero 

width

Many lines

of width 𝑇1
−1

Simple spectroscopy (FT or cw) gives 𝑃 𝜔 but often does not 

say much about individual lines: 

In general, response to driving depends on 𝑏, ℎ, 𝑇1, line shape,…

Gives rise to many useful effects (hole burning, spin echo,…)



A few notes on NMR/ESR experimental settings

Large quantizing field 𝐵0, much larger than any other relevant 

energy scale. But still  𝑔𝜇𝐵𝐵0 ≪≪ 𝑘𝑇, so the initial state is:

𝜌 ≈
1

𝑍
exp −

𝑔𝜇𝐵𝐵0 𝑆𝑧

𝑘𝑇
≈

1

𝑍
෠1 − 𝜖𝑆𝑧 ,  i.e.  𝜌relevant ∝ 𝑆𝑧

The signal from 𝜌′ = ෠1 is zero: this part of density matrix contributes

only to noise.

Irrelevant for the signal, important for analyzing signal-to-noise ratio.

because the identity part of the density matrix is not affected much.
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Dynamics in relevant experiments mostly unitary: 𝑈 ෠1 𝑈† = 𝑈𝑈† = ෠1
More generally: dynamics in NMR experiments is mostly unital, 

i.e. maps ෠1 → ෠1

Also, other ways to initialize spins are used more and more often:

optical (e.g. NV centers), dynamic nuclear polarization (DNP), etc.



Often the first step in qubit characterization

0) Qubit is initialized along the Z-axis

1) Apply resonant Rabi driving for a short time, rotate spins from the 

Z-axis to the Y-axis (so-called 𝜋/2 pulse).

2) Measure 𝑆𝑥(𝑡) and 𝑆𝑦 𝑡 : often called free induction decay (FID) 
(historical reasons: design of traditional NMR experiments)

or free coherence decay, or Ramsey measurement (in modified version)

3) Analyze 𝑓(𝑡): find 𝑇2
∗ , examine the form of decay, deduce which 

noise dephases the qubit and what are its properties.
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FT spectroscopy: qubit characterization

Note: We do not have to rotate the spin all the way to Y-axis, it is 

enough to just provide non-zero 𝑆𝑥
0 and/or 𝑆𝑦

0 . 

The form of decay will be the same, only the overall amplitude of 

the signal will scale up or down. Will be important later.



NMR/ESR and the rotating frame: comments

 Rotating frame: potential danger from non-seqular terms. 

Contribution decreases slowly, as |𝜔 − 𝜔0|
−2. If the spectral

density grows faster – can accumulate and /diverge. Be careful!

Relatively rare in NMR/ESR, but often happens in quantum optics.

 NMR experiments:  Τ𝜔 − 𝜔0 𝜔0~10
−3 − 10−5, measured in 

ppm (part per million = 10−6). Secular approximation in rotating

frame works very well. 

But for other spins and qubits more care may be required.
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 One can apply 𝜋/2 pulse along X- or Y-axis, just by 

choosing the phase of driving.    Will be important later.

 Can use either cw spectroscopy, measuring 𝑃(𝜔), or FT 

approach, measuring 𝑓(𝑡). Usually, the two are related via 

Fourier transform. But depends on the system (e.g. unusually long 

𝑇1 or 𝑇2, so that driving saturates the line)



Beyond rotating-frame secular approximation

Secular approximation is of utter importance: spin motion in a 

general time-dependent field is not analytically solvable.

Even computers may be useless: for instance, motion of a spin under driving that is not

ideally periodic (e.g. with another harmonic of   incommensurate frequency) can exhibit

deterministic chaos.

What lies beyond secular approximation? Two examples

1. Bloch-Siegert shift

Oscillating field

co-rotating

(resonant)

counter-rotating

(negligible)

𝜔
xy

Rotating frame
𝜔

Influence of the counter-

rotating component?

