
“When you see a car lifted by a huge magnet, remember that 

magnetism of solids is a purely quantum effect”

M. I. Kaganov

Quantum spins



What is this course about?

Modern approaches to describing, analysing, and controlling 

spin/qubit dynamics.

Approaches that are actually used in most laboratories right now.

Not only for spin qubits but also for Josephson junction qubits, 

trapped ions, cavity-QED qubits, etc.

Many things you have already seen or heard about.

Our goal – to set up a framework for your knowledge, organize it, 

and look at old things in a new way.

To give you a set of very general concepts and ideas, 

applicable to many experimental situations.

We will try not to use much math, work mostly with simple 

examples to introduce and illustrate ideas and concepts
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Brief history of spins in solids

First study of spins in solids: 400 years old

First modern scientific book:

W. Gilbert and A. Dowling, De Magnete, (1600)

Modern times

W. Pauli

1924

Studying spectra of alkali atoms conjectured a

two-valued internal degree of freedom

A. Kronig

1925

Internal rotation of the electron

Objection from Pauli: No, rotation is too fast 

G.Uhlenbeck (TU Delft, Chem. Eng.)

and S. Goudsmit, 1925
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Brief reminder – quantum mechanical systems

State of a quantum system: wave function

A vector in many-dimensional (𝑑-dimensional) space (Hilbert space)

Our “usual”  3D space: 

choose a basis, i.e. any three orthonormal vectors Ԧ𝑒1 , Ԧ𝑒2 , and Ԧ𝑒3

Ԧ𝑎 = 𝑎1 ∙ Ԧ𝑒1 + 𝑎2 ∙ Ԧ𝑒2 + 𝑎3 ∙ Ԧ𝑒3 or   Ԧ𝑎 =

𝑎1
𝑎2
𝑎3

𝑎1 , 𝑎2 , 𝑎3 ∈ ℝ

 Quantum state vector in a Hilbert space

𝑑-dimensional basis, i.e. 𝑑 orthonormal vectors Ԧ𝑒1 , Ԧ𝑒2 , … Ԧ𝑒𝑑

𝜓 = 𝜓1 ∙ Ԧ𝑒1 + 𝜓2 ∙ Ԧ𝑒2 +⋯+ 𝜓𝑑 ∙ Ԧ𝑒𝑑 or   𝜓 =
𝜓1

…
𝜓𝑑

𝜓1 , … , 𝜓𝑑 ∈ ℂ

Dirac’s notations (bra/ket formalism): basis vectors  | ۧ𝑒1 , … , | ۧ𝑒𝑑

| ۧ𝜓 = 𝜓1 ∙ | ۧ𝑒1 +⋯+ 𝜓𝑑 ∙ | ۧ𝑒𝑑 with the requirement    𝜓1
2 +⋯+ 𝜓𝑑

2 = 1
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 Changing the quantum state. Linear operators

𝜑 𝜓 = ෍

𝑘=1

𝑑

𝜑𝑘
∗ ∙ 𝜓𝑘

 Scalar (inner) product and dual vectors

; 𝑎1 , 𝑎2 , 𝑎3 - dual of Ԧ𝑎 =

𝑎1
𝑎2
𝑎3

Bra-ket form:  | ۧ𝜑 =

𝜑1
…
𝜑𝑑

, its dual  ۦ𝜑| = 𝜑1
∗ , 𝜑2

∗ , 𝜑3
∗ , and

Ԧ𝑎, 𝑏 = 𝑎1 , 𝑎2 , 𝑎3 ∙

𝑏1
𝑏2
𝑏3

= ෍

𝑘=1

3

𝑎𝑘 ∙ 𝑏𝑘

መ𝐴 ∶ | ۧ𝜓 → | ۧ𝜑 = መ𝐴| ۧ𝜓 ≡ | መ𝐴 ۧ𝜓

Why? Because each  𝜑𝑘 = 𝑒𝑘 𝜑 = 𝑒𝑘 መ𝐴𝜓 = 𝑒𝑘 መ𝐴 𝜓 is linear in | ۧ𝜓 .  

