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Abstract. In the implementation of device-independent quantum key distribution

we are interested in maximizing the key rate, i.e. the number of key bits that can

be obtained per signal, for a fixed security parameter. In the finite size regime, we

furthermore also care about the minimum number of signals required before key can

be obtained at all. Here, we perform a fully finite size analysis of device independent

protocols using the CHSH inequality both for collective and coherent attacks. For

coherent attacks, we sharpen the results recently derived in Arnon-Friedman et al.,

Nat. Commun. 9, 459 (2018) [1], to reduce the minimum number of signals before key

can be obtained. In the regime of collective attacks, where the devices are restricted

to have no memory, we employ two different techniques that exploit this restriction

to further reduce the number of signals. We then discuss experimental platforms in

which DIQKD may be implemented. We analyse Bell violations and expected QBER

achieved in previous Bell tests with distant setups and situate these parameters in the

security analysis. Moreover, focusing on one of the experimental platforms, namely

nitrogen-vacancy based systems, we describe experimental improvements that can lead

to a device-independent quantum key distribution implementation in the near future.
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1. Introduction

1.1. Quantum key distribution

Quantum key distribution (QKD) [2,3] is a remarkable example of the advantages that

quantum systems bring to accomplishing classical tasks. All the classical crypto-systems

used for key exchange are based on computational assumptions and, therefore, are

susceptible to retroactive attacks. Indeed, if an adversary keeps track of the public

information exchanged during the communication of an encrypted message and, in a

later future, a more efficient algorithm or faster machines become available, then the

messages exchanged in the past can be decrypted. The novelties brought by quantum

systems allow two parties to establish a common key that is information-theoretically

secure and, therefore, can be used to achieve perfect secure communication with a one-

time pad encryption.

Quantum key distribution schemes explore intrinsic properties of quantum systems,

such as no-cloning [4, 5] and monogamy of entanglement [6], in order to achieve

security even against an all powerful adversary who has unlimited computational power.

The well known quantum key distribution scheme BB84 [2] can tolerate a reasonable

amount of noise and decent rates‡ can be achieved with current technology, see for

example the analyses of [9–11]. BB84-based QKD has been successfully implemented

over long distances, see for example [12, 13], and even satellite-based secure quantum

communication was established [14].

A successful implementation of the BB84 protocol is, however, highly dependent

on a good characterisation of the underlying quantum system and the measurement

devices. For example, the protocol can easily be broken if the devices are performing

measurements in four dimensional systems instead of qubits, see discussions in

[15, 16]. Furthermore, hacking of existent implementations that exploit experimental

imperfections were presented (see e.g. [17–20]).

A good characterization of the experimental setup is a strong assumption. What

is more, when quantum technologies become commercially available, we might often

buy devices from a provider which is not entirely trustworthy. Fortunately, quantum

properties allow us to overcome this problem: By exploring the strong correlations that

arise in quantum systems, one can prove security of quantum key distribution even in

the very adversarial scenario where Alice and Bob have no knowledge of the internal

working of their measurement devices or the underlying quantum system that they are

measuring [1, 16, 21–34]. This is the device-independent (DI) model.

‡ Due to finite size effects a minimal number of rounds is required in order to guarantee security. For

the BB84 protocol this minimal number of rounds required is ∼ 104. Moreover, a quantum bit error

rate (QBER) of up to 20% can be tolerated [7, 8] for large enough number of rounds.
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1.2. The device-independent scenario

The device-independent scenario models the underlying system and measurement

devices as black boxes where the only relevant information is the statistics of inputs

and outputs. Therefore, no assumptions on the dimension of the quantum systems or

the particular measurements performed by the devices are required. This represents

a significant relaxation of the assumptions present in an implementation of the BB84

protocol. However, it is important to remark which assumptions remain present in any

implementation of a DI protocol.

Assumptions 1 (Device-independent model). In the device-independent model we

assume:

(i) Isolated labs: no information is leaked from or enters Alice’s and Bob’s labs,

apart from the state distribution before the measurements and the public classical

information dictated by the protocol.

(ii) Isolated source: the preparation of states is independent of the measurements.

(iii) Trusted classical post-processing: all the public classical communication is

performed using an authenticated channel and the local classical computations are

trusted.

(iv) Trusted Random Number Generators: Alice and Bob possess independent and

trusted random number generators.

A bit of thought can make one conclude that completely removing any of these

assumptions leads to a strategy where the key is leaked to the adversary. However,

we remark that partial relaxation of these assumptions can still be considered. In

Ref. [35], QKD is proved to achieve everlasting security by relaxing Assumption 1(iii)

to a computationally secure authenticated channel, but assuming the eavesdropper to

be computationally bounded during the execution of the protocol. In many device

independent protocols, instead of Assumption 1(ii), it is assumed that all the n systems

are prepared before the measurement phase starts, so that no information other than the

classical public communication is exchanged during the protocol. However, this would

require quantum memory from Alice and Bob in order to store the quantum states

along the protocol. In an implementation where the quantum states are generated

round by round, and therefore in which no long term quantum memory is required,

Assumption 1(ii) is necessary to avoid that the state prepared by the source leaks the

raw bits generated by Alice’s device in the previous round. Indeed, if the source is

arbitrarily correlated with the measurement devices the state prepared can contain an

additional degree of freedom that encodes the string of bits generated in the previous

rounds (this strategy is detailed in [36, Appendix C]). We remark that, in experimental

platforms, the preparation of states and the measurements are either performed within

the same systems or optically connected ones, and therefore one needs to assume that the

process of generating a quantum state is not correlated with the previously performed
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measurements. This assumption is, however, often well justified based on a description

of the setup.

Another assumption that is often used in security proofs is that the rounds of the

experiment are independent and identically distributed (IID). This, in particular, implies

that the measurement devices are memoryless and the state shared by Alice and Bob

is the same for every round on the protocol. The IID assumption can be justified, for

example, in experimental setups where Alice and Bob control to some extent the source

and measurement devices, but do not have a full characterization of their working.

Assumptions 2 (IID assumption). An IID implementation assumes:

• IID devices: the devices behave independently and in the same way in every round

of the protocol.

• IID states: The state distributed is the same for every round of the protocol. In

summary, the state of the n rounds can be written as ρAn1Bn1E = ρ⊗nABE.

The eavesdropper attacks in QKD are classified in three types: Individual attacks,

where the eavesdropper has no memory and therefore is restricted to attack individually

each round of the protocol; Collective attacks: where in every round the systems

of Alice and Bob, as well as the measurement devices, are prepared identically but

the eavesdropper is allowed to make arbitrary global operations on her quantum

side information; and Coherent attacks: additionally to the global operations the

eavesdropper can perform in her quantum side information, the states shared by Alice

and Bob in each round can be arbitrarily correlated, as well as the measurement

devices in the DI scenario can have memory and operate according to the results of

previous rounds, i.e., do not satisfy the IID assumption. The IID assumption, stated

in Assumptions 2, corresponds to the scenario where the eavesdropper is restricted to

collective attacks. In what follows we focus on two types of adversarial attacks: collective

attacks and coherent attacks.

1.3. Device-independent quantum key distribution protocols

The first ideas of device-independent QKD arose in the E91 protocol [3], which uses a

test of the CHSH inequality [37] in order to certify that Alice and Bob share a maximally

entangled state. This idea of self-testing quantum devices was further explored in [15].

Indeed, device-independent quantum key distribution relies on the violation of a Bell

inequality in order to certify the security of the generated key. The simplest DIQKD

protocol uses the CHSH inequality for the security test:

β = 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 ≤ 2, (1)

where 〈AxBy〉 = p(a = b|xy) − p(a 6= b|xy) represents the correlation of the outputs

a, b of Alice and Bob when they perform the measurement labeled by x, y respectively.

The CHSH inequality can be phrased as a game [38] in which Alice and Bob receive

x and y, respectively, as inputs and the winning condition is that their outputs satisfy
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a+ b = x · y, with the operations +, · taken modulo 2. The winning probability ω of the

CHSH game relates to the violation β by

ω =
4 + β

8
. (2)

For DIQKD based on the CHSH inequality, we consider protocols where Alice

possesses a device with two possible inputs X ∈ {0, 1} and Bob has a device with three

possible inputs Y ∈ {0, 1, 2}. The inputs X ∈ {0, 1} and Y ∈ {0, 1} are used to test

for the CHSH inequality, and the inputs X = 0 and Y = 2 are used for the other

rounds, often called key generation rounds, where maximal correlation of the outputs

is expected. The parameters of interest are the Bell violation β, or winning probability

ω, achieved in the test rounds and the quantum bit error rate (QBER) Q of the key

generation rounds. We consider that an implementation of the protocol is expected

to have n rounds and a portion γn of these rounds is used for testing of the CHSH

condition.