Use the counter-rotating 

coordinate frame, neglect 

the co-rotating component

In this frame: quantizing field 𝐵𝑄 → large positive offset equal to 

the Larmor frequency 𝜔𝐿
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Compare:

Co-rotating frame:      𝐵𝑄 →   negative offset 𝜔𝐿 →  𝐻𝑧 = 𝜔𝐿 −𝜔 𝑆𝑧

Counter-rotating frame: 𝐵𝑄 → positive offset 𝜔𝐿 → 𝐻𝑧
′ = 𝜔𝐿 + 𝜔 𝑆𝑧

I.e. in the counter-rotating frame:  𝐻𝐶𝑅 = 𝜔𝐿 + 𝜔 𝑆𝑧 + ℎ𝑆𝑥

This Hamiltonian corresponds to precession around ≈ Z-axis

(corrections to the axis are nonsecular, neglect them)

with the frequency

Ω𝐶𝑅 ≈ 𝜔𝐿 +𝜔 + 1
2 ∙ Τℎ2 𝜔𝐿 +𝜔 ≈ 𝜔𝐿 + 𝜔 + Τℎ2 (4𝜔)

Transform back to the co-rotating frame: this rotation corresponds to  

a frequency shift ∆𝜔 = Τℎ2 (4𝜔)
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1. The shift is always positive  (similar to the “effect of inverted pendulum”)

2. Note the difference with ac Stark shift: Bloch-Siegert shift comes

from the counter-rotating field



2. Sub-harmonic resonances

Main spin resonance: 𝜔 ≈ 𝜔𝐿. 

Moreover, spin is a nonlinear system, so there are also resonances at 

𝜔 ≈ 2𝜔𝐿 , 3𝜔𝐿 , …

But there are also sub-harmonic resonances at 𝜔 ≈ 1

3
𝜔𝐿 ,

1

5
𝜔𝐿 , …

I.e. spin is not only nonlinear, but also a parametric system

Beyond rotating-frame secular approximation

Suggested projects:

Project 2: sub-harmonic resonances (based on the textbook by A. Abragam, 

“Principles of Nuclear Magnetism”)

Project 1: accurate analysis of the Bloch-Siegert shift
(based on the paper of Bloch and Siegert, Phys. Rev. 57, 522 (1940), and on the textbook 

by A. Abragam, “Principles of Nuclear Magnetism”)



Brief summary:

1). Rotating frame, secular approximation. Transformation to the 

rotating frame is different from the rotating-wave approximation or 

interaction representation.

2). Rotating frame, strong driving: Rabi oscillations.

Pointer states along the total effective field, rotating in the lab frame. 

Dephasing time depending on the frequency detuning 𝜔𝐿 −𝜔.

3). Strong resonant driving: extremely narrow-line pointer states 

along the X-axis, power-law decoherence ∝ 𝑡−1/2

4). Weak driving: cw spectroscopy, measurement of 𝑃(𝜔)

5). FT spectroscopy: use of pulsed Rabi driving. Measuring coherence 

decay 𝑓(𝑡), related to 𝑃(𝜔) via Fourier transform. 

6). Need a theory for relaxation. Bloch equations - phenomenological

7). Physics beyond rotating-frame secular theory

V. Dobrovitski, L. 2
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𝑑𝑀𝑧

𝑑𝑡
= −

1

𝑇1
(𝑀𝑧−𝑀𝑧

0)
𝑑𝑀𝑥,𝑦

𝑑𝑡
= −

1

𝑇2
𝑀𝑥,𝑦

Bloch equations, weak driving: lineshape

𝑑𝑀𝑧

𝑑𝑡
= −𝑀𝑦ℎ −

1

𝑇1
(𝑀𝑧−𝑀𝑧

0)

With field: add the Landau-Lifshits term  
ሶ𝑀 = 𝑀 × 𝐻

Let us use this phenomenology in the rotating frame:

driving ℎ along the X-axis, detuning 𝐵 = (𝜔𝐿 − 𝜔) along the Z-axis

𝑑𝑀𝑥

𝑑𝑡
= 𝑀𝑦𝐵 −

1

𝑇2
𝑀𝑥

𝑑𝑀𝑦

𝑑𝑡
= −𝑀𝑥𝐵 +𝑀𝑧ℎ −

1

𝑇2
𝑀𝑦

Qualitative consideration: 

driving tilts quantization axis away from Z by small angle (of the order Τℎ 𝐵 or ℎ𝑇1,2)

𝑀𝑧 −𝑀𝑧
0 is of the second order in this small tilt (cosine of small angle), i.e. of the 

order of  ( Τℎ 𝐵)2 or (ℎ𝑇1,2)
2. If we look at linear terms in ℎ, we can take 𝑀𝑧 = 𝑀𝑧

0.