Riesz theorem: any continuous linear function 𝑓 of | ۧ𝜓 has a form 𝑓 = 𝛼 𝜓

መ𝐴 𝑎| ۧ𝜓 + 𝑏| ۧ𝜙 ≡ 𝑎 መ𝐴 ۧ𝜓 + 𝑏 መ𝐴 ۧ𝜙

With a given basis, the operator መ𝐴 is a matrix, i.e. መ𝐴 = ෍

𝑗,𝑘=1

𝑑

𝐴𝑗𝑘| ൿ𝑒𝑗 ൻ𝑒𝑘|

For “good” quantum systems መ𝐴 | ۧ𝜓 is a matrix-vector multiplication
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Our main character: spin 1/2  (qubit)

𝑑 = 2 :  two basis states,  | ۧ↑ and  | ۧ↓ ,  or   | ۧ0 and  | ۧ1

ۧ𝜓 = 𝛼 ۧ↑ + 𝛽| ۧ↓ 𝜌 = ۧ𝜓 𝜓ۦ =
𝛼 2 𝛽∗𝛼

𝛼∗𝛽 𝛽 2

Bloch sphere mapping:

All operators are linear combinations of Pauli matrices:

𝜎𝑥 =
0 1
1 0

, 𝜎𝑦 =
0 −𝑖
𝑖 0

, 𝜎𝑧 =
1 0
0 −1

𝜎0 ≡ 1 =
1 0
0 1

,

Spin operators (observables):  𝑆𝜇 =
1

2
𝜎𝜇

𝑆𝑧 = 1
2 𝜌00 − 𝜌11

𝑆𝑥 = 1
2
𝜌01 + 𝜌10

𝑆𝑦 = 𝑖
2 𝜌01 − 𝜌10
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Brief reminder – quantum mechanical averages

What are the quantities 𝑆𝑥 , 𝑆𝑦 , and 𝑆𝑧 ?

 Hermitian operators – observables. Describe physically observable quantities

Diagonal form: ෠𝑂 = σ𝑛𝑂𝑛 ∙ | ۧ𝜔𝑛 |𝜔𝑛ۦ

 eigenvectors | ۧ𝜔𝑛 form a complete orthonormal basis

 eigenvalues 𝑂𝑛 are real

Born’s postulate:  if the quantum state vector | ۧ𝜓 is a superposition,

| ۧ𝜓 =෍
𝑘
𝜓𝑘 | ۧ𝜔𝑘 , 𝜓𝑘 = 𝜔𝑘 𝜓

then by measuring the quantity 𝑂 on this quantum system we will: 

 with the probability 𝑤𝑛 = 𝜓𝑛
2 = 𝜔𝑛 𝜓 2 obtain the value 𝑂𝑛

 and simultaneously change the state of the system to | ۧ𝜔𝑛

The measurement outcome is random, cannot be predicted in principle

E.g., one spin, unknown state: measure 𝑆𝑧 , obtain the value +1/2
This is it. Nothing more can be done/learned.

Ensemble of “similar” (?) spins: only then we can estimate 𝑆𝑧 (average) 

and can learn something useful.
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Spins and magnetic fields

Spin dynamics are controlled by magnetic fields (external or internal)

𝐻 = 𝑔𝜇 𝐵 𝑡 ∙ Ԧ𝑆 = 𝛾ℏ 𝐵 𝑡 ∙ Ԧ𝑆

Almost everywhere below: 

• set  ℏ = 1 :  measure energy in rad/s or Hz

E.g.,  𝐸 = 1 J  →  𝜔 ≈ 1034 rad/s  or 𝜈 ≈ 1.5 ∙ 1033 Hz

Usually, in spin physics we deal with 𝜈 in kHz–GHz range

• set  𝛾 = 1 :  measure magnetic fields in rad/s or Hz

This is spin-dependent !

Electron spin:  𝐵 = 1 T   corresponds to  𝜈 ≈ 30 GHz

Nuclear 13C spin:  𝐵 = 1 T →    𝜈 ≈ 11 MHz

Important:   𝜔 ∙ 𝑡 is dimensionless, while 𝜈 ∙ 𝑡 is not

Indeed:  sin 𝜔𝑡 , not  sin 𝜈𝑡 !
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How to think of real spin/qubit (say, spin 1/2):

Ideal:
෡𝐻 = 𝐵 መ𝑆𝑧

| ۧ↑

| ۧ↓

Static

noise: 

| ۧ↑

| ۧ↓
or or …

random 𝐵: ensemble of possible level positions

Dynamic

noise:

𝐵(𝑡)

| ۧ↑

| ۧ↓

level positions randomly vary in time

Relaxation:
| ۧ↑

| ۧ↓

energy of the

upper level is

not well defined:

∆𝐸~1/𝜏relax

𝐸↓ 𝐸↑ 𝐸↓ 𝐸↑

Seen e.g. in spectroscopic experiment: levels with finite width

not but
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Preliminaries are over

Now let’s actually work on spins
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Choice of the basis:  quantization axis

Oops…

Basis states: | ۧ↑ and | ۧ↓ . But where is “up”? And why not left/right?

Different quantization axis – different basis : unitary transformation

| ۧ↑ , | ۧ↓ ↦ | ۧ𝜑↑ = 𝑊 | ۧ↑ ,   | ۧ𝜑↓ = 𝑊 | ۧ↓

At home: what is the most general form of 𝑊 for  spin 1/2 ?

If the spin coupled to magnetic field or other spins :  𝐻𝜑 = 𝑊 𝐻𝑊†

Any choice of 𝑈 is equally good (unitary equivalence)

Home: describe Larmor precession with 𝐵 = 𝐵 Ԧ𝑒𝑧 and with 𝐵 = 𝐵 Ԧ𝑒𝑥 , show equivalence

Formally the same, but in practice?  Time-dependent field along 𝑥:

ۧ𝜓 = 𝛼 ۧ↑ + 𝛽| ۧ↓𝐻 = 𝐵(𝑡) ∙ 𝑆𝑥 𝑖 ሶ| ۧ𝜓 = 𝐵 𝑡 𝑆𝑥 | ۧ𝜓
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Now choose different quantization axis. New basis: eigenvectors of 𝑆𝑥

| ۧ𝜑↑ = 1

2

1
1

,   | ۧ𝜑↓ = 1

2

−1
1

,    𝑊 = 1

2

1 −1
1 1

𝐻𝜑 = 𝐵 𝑡 ∙ 1
2

1 0
0 −1

= 𝐵(𝑡) ∙ 𝑆𝑧 – just another coordinate frame

ۧ𝜓 = 𝑎 ۧ↑ + 𝑏| ۧ↓

Regular Larmor precession,

but in a time-varying field

Choice of the quantization axis is the key to success in science!

But there is much more to it …

𝑖 ሶ𝑎 = 1

2
𝐵 𝑡 𝑎 ,    𝑖 ሶ𝑏 = 1

2
𝐵 𝑡 𝑏

Φ 𝑡 = න
0

𝑡

𝐵 𝑠 𝑑𝑠 𝑆𝑥 𝑡 = 𝑆𝑥
0 cosΦ − 𝑆𝑦

0 sinΦ

𝑆𝑦 𝑡 = 𝑆𝑦
0 cosΦ + 𝑆𝑥

0 sinΦ

𝑆𝑧 𝑡 = 𝑆𝑧
0

𝑆𝑥,𝑦,𝑧
0 ≡ 𝑆𝑥,𝑦,𝑧 (0) (in the new basis!)

𝑎 𝑡 = 𝑎0 exp −𝑖Φ(𝑡)/2 ,   𝑏 𝑡 = 𝑏0 exp 𝑖Φ(𝑡)/2

in the new basis !
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But first, as a preparatory step, let us solve some problems

Heisenberg representation:

matrices of operators with 

time-dependent entries

መ𝑆𝑥 𝑡 =
𝑠00(𝑡) 𝑠01(𝑡)
𝑠10(𝑡) 𝑠11(𝑡)

𝑆𝑥 𝑡 = 𝜓(0) መ𝑆𝑥 𝑡 𝜓(0)

Heisenberg equations of motion ሶመ𝑆𝜇(𝑡) = 𝑖 ෡𝐻, መ𝑆𝜇 𝑡

Use the operators መ𝑆+ = መ𝑆𝑥 + 𝑖 መ𝑆𝑦 ,   መ𝑆− = መ𝑆𝑥 − 𝑖 መ𝑆𝑦

Repeat the same calculation, but now via evolution operator

Static field – static Hamiltonian:  ෡𝑈 = exp −𝑖 ෡𝐻𝑡

Time-dep Hamiltonian:    𝑖 ሶ෡𝑈 = ෡𝐻(𝑡) ෡𝑈
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Larmor precession with noise: dephasing

Important: experiments are never perfect

𝐵 = 𝐵0 + 𝛽 :   ෡𝐻 = 𝐵0 + 𝛽 ∙ መ𝑆𝑧 ,   𝛽 – noise, assume (quasi)static

𝑃 𝛽 =
1

2𝜋𝑏2
exp −

𝛽2

2𝑏2
Also assume it is Gaussian : 
(e.g. central limit theorem)

መ𝑆+ 𝑡 = መ𝑆+ e𝑖 𝐵0+𝛽 𝑡

መ𝑆− 𝑡 = መ𝑆− e−𝑖 𝐵0+𝛽 𝑡

መ𝑆+(𝑡)
𝛽
= መ𝑆+ ∙ e𝑖𝐵0𝑡න

−∞

∞

𝑃 𝛽 e𝑖𝑡𝛽 𝑑𝛽

and similar for 𝑆−(𝑡) 𝛽

→

∞−׬
∞
𝑃 𝛽 e𝑖𝑡𝛽 𝑑𝛽 = exp −𝑏2𝑡2/2

Average operators መ𝑆±(𝑡)
𝛽
→ 0 as  𝑡 → ∞ , so that average values

𝑆𝑥,𝑦 (𝑡)
𝛽
= Tr 𝜌 0 መ𝑆𝑥,𝑦(𝑡) 𝛽

→ 0

and only 𝑆𝑧 (𝑡) 𝛽
= 𝑆𝑧 0 = const
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A few comments on theory of dephasing

(and decoherence in general)

 QM: need to repeat experiment many times. If there is no control over noise 

then QM averaging includes the noise averaging. 

But this depends on specific experimental settings – be careful!

For that reason, below we omit the symbol … 𝛽 when possible.

 Can use either noise-averaged operators or noise-averaged density matrix:

𝑆𝑥 (𝑡)
𝛽
= Tr 𝜌 0 መ𝑆𝑥(𝑡) 𝛽

= Tr 𝜌 0 ෡𝑈𝛽
† 𝑡 መ𝑆𝑥 ෡𝑈𝛽(𝑡)

𝛽
=

= Tr ෡𝑈𝛽 𝑡 𝜌 0 ෡𝑈𝛽
† 𝑡 መ𝑆𝑥

𝛽
= Tr 𝜌𝛽 𝑡 መ𝑆𝑥 𝛽

But cannot use noise-averaged ev.op. ෡𝑈 𝑡
𝛽

or  𝜓 𝑡 𝛽 = ෡𝑈𝛽 𝑡 𝜓(0)
𝛽

Indeed:   𝑆𝑥 (𝑡)
𝛽
= Tr ෡𝑈𝛽 𝑡 𝜌 0 ෡𝑈𝛽

† 𝑡
𝛽

መ𝑆𝑥

but 

෡𝑈𝛽 𝑡 𝜌 0 ෡𝑈𝛽
† 𝑡

𝛽
= ۧ𝜓 𝑡 𝜓ۦ 𝑡 𝛽 ≠ | ۧ𝜓(𝑡)

𝛽
∙ |𝜓(𝑡)ۦ

𝛽
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General quasistatic noise: FT spectroscopy

෡𝐻 = 𝐵0 + 𝛽 ∙ መ𝑆𝑧 ,      𝛽 – (quasi)static noise,  some  general  𝑃 𝛽

መ𝑆+ 𝑡 = መ𝑆+ e𝑖 𝐵0+𝛽 𝑡

መ𝑆− 𝑡 = መ𝑆− e−𝑖 𝐵0+𝛽 𝑡

መ𝑆+(𝑡)
𝛽
= መ𝑆+ ∙ e𝑖𝐵0𝑡න

−∞

∞

𝑃 𝛽 e𝑖𝑡𝛽 𝑑𝛽

and similar for 𝑆−(𝑡) 𝛽

→

𝑓 𝑡 = ∞−׬
∞
𝑃 𝛽 e𝑖𝑡𝛽 𝑑𝛽 :   characteristic function of a 

random variable

Experiment:

1) Prepare spin in a state 𝜓 = 1

2
| ۧ↑ + | ۧ↓ with 𝑆𝑥

0 = 1

2
, 𝑆𝑦,𝑧

0 = 0

2) Measure 𝑆𝑥 (𝑡) and  𝑆𝑦 (𝑡) :  determine  𝑓 𝑡

3) Do inverse Fourier transform of  𝑓(𝑡) – find  𝑃(𝛽)

FT spectroscopy:  by knowing the noise properties we can learn a lot 

about its origin (interaction with other spins/systems, etc.)
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ۧ𝜓 = 𝛼 ۧ↑ + 𝛽| ۧ↓ . Fix global phase: ۧ𝜓 = 𝑢 ۧ↑ + 𝑣𝑒𝑖𝜑| ۧ↓ ,  𝑢, 𝑣 ∈ ℝ

𝜌 = ۧ𝜓 𝜓ۦ = 𝑢2 𝑢𝑣 𝑒−𝑖𝜙

𝑢𝑣 𝑒𝑖𝜙 𝑣2
,   𝜙 – quantum phase

Dephasing and pointer states

𝜌 𝑡 = 𝑢2 𝑢𝑣 𝑒−𝑖(𝜙+𝐵0𝑡)e−
𝑏2𝑡2

2

𝑢𝑣 𝑒𝑖(𝜙+𝐵0𝑡)e−
𝑏2𝑡2

2 𝑣2

𝑡→∞ 𝑢2 0
0 𝑣2

Purely classical spin – phase is randomized, quantumness gone

Besides, a special set of states is selected : | ۧ↑ and | ۧ↓

Quantum spin – all basis sets are the same (unitarily equivalent)

Decohered spin – some states are special, survive dephasing

(although their superpositions do not)

Pointer states
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x

z

B

h

How do we solve this problem?
Can try to use exact solution, but it is quite complicated, and provides limited info.

Another powerful idea:  Secular and non-secular terms

Dephasing and the choice of quantization axis

𝐻 = 𝐵 𝑆𝑧 + ℎ 𝑆𝑥 =
1

2
𝐵 𝜎𝑧 +

1

2
ℎ 𝜎𝑥 - static field

𝑈 = e−𝑖𝐻𝑡 = exp −𝑖 𝑛𝑥𝜎𝑥 + 𝑛𝑧𝜎𝑧 𝜑/2

exp −𝑖 Ԧ𝜎𝑛 𝜑/2 = cos 𝜑/2 − 𝑖 Ԧ𝜎𝑛 sin𝜑/2

𝜑 = Ω𝑡 ,   Ω = 𝐵2 + ℎ2 ,   𝑛𝑥 = ℎ/Ω ,  𝑛𝑧 = 𝐵/Ω

𝑃 𝛽 =
1

2𝜋𝑏2
exp −

𝛽2

2𝑏2

𝑏 ≪ ℎ, 𝐵0

Add weak static noise : 𝐵 = 𝐵0 + 𝛽
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Secular and non-secular terms

Ω = 𝐵2 + ℎ2 ≡ 𝐵0 + 𝛽 2 + ℎ2 ≈ 𝐵0
2 + ℎ2 ≡ Ω0

and when averaging     ׬𝑃 𝛽 𝑑𝛽 Τ𝛽 Ω0
𝑛 ∝ Τ𝑏 Ω0

𝑛 ≪ 1

This is a good approximation for Ω :  look at the expansion  

Ω = Ω0 + 𝐵0 ∙ Τ𝛽 Ω0 + Τℎ2 2Ω0 ∙ Τ𝛽 Ω0
2 +⋯

𝜑 = Ω𝑡 = Ω0𝑡 + 𝜀𝑡 + ⋯ ,    where 𝜀 = Τ𝐵0 Ω0 𝛽 ≪ Ω0

But is it also good for 𝜑 ?  Emphatic NO !

cos𝜑 ≈ cos Ω0𝑡 + 𝜀𝑡 = cosΩ0𝑡 ∙ cos 𝜀𝑡 − sinΩ0𝑡 ∙ sin 𝜀𝑡

If  𝑡 is large then 𝜀𝑡 ~ 1 , and sin 𝜀𝑡 can be as large as  sinΩ0𝑡

Small corrections accumulate with time!  These are secular terms

Brief quiz:  is it ok to approximate 𝑛𝑥 = Τℎ Ω as 𝑛𝑥
0 = Τℎ Ω0 ?
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Dephasing and the choice of quantization axis

Careful analysis (simple but omitted to save time) shows: in the leading order

𝑈 ≈ 𝑈0 = exp −𝑖 𝑛𝑥
0 𝜎𝑥 + 𝑛𝑧

0 𝜎𝑧 Ω′𝑡/2 ,    Ω′ = Ω0 + 𝐵0 ∙ Τ𝛽 Ω0

𝑆𝑧 𝑡 = 𝑛𝑧
0 ∙ 𝑆𝑧 𝑛𝑧

0 + 𝑆𝑥 𝑛𝑥
0 + osc. terms

𝑆𝑥 𝑡 = 𝑛𝑥
0 ∙ 𝑆𝑧 𝑛𝑧

0 + 𝑆𝑥 𝑛𝑥
0 + {osc. terms}

𝑆𝑦 𝑡 = osc. terms

At long times  𝑆𝑧 𝑡 → 𝑛𝑧
0 𝑆𝑛0 and  𝑆𝑥(𝑡) → 𝑛𝑥

0 𝑆𝑛0

The state decays into mixture of eigenstates of   𝑆𝑛0 = 𝑆𝑧 𝑛𝑧
0 + 𝑆𝑥 𝑛𝑥

0

These are pointer states, defined by the “real” quantization axis 𝑛0

I.e. quantization axis is not about math: physical processes give 

objective preference to certain quantization axes  

x

z

B0

h

𝑛0
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Dynamics of dephasing

𝑆𝑧 𝑡 = 𝑛𝑧
0 𝑆𝑛0 + osc. terms ,  𝑆𝑥 𝑡 = 𝑛𝑥

0 𝑆𝑛0 + {osc. terms} , etc.

Averaging over noise:

න𝑃 𝛽 𝑑𝛽
cos Ω0𝑡 + 𝑡 𝐵0𝛽/Ω0
sin Ω0𝑡 + 𝑡 𝐵0𝛽/Ω0

=
Re
Im

න𝑃 𝛽 𝑑𝛽 e𝑖Ω0𝑡e𝑖𝑡𝛽𝐵0/Ω0

Oscillating terms: some combinations of 𝜎𝑥,𝑦,𝑧 (i.e. some 2x2 matrices) 

multiplied by cos Ω′𝑡 and sinΩ′𝑡 ,  where   Ω′ = Ω0 + 𝐵0 ∙ Τ𝛽 Ω0

න𝑃 𝛽 𝑑𝛽 e𝑖𝑡𝛽𝐵0/Ω0 = 1

2𝜋𝑏2
නe𝑖𝑡𝛽𝐵0/Ω0 e

−
𝛽2

2𝑏2 𝑑𝛽 = e
−
𝐵0
2

Ω0
2
𝑏2𝑡2

2

I.e. oscillating terms lead to Gaussian decay:  exp −
1

2

𝑡

𝑇2
∗

2

Coherence time depends on situation!  𝑇2
∗ = 𝑏−1 for 𝐵0 ≫ ℎ

but becomes much longer  when  𝐵0 ≪ ℎ :   𝑇2
∗ = 𝑏−1 ℎ/𝐵0
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Secular / non-secular terms: comments

 Arise in many areas of many-body theory and solid state physics. 

E.g., using perturbation theory with 𝜀 ≪ 1 , but the result includes

𝜀 ∙ 𝑁 with 𝑁 → ∞ (number of atoms in a macroscopic crystal)

 Expansion in terms of Τ𝛽 Ω0 requires well-behaved noise, with

good 𝑃(𝛽) to ensure that 𝑃׬ 𝛽 𝑑𝛽 Τ𝛽 Ω0
𝑛 ∝ Τ𝑏 Ω0

𝑛 ≪ 1

May not work otherwise: e.g. for Lorentzian distribution

𝑃𝐿 𝛽 = Τ𝑏 𝜋 ∙ 𝛽2 + 𝑏2 −1

the integrals 𝑃𝐿׬ 𝛽 𝑑𝛽 Τ𝛽 Ω0
𝑛 diverge  for  𝑛 = 2, 4, …

although Τ𝑏 Ω0 ≪ 1. Same problem: accumulation of small terms.

 Closely related to the notion of absolute convergence and uniform 

convergence of series and integrals.

 Secular:  siècle (Fr.) – century. Accumulates over long times.
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Decoherence, pointer states, quantum superpositions: comments

 Pointer states do not always form an orthonormal basis.

 May be very complex entangled states of many spins.

I.e. entanglement by itself is not a big deal – can be formed 

spontaneously. It is time evolution that is important in quantum   

science and technology.

 Can be different on different time scales: e.g. in NV centers:

𝑇1 (days) vs 𝑇2
∗ (µs) . Analogy: thermal equilibrium.

What we have considered (dephasing by static noise) is called 𝑇2
∗

or inhomogeneous broadening. 

 Often hear that decoherence destroys superpositions. But 

superpositions of what? Any state is a superposition of some other

states. Answer: superpositions of pointer states

(but remember: pointer states can be nontrivial !)
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Possible projects.

1) For mathematically inclined: consider   𝐻 = 𝐵 𝑆𝑧 + ℎ 𝑆𝑥 , with

𝐵 = 𝐵0 + 𝛽, where  𝑃 𝛽 =
1

2𝜋𝑏2
exp −

𝛽2

2𝑏2
, and  𝑏 ≪ ℎ, 𝐵0

Expansion of the evolution operator (or time-dependent operators, or 

density matrix) in terms of small 𝛽 is not formally justified: 

averaging involves integration over all 𝛽 ∈ (−∞,+∞).

Can you justify in a more rigorous way that at long times 

𝑆𝑧 𝑡 → 𝑛𝑧
0 𝑆𝑛0 and  𝑆𝑥(𝑡) → 𝑛𝑥

0 𝑆𝑛0?

(Hint: start by looking up Lebesgue-Riemann lemma)

2) Consider the same situation,  𝐻 = 𝐵 𝑆𝑧 + ℎ 𝑆𝑥 , with 𝐵 = 𝐵0 + 𝛽, 

but with Lorentzian noise:  𝑃𝐿 𝛽 = Τ𝑏 𝜋 𝛽2 + 𝑏2 −1, 𝑏 ≪ ℎ, 𝐵0

Can you justify that 𝑆𝑧 𝑡 → 𝑛𝑧
0 𝑆𝑛0 and  𝑆𝑥(𝑡) → 𝑛𝑥

0 𝑆𝑛0 at 𝑡 → ∞?

(Hint: start by looking up Lebesgue-Riemann lemma)
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Take-home messages:

1. All choices of the quantization axes are formally equivalent.

The same as the choice of the representation

But some choices are convenient – can be important

2. Some choices of quantization axis are objectively special, 

correspond to pointer states. However, these states may not 

be always obvious, esp. in many-spin systems.

3. Averaging density matrix – ok, time-dep observables – ok. 

Wavefunction of evolution operator – not ok!

4. Dynamics of dephasing:  Fourier-transform spectroscopy

5. Secular terms – small corrections may accumulate.

Carefully separate them from those which stay small.

6. Both pointer states and the decoherence dynamics/rates depend 

on experimental situation.
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Pauli matrices

V. Dobrovitski, L. 2

Very convenient for calculations: 

𝜎𝛼
2 = ෠1

𝜎𝑥𝜎𝑦 = 𝑖𝜎𝑧 and similar for circular permutations

𝜎𝛼𝜎𝛽 = −𝜎𝛽𝜎𝛼 for 𝛼 ≠ 𝛽

Tr 𝜎𝛼 = 0 and therefore Tr 𝜎𝛼𝜎𝛽 = 2 ∙ 𝛿𝛼𝛽

𝜎𝑥 ≡ 𝜎1 =
0 1
1 0

𝜎𝑦 ≡ 𝜎2 =
0 −𝑖
𝑖 0

𝜎𝑧 ≡ 𝜎3 =
1 0
0 −1

Consider projection of Pauli vector on any unit vector 𝑛

𝜎𝑛 = Ԧ𝜎 ∙ 𝑛 = 𝜎𝑥𝑛𝑥 + 𝜎𝑦𝑛𝑦 + 𝜎𝑧𝑛𝑧

where 𝑛 2 = 𝑛𝑥
2 + 𝑛𝑥

2 + 𝑛𝑥
2 = 1

Show that  𝜎𝑛
2 = ෠1 and Tr 𝜎𝑛 = 0

Therefore  𝜎𝛼𝜎𝛽𝜎𝛼 = 𝜎𝛽 for 𝛼 = 𝛽 and 𝜎𝛼𝜎𝛽𝜎𝛼 = −𝜎𝛽 for 𝛼 ≠ 𝛽



How to deal with the exponentials of operators

Way 1. Use the definition. Example: spin 1/2 operators

Consider rotation by 𝛼 = 2𝛽 around the x-axis, i.e. 𝒖 = 𝒆𝑥

𝑒−𝑖∙𝛼∙ መ𝑆𝑥 = 𝑒−𝑖𝛽𝜎𝑥 = ෍

𝑘=0

∞
(−𝑖𝛽)𝑘

𝑘!
(𝜎𝑥)

𝑘 = ෠1 − 𝑖𝛽𝜎𝑥 −
𝛽2

2!
𝜎𝑥
2 +⋯

But   𝜎𝑥
2 = ෠1 ,  so 𝜎𝑥

𝑘 = ෠1 for even 𝑘, and 𝜎𝑥
𝑘 = 𝜎𝑥 for odd 𝑘

𝑒−𝑖𝛽𝜎𝑥 = ෍

even 𝑘

∞
(−𝑖𝛽)𝑘

𝑘!
∙ ෠1 + ෍

odd 𝑘

∞
(−𝑖𝛽)𝑘

𝑘!
∙ 𝜎𝑥 = cos𝛽 ∙ ෠1 − 𝑖 𝜎𝑥 sin𝛽 = 𝑒−𝑖𝛽𝜎𝑥

෍

even 𝑘

∞
(−𝑖𝛽)𝑘

𝑘!
= ෍

𝑚=0

∞
(−1)𝑚

(2𝑚)!
∙ 𝛽2𝑚 = cos𝛽

෍

odd 𝑘

∞
(−𝑖𝛽)𝑘

𝑘!
= − 𝑖 ∙ ෍

𝑚=0

∞
−1 𝑚

2𝑚 !
∙ 𝛽2𝑚+1 = −𝑖 ∙ sin 𝛽

Taylor expansion of sin and cos: Same calculation can be repeated 

for any 

𝜎𝑛 = Ԧ𝜎 ∙ 𝑛 , i.e.

𝑒−𝑖𝛽𝜎𝑛 = cos𝛽 ∙ ෠1 − 𝑖 𝜎𝑛 sin𝛽

This is only for spin 1/2 !
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How to deal with the exponentials of operators
V. Dobrovitski, L. 2

Way 2. Diagonal form: use eigenfunctions and eigenvalues.

Example: spin 1/2 operators

መ𝐴 - Hermitian operator,  መ𝐴† = መ𝐴 Diagonal form: መ𝐴 =෍

𝑛

𝑎𝑛 ∙ ۧ|𝛼𝑛 |𝛼𝑛ۦ

Consider a function 𝑓(𝑥) ,  with Taylor series expansion 𝑓 𝑥 = ෍

𝑘=0

∞

𝑓𝑘 ∙ 𝑥
𝑘

෠𝐹 = 𝑓 መ𝐴 = ෍

𝑘=0

∞

𝑓𝑘 ∙ መ𝐴
𝑘 መ𝐴𝑘 =෍

𝑛

(𝑎𝑛)
𝑘∙ ۧ|𝛼𝑛 |𝛼𝑛ۦ

෠𝐹 = 𝑓 መ𝐴 =෍

𝑛

𝑓(𝑎𝑛) ∙ ۧ|𝛼𝑛 |𝛼𝑛ۦ

but

𝑒−𝑖𝛼 መ𝑆𝑧 = 𝑒−𝑖𝛼/2 ∙ ۧ↑ ↑ۦ + 𝑒 Τ𝑖𝛼 2 ∙ ۧ↓ ↓ۦ = 𝑒−𝑖𝛽 0
0 𝑒𝑖𝛽

መ𝑆𝑧 =
1
2 ∙

1 0
0 −1

= 1
2 ∙ ۧ↑ ↑ۦ − 1

2 ∙ ۧ↓ ↓ۦ = 1
2 ∙

1 0
0 0

− 1
2 ∙

0 0
0 1

Rotation by 𝛼 = 2𝛽 around the z-axis

Note: we can define many

functions, not just exp