A DIQKD protocol can be divided in three phases:

• An initial phase where Alice and Bob use their respective devices to measure the

quantum systems and, according to the obtained outputs, generate the n-bit strings

An1 and Bn
1 .

• A second phase where Alice and Bob publicly exchange classical information in

order to perform error correction, to correct their respective strings generating

the raw keys; and parameter estimation, to estimate the parameters of interest

(Bell violation, β, and QBER, Q). At the end of this phase Alice and Bob are

supposed to share equal n-bit strings and have an estimate of how much knowledge

an eavesdropper might have about their raw key.

• In the final phase, Alice and Bob perform privacy amplification, where the not fully

secure n-bit strings are mapped into smaller strings KA and KB, which represents

the final keys of Alice and Bob respectively.

The specific protocols we consider for our analyses are detailed in Section 2, (see

Protocol 1 and Protocol 2).

In order to define security of a DIQKD protocol, we follow Refs. [1, 39] and adopt

the security definition that is universally composable for standard QKD protocols [40].

Universal composability is the statement that a protocol remains secure even if it is

used arbitrarily in composition with other protocols. It is important to remark that,

for the device-independent case, attacks proposed in Ref. [41] show that composability

is not achieved if the same devices are re-used for generation of a subsequent key.

Indeed, in [41], the authors have shown that a malicious eavesdropper can program

the measurement devices in such a way that information about a previously generated

key may be leaked through the public communication of a subsequent run of the key

generation protocol, if the devices are re-used. It is still an open problem what is the

minimum set of assumptions that can lead to universal composability of DIQKD (e.g.
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the attacks of Ref. [41] can be avoided if the memory of the devices are re-set after an

execution of the protocol).

Let KA and KB denote the final key held by Alice and Bob, respectively, after they

perform a DIQKD protocol. A DIQKD protocol is secure if it is correct and secret.

Correctness is the statement that Alice and Bob share the same key at the end of the

protocol, i.e., KA = KB. Secrecy is the statement that the eavesdropper is totally

ignorant about the final key.

Definition 1 (Correctness). A DIQKD protocol is εcorr-correct if the probability that

the final key of Alice, KA, differs from the final key of Bob, KB, is smaller than εcorr,

i.e.

P (KA 6= KB) ≤ εcorr. (3)

Definition 2 (Secrecy). Let Ω denote the event of not aborting in a DIQKD protocol

and p(Ω) be the probability of the event Ω. The protocol is εsec-secret if, for every initial

state ρABE it holds that

p(Ω) · 1

2
‖ρKAE |Ω − τKA ⊗ ρE‖1

≤ εsec, (4)

where τKA = 1
|KA|

∑
k |k〉〈k|A is the maximally mixed state in the space of strings KA,

and ‖ · ‖1 is the trace norm.

If a protocol is εcorr-correct and εsec-secret, then it is εsDIQKD-correct-and-secret for

any εsDIQKD ≥ εcorr + εsec. See Section 4.2 for a more detailed definition of security of a

DIQKD protocol.

Given an DIQKD protocol that has n rounds and generates a final correct-and-

secret key of l bits, then the secret key rate is defined as

r =
l

n
. (5)

Our goal is to derive the secret key rate as a function of the parameters of interest, β

and Q, that Alice and Bob can estimate during the execution of the protocol.

1.4. Security proof of DIQKD

Even though the BB84 quantum key distribution scheme dates back to 1984 [2], the

formal security proof in the asymptotic regime only came out more than a decade later,

see e.g. [42–45]. Security in the composable paradigm in the finite regime against general

coherent attacks was only formalized in 2005 [46–48]. Moreover, a finite key analysis

without the IID assumption over the state preparation and with parameters compatible

with current technology only came in 2012 [9, 10].

In the device-independent scenario, security against a quantum eavesdropper§
restricted to collective attacks was first proved in [16,27]. A proof against general attacks

assuming memoryless devices was presented in [28, 29]. The problem of extending the

§ A discussion on earlier security proofs that do not restrict the eavesdropper to the quantum formalism

can be found in [49].
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security proofs to coherent attacks in the device-independent scenario remained open

for a long time. One of the main difficulties is that de Finetti techniques [47,50], used to

extend security proofs against collective attacks to general coherent attacks in standard

QKD, are not applicable in the DI scenario. A series of recent works [31–34] culminated

in the the Entropy Accumulation Theorem (EAT) [1] (see [39,51] for extended versions).

The EAT allows one to extend the analysis against collective attacks to the fully device-

independent scenario, resulting in asymptotically tight security proofs and high rates in

the finite size regime.

1.5. Experimental DIQKD

Protocols for DIQKD rely on a Bell test between two distant parties [16]. In order to

certify security, this Bell test should be free of loopholes that could be exploited by an

adversary. While closing the detection loophole is crucial for a DIQKD implementation,

the spacelike separation required for loophole-free Bell tests can be relaxed. In a DIQKD

experiment, no-communication between the devices does not have to be guaranteed by

spacelike separation, since the assumption of isolated labs, Assumption 1(i), is already

needed to ensure that the generated key is not leaked to the eavesdropper at any

point in time. We are thus interested in considering Bell violations between distant

- albeit not necessarily spacelike separated - setups in which the detection-loophole is

closed [52–59]. The recent performance of fully loophole-free Bell tests [52–55] mark

technological progress towards Bell tests without detection loophole over increasingly

distant setups, as needed for practically useful DIQKD.

Despite the experimental progress, a device-independent quantum key distribution

protocol has not yet been performed. The reason for this is that a Bell violation alone

is not enough to guarantee security in a DIQKD protocol. One also needs to account

for the amount of information leaked during the error correction, when Alice and Bob

correct their string of bits in order to achieve a perfectly correlated raw key. The amount

of information required for error correction is determined by the QBER. With a finite

QBER, as in practical systems, a large Bell violation is needed to achieve a positive

key rate. Moreover, a high minimal number of rounds is required for security due to

finite-size effects. The large number of necessary rounds requires a significantly high

entangling rate. Altogether, DIQKD demands a low QBER, high Bell violation and

high entangling rates. Even though some systems satisfy parts of these requirements,

e.g. a high Bell violation [52,55,58,59] or high entangling rate [53,54,56,57], so far there

are no systems that combine all requirements. In section 2.3 we describe the potential

platforms for an experimental implementation of DIQKD in detail.

2. Results

We now present our results. In Section 2.1, we establish the key rates for DIQKD

protocols based on the CHSH inequality, both for coherent and collective attacks in
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the finite size regime. As a benchmark, in Section 2.2, we compare the key rates

that can be achieved in the finite regime for the two adversarial scenarios (collective

and coherent attacks) using an implementation with depolarizing noise. In Section

2.3, we discuss the state of the art of experimental implementations. We estimate the

parameters of interest for previously performed Bell experiments and situate them in the

security proofs. Additionally, focusing on Nitrogen-vacancy based systems we indicate

experimental improvements that can lead to an implementation of DIQKD in the near

future. Throughout this manuscript we use Log10 to denote logarithm to base 10 and

log to denote logarithm to base 2.

2.1. Key Rates

In the following, we derive the key rates in the finite size regime for DIQKD protocols

where the CHSH inequality is used for certifying security. For coherent attacks we

sharpen the results recently derived in [1]. For collective attacks we perform the

analysis by employing two techniques: the fintie version of the asymptotic equipartition

property [60] and the additivity of the 2-Rényi entropy.

2.1.1. Key rates for coherent attacks. In order to analyze the key rates against general

coherent attacks we use the recently developed entropy accumulation theorem (EAT)

[1,39,51] and consider the following protocol.
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Protocol 1 DIQKD Protocol for coherent attacks [39]

1: for For every block j ∈ [m] do

2: Set i = 0 and Cj = ⊥.

3: while i ≤ smax do

4: Set i = i+ 1.

5: Alice and Bob choose a random bit Ti ∈ {0, 1} such that P (Ti = 1) = γ.

6: if Ti = 0 then Alice and Bob choose inputs (Xi, Yi) = (0, 2).

7: else they choose Xi, Yi ∈ {0, 1} (the observables for the CHSH test).

8: end if

9: Alice and Bob use their devices with the respective inputs and record their

outputs, Ai and Bi respectively.

10: If Ti = 1 they set i = smax + 1.

11: end while

12: end for

13: Error Correction: Alice and Bob apply the error correction protocol EC,

communicating script OEC in the process. If EC aborts they abort the protocol,

else they obtain raw keys Ãn1 and B̃n
1 .