Our goal: consider very weak driving, ℎ ≪ 𝐵, 𝑇1,2
−1and find the equilibrium 

values of the transverse components 𝑀𝑥 and 𝑀𝑦

and assume 𝑇2 ~ 𝑇1
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Bloch equations, weak driving: lineshape

𝑑𝑀𝑥

𝑑𝑡
= 𝑀𝑦𝐵 −

1

𝑇2
𝑀𝑥

𝑑𝑀𝑦

𝑑𝑡
= −𝑀𝑥𝐵 +𝑀𝑧

0ℎ −
1

𝑇2
𝑀𝑦

𝑀+ = 𝑀𝑥 + 𝑖𝑀𝑦 : 𝑑𝑀+

𝑑𝑡
= −𝑖 𝑀+𝐵 −

1

𝑇2
𝑀+ + 𝑖 𝑀𝑧

0ℎ = −𝑄𝑀+ + 𝑖 𝑀𝑧
0ℎ

𝑀+ 𝑡 = 𝐶𝑒−𝑄𝑡 +
𝑖 𝑀𝑧

0ℎ

𝑄
So that in equilibrium, at 𝑡 → ∞ ,   𝑀+ = Τ𝑖 𝑀𝑧

0ℎ 𝑄

𝑀𝑥 ∞ = ℎ 𝑀𝑧
0𝑇2 ∙

(𝜔𝐿 − 𝜔) 𝑇2

1 + (𝜔𝐿 − 𝜔)2 𝑇2
2

𝑀𝑦 ∞ = ℎ 𝑀𝑧
0𝑇2 ∙

1

1 + (𝜔𝐿 − 𝜔)2 𝑇2
2

𝐻 𝑡 = Ԧ𝑒𝑥 ∙ 2ℎ cos𝜔𝑡Driving in the lab frame:

𝑀 𝑡 = Ԧ𝑒𝑥 ∙ 𝑀𝑥 cos𝜔𝑡 + Ԧ𝑒𝑦 ∙ 𝑀𝑦 cos𝜔𝑡Magnetization in the lab frame:

Power absorbed per period:  𝑊 = −𝑀 ∙ Τ𝑑𝐻 𝑑𝑡 ∝ ℎ ∙ 𝑀𝑦 ∞
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Bloch equations, weak driving: lineshape

Absorption line 𝑃(𝜔) ∝ 𝜒′′(𝜔) ∝ 𝑀𝑦 ∞ Dispersion line 𝜒′(𝜔) ∝ 𝑀𝑥 ∞

𝜔

𝑃 𝜔

𝜔𝐿

𝜔

𝜔𝐿𝜒′(𝜔)

(𝜔𝐿 − 𝜔) 𝑇2

1 + (𝜔𝐿 − 𝜔)2 𝑇2
2

1

1 + (𝜔𝐿 − 𝜔)2 𝑇2
2

Lorentzian

𝑃 𝜔 =
1

1 + (𝜔𝐿 − 𝜔)2 𝑇2
2

What is the corresponding 𝒇(𝒕)? 

Free decay, no driving, initial state 𝑀𝑥 0 ≠ 0, 𝑀𝑦 0 = 𝑀𝑧 0 = 0

𝑑𝑀𝑥

𝑑𝑡
= 𝑀𝑦𝐵 −

1

𝑇2
𝑀𝑥

𝑑𝑀𝑦

𝑑𝑡
= −𝑀𝑥𝐵 −

1

𝑇2
𝑀𝑦 ⇒

𝑓 𝑡 = e−𝑡/𝑇2 cos(𝜔𝐿 − 𝜔)𝑡

𝑀𝑥 𝑡 = 𝑀𝑥 0 e−𝑡/𝑇2 cos 𝐵𝑡

Note: this is no longer a static noise field along Z, but still   𝑓 𝑡
𝐹𝑇

𝑃(𝜔)

Fourier Transform


