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Chaotic Rabi Oscillations under Quasiperiodic Perturbation
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%e have found quantum chaos in a system consisting of two levels coupled through a time-
dependent perturbation, when this perturbation is quasiperiodic with two incommensurate frequen-
cies. This contrasts with the case of a monochromatic perturbation ~here the oscillations of the
physical observables are nonchaotic, because of the Floquet theorem. The existence of chaos is

confirmed by the observation of rapidly decreasing autocorrelation functions, and by a continuous
Fourier spectrum for time-dependent fluctuations of physical observables.

PACS numbers: 05.45.+b, 03.65.—~, 05.40.+j, 42.50.Tj

The manifestations of quantum chaos and, in fact,
the concept itself are a major problem in present-day
studies of dynamical systems. ' In the time-indepen-
dent quantal case, significant progress has been made
these last few years and a pattern is emerging, making
possible the characterization of chaos in quantum phy-

sics. 2 Nonperturbative results on time-dependent sys-

tems, even extremely simple ones, are scarce,
although some progress has been made in this direc-
tion recently. 3 '

As far as physical applications are concerned, one
often obtains a realistic description by considering sys-

tems with a few quantum levels. Thus, it seems natur-
al to investigate the possibility of the appearance of
chaos in such cases. In this Letter, we will examine a
well-known and familiar system, namely a two-level

system under the influence of a time-dependent per-
turbation. Several physical, both theoretical and ex-
perimental, realizations of such a system exist. In or-

der to fix the ideas, we can visualize our system as
modeling the multiphoton dynamics of a two-level
atom illuminated by an intense light beam, or as a
spin- —,

' system under the influence of a time-

dependent magnetic field (lt = 1):

t ~t =~t~i+S «) ~2,

i f =2$ta2+2S(t)fi.

The latter system has been the object of several
studies. In fact, the name "Rabi oscillations" was
coined for the description of the motion of a dipole in
a uniformly rotating magnetic field [S(t ) = e'"']. The
model is exactly solvable and the physical observables
are periodic functions of time. Autler and Townes7
have considered the influence of a single mono-

chromatic field [S(t)= cosset, with no counterrotating
component as in the Rabi easel. In this model, the
Floquet theorem applies because of the periodicity of
the Hamiltonian and the physical observables can be
shown to be quasiperiodic, although their precise cal-
culation necessitates more or less lengthy numerical
computations. However, at low intensities a perturba-
tion approach allows us to reach analytical results.

The question of a bichromatic, or quasiperiodic,
external perturbation has also received some attention.
Indeed, Ho and Chus have introduced what they called
the many-mode Floquet theory to treat this problem.
This leads to consideration of infinite-dimensional ma-
trices with constant coefficients and therefore the
truncation problem may be nontrivial. In any case,
these studies have not contemplated the possibility of
chaotic manifestations in this model. Chaos has been
detected9 in the Tavis-Cummings model'0 which con-
sists of a set of two-level atoms interacting with a
single-mode classical electromagnetic field. Below, we
consider the effect of an external forcing on a single
quantum system with two levels, and show that it may
exhibit chaotic behavior. While the chaos in the
Tavis-Cummings model has a lot in common with the
classical Hamiltonian chaos with a few degrees of free-
dom, we do not expect such a similarity to show up in
our problem. In the Tavis-Cummings model, by anal-
ogy with classical Hamiltonian chaos, one has coex-
istence of quasiperiodic behavior (= trajectories on
Kolmogorov-Arnol'd-Moser tori) and chaotic behavior
for the same values of the control parameters, depend-
ing on initial conditions. On the other hand, the chaos
that we find seems to be independent of initial condi-
tions for a given set of parameters.

As a first step, we investigate the time dependence
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of the observable quantities

8 = t (e2et ~i&2),

C = 424i + 4t4z

The time evolution of A, 8, C is governed by Bloch-
type equations of motion:

i =2S(t)8,
8 = —2S ( t )A —((v t

—co2) C,

C = (QJ~ —CU2)8.

The main difference from true Bloch equations is that
the field S(t) is externally imposed. We have com-
puted numerically the time dependence of A, 8, and C

for two different cases: (i) S(t) =g cosset, i.e., a
periodic perturbation (monochromatic light), and (ii)
S(t) =g cosset cosa''t, i.e., a quasiperiodic perturba-
tion (bichromatic light). Our choice for the frequen-

17711 t 4637cies ~, ~' was ao =,«» and cu =,3313 both denomina-
tors being prime (thus making co and r0' irrational for
practical computations). As the perturbation in case
(i) is periodic, Floquet theorem applies and a quasi-
periodic behavior is expected for A, 8, and C. This is
in fact what can be observed in Fig. 1(a) for A (and
similar results hold true for 8 and C). The dynamics
is quite regular and the overall picture is compatible
with quasiperiodicity. Case (ii), on the other hand,
leads to a regular behavior for neither 3, 8 nor C. In
fact, Fig. 2(a) suggests that the dynamics in this case
may be chaotic.