14: Parameter estimation: Using Bn
1 and B̃n

1 , Bob sets

Ci =


1, if Ti = 1 and Ai ⊕Bi = Xi · Yi
0, if Ti = 1 and Ai ⊕Bi 6= Xi · Yi
⊥, if Ti = 0

(6)

He aborts if∑
j

Cj < m× (ωexp − δest) (1− (1− γ)smax),

i.e., if they do not achieve the expected violation.

15: Privacy Amplification: Alice and Bob apply the privacy amplification protocol

PA and obtain the final keys KA and KB of length l.

In Protocol 1, the total number of rounds is not fixed in advance, however for

a number of blocks m large enough the number of rounds will correspond, with high

probability, to the expected value n. This is a technicality introduced in Ref. [1, 39]

in order to obtain better rates in the finite regime. A more detailed explanation can

be found in [39, Appendix B]. Improvements on the second order term of the entropy

accumulation theorem, that do not rely on the introduction of blocks, were recently

obtained in [61]. Following the techniques of [1, 39], we derive Theorem 1.

Theorem 1 (Key rates for coherent attacks). Either Protocol 1 abort with probability

higher than 1− (εEA + εEC), or it generates a (2εEC + εPA + εs)-correct-and-secret key

of length

l ≥ n

s̄
ηopt −

n

s̄
h(ωexp − δest)−

√
n

s̄
ν1 − leakEC (7)



Towards a realization of device-independent quantum key distribution 10

− 3 log

1−

√√√√1−
(

εs
4(εEA + εEC)

)2
+ 2 log

(
1

2εPA

)
,

where leakEC is the leakage due to error correction step and the functions s̄, ηopt, ν1 and

ν2 are specified in Table 1.

Theorem 1 sharpens the original analysis [1,39] and has slightly improved key rates

in the finite regime. This results in a reduction of the minimum number of rounds

(signals) required for positive rates by about a factor of two, as illustrated in Figure 1.

A detailed derivation of Theorem 1 can be found in Appendix B.3.

Figure 1. Key rate r vs logarithm of the number of rounds n. Comparison

of the improvements in the key rate, for an implementation where the maximally

entangled is subjected to depolarizing noise and therefore β = 2
√

2(1−2Q), for QBER

Q = {0.5%, 2.5%, 5%}. The dashed curves correspond to the key rates derived in the

original analysis [1, 39], the solid lines represent the key rates derived in Theorem 1.

Similarly to [1], we take εcDIQKD = 10−2 and εsDIQKD = 10−5.
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smax =
⌈

1
γ

⌉
s̄ = 1−(1−γ)d 1

γe
γ

ηopt = max 3
4
<

pt(1)
1−(1−γ)smax

< 2+
√

2
4

[
Fmin(~p, ~pt)− 1√

m
ν2

]
Fmin(~p, ~pt) = d

dp(1)
g(~p)

∣∣∣
~pt
· p(1) +

(
g(~pt)− d

dp(1)
g(~p)

∣∣∣
~pt
· pt(1)

)
g(~p) = s

[
1− h

(
1
2

+ 1
2

√
16 p(1)

1−(1−γ)smax

(
p(1)

1−(1−γ)smax
− 1

)
+ 3

)]
ν2 = 2

(
log (1 + 2 · 2smax3) +

⌈
d

dp(1)
g(~p)|~pt

⌉)√
1− 2 log εs

ν1 = 2
(
log 7 +

⌈
|h′(ωexp+δest)|
1−(1−γ)smax

⌉)√
1− 2 log εs

Table 1. Explicit form of the terms that appear in Theorem 1. For a detailed

derivation see Appendix B.3.

2.1.2. Key rates for collective attacks For collective attacks, we derive the finite key

rates by employing two techniques: the finite version of the asymptotic equipartition

property and the additivity property of the conditional α-Rényi entropies. To deal with
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collective attacks we can use a simplified version of Protocol 1, where the number of

rounds is fixed.

Protocol 2 DIQKD protocol for collective attacks

1: for i = 1 to n do

2: Alice and Bob choose a random bit Ti ∈ {0, 1} such that P (Ti = 1) = γ.

3: if Ti = 0 then Alice and Bob choose inputs (Xi, Yi) = (0, 2).

4: else they choose Xi, Yi ∈ {0, 1} (the observables for the CHSH test).

5: end if

6: Alice and Bob use their devices with the respective inputs and record the outputs,

Ai and Bi respectively.

7: end for

8: Error correction: Alice and Bob apply the error correction protocol EC,

communicating OEC in the process. If EC aborts they abort the protocol, else

they obtain raw keys Ãn1 and B̃n
1 .

9: Parameter estimation: Using Bn
1 and B̃n

1 , Bob sets for the first test rounds

Ci =

1, if Ai ⊕Bi = Xi · Yi
0, if Ai ⊕Bi 6= Xi · Yi

(8)

For the remaining rounds he sets Ci = ⊥.

He aborts if∑
j

Cj < γn× (ωexp − δest) ,

i.e., if they do not achieve the expected violation.

10: Privacy Amplification: Alice and Bob apply the privacy amplification protocol

PA and obtain the final keys KA and KB of length l.

In the following theorem we state the length of a secure key that can be derived

using the asymptotic equipartition property, which is formally stated in Theorem 7.

Theorem 2. Either Protocol 2 aborts with probability higher than 1 − (εcon + εEC), or

it generates a (2εEC + εs + εPA)-correct-and-secret key of length:

l ≥ n[1− h
(

1

2
+

1

2

√
16(ωexp − δest − δcon)((ωexp − δest − δcon)− 1) + 3

)
− (1− γ)h(Q)− γh(ωexp)] (9)

−
√
n

(
4 log

(
2
√

2 + 1
)(√

log
2

ε2s
+

√
log

8

ε′2EC

))

− log

(
8

ε′2EC
+

2

2− ε′EC

)
− log

(
1

εEC

)
− 2 log

(
1

2εPA

)
A detailed derivation of Theorem 2 can be found in Appendix B.1.

Using a different technique, namely bounding the key rate by the conditional

collision entropy, we derive the following result.
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Theorem 3. Either Protocol 2 aborts with probability higher than 1 − (εcon + εEC), or

it generates a (2εEC + εPA)-correct-and-secret key of length:

l ≥ n
[
− log

(
1

2
+

1

2

√
16(ωexp − δest − δcon)(1− (ωexp − δest − δcon))− 2

)
− (1− γ)h(Q)− γh(ωexp)

]
(10)

−
√
n

(
4 log

(
2
√

2 + 1
)√

log
8

ε′2EC

)

− log

(
8

ε′2EC
+

2

2− ε′EC

)
− log

(
1

εEC

)
− 2 log

(
1

2εPA

)
An important step in the proof of Theorem 3 is to derive a lower bound on the

collision entropy as a function of the CHSH violation β. A tight lower bound is proved

in Theorem 9. The detailed proof of Theorem 3 is presented in Appendix B.2.

The rates presented in Theorem 2 are asymptotically tight, while Theorem 3

achieves strictly smaller asymptotic rates. However, one can note that in Theorem 3

the term proportional to
√
n has a smaller pre-factor. This can potentially lead to an

advantage for the minimum number of rounds required for security. For Protocol 2, an

advantage can only be observed for very low noise regime, as illustrated in Figure 2.

We remark, however, that for protocols based on other Bell inequalities the techniques

used for deriving Theorem 3 can present significant advantage for the collective attack

analysis. This is further discussed in Section 4.3.2.

Figure 2. Key rates vs logarithm of the number of rounds n for Protocol 2 (collective

attacks). The blue curve represent the key rate using Theorem 2 and the yellow

curve shows the key rate using Theorem 3. It is considered an implementation with

depolarizing noise and QBER Q = 0.01%. The inset graph shows a zoom in the

region of low number of rounds. Similarly to [1], we take εcDIQKD = 10−2 and

εsDIQKD = 10−5.
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The following table lists the parameters of the DIQKD protocols in consideration.
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n expected number of rounds

l final key length

γ fraction of test rounds

Q quantum bit error rate

β CHSH violation

ωexp expected winning probability on the CHSH game in an honest implementation

δest width of the statistical interval for the Bell test

δcon confidence interval for the Bell test in Protocol 2

εs smoothing parameter

εEC , ε
′
EC error probabilities of the error correction protocol

εEA error probability of Bell violation estimation in Protocol 1

εcon error probability of Bell violation estimation in Protocol 2

εPA error probability of the privacy amplification protocol

leakEC leakage in the error correction protocol

Table 2. Parameters