In order to render the characterization of the regu-
larity of A more quantitative, we have computed the
Fourier spectrum of discretized time series A (t;) in
cases (i) and (ii). Figures 1(b) and 2(b) show the
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FIG. 1. (a) Time dependence of the observable A (differ-
ence in level population) as a function of time, in units of
2m/(~~ —~2) (with ~~ —co2 = 1 here) for the monochromatic
case (g = 5). (b) Power spectrum of the above in units of
(co) —cu2)/% with /V = 2'5.
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FIG. 2. Same as in Fig. 1 for the bichromatic case.
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FIG. 3. Modulus of the autocorrelation function for the
monochromatic case (g = 5). FIG. 4. Same as in Fig. 3 for the bichromatic case.

power spectra [logarithms of the moduli of the Fourier
coefficients Z(f), obtained through a fast Fourier-
transform routine, using N =2ts points of the time
series A (t, )]. The difference between the two spectra
is striking. Figure 1(b) shows a collection of well-

defined peaks and the regularity in their distribution
suggests the existence of just a few underlying funda-
mental frequencies: a typical spectrum for quasi-
periodic behavior. Figure 2(b) shows a profusion of
spectral lines of comparable amplitudes, which is con-
sidered as a signature of chaos. In fact, this spectrum
tends to be continuous, once smoothed out over
neighboring frequencies.

Having established the existence of a chaotic
behavior in observable time-dependent quantities, we
proceed to study another physical quantity which has
proven to be of great help in the study of quantum
chaos, namely the time-dependent autocorrelation
function (ACF) for the wave function itself":

this ratio 8 vs g. This ratio decreases fairly rapidly as g
increases. Beyond g = 4 the decrease proceeds, but at
a slower rate. This reflects (loosely speaking) the fact
that chaos gets more pronounced as g increases and
becomes well established beyond g =4. Thus this
second indicator of chaos points towards the same con-
clusion as the first: The two-level system shows a
chaotic behavior when illuminated by a bichromatic
external source (while the use of monochromatic light
results in the well-known quasiperiodic behavior of the
Autler-Townes model).

Another well-known indication of chaos is the ex-
istence of Lyapunov number(s) representing the am-
plification of initial fluctuations. In the present case, it
does not seem possible to have such positive Lya-
punov numbers. Actually, the equations of motion arc
linear, and a positive Lyapunov number would imply
the existence of solution growing exponentially in
average, which is impossible because of the conserva-

A rapidly decaying autocorrelation is a signature of
chaos, '2 while a quasiperiodic solution of the system
will reflect itself in a similarly quasiperiodic autocorre-
lation. In Figs. 3 and 4, we present our results for the
autocorrelation functions (in fact the plots are in terms
of their moduli) as functions of time for cases (i) (Fig.
3) monochromatic, and (ii) (Fig. 4) bichromatic per-
turbation. As expected, case (i) leads to a nondecay-
ing ACF, a feature independent of the value of the
coupling constant g. In the case of a bichromatic per-
turbation, a fast decrease of the ACF is obtained. The
decay of the ACF depends on g. This can be made
clearer by considering the ratio of the highest max-
imum of the ACF that wc have obtained, besides the
one at r = 0, to the value of the ACF at 7. = 0 (which
can be arbitrarily normalized to 1). In Fig. 5, we plot
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FIG. 5. Highest maximum (other than for r =0) of the
ACF for the bichromatic case as a function of the perturba-
tion strength g.
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tlon of the Ilorm.
As stated at the outset, experimental realizations of

our system appear feasible. Thus NMR experiments
on spin- —, systems with a two-frequency perpendicular
magnetic field Hi could provide some evidence on the
existence of chaotic Rabi oscillations. ' Similarly, a

study of molecular or atomic processes under the in-
fluence of intense bichromatic radiation could show
chaotic "Autler-Townes"-type oscillations, similar to
those described in this paper. In this last case, indeed,
one should include in the theoretical picture —to make
it more realistic —the loss of coherence in oscillations
due to spontaneous radiative decay. At this stage,
several extensions of this work to multilevel systems
appear worthwhile. One of the most promising is the
study of a three-level system with Planck frequencies

cot, a&2, and ro3, similar to the one of Ho and Chu. ' In
this case, there are two resonant external excitations at
frequencies ro2 —~t and to3 —tot and the quasiperiodici-
ty results, in some sense, from the two different fre-
quencies of Rabi oscillations. The possibility for
chaotic behavior in this system is currently under in-

vestigation and will be the subject of a future publica-
tion.
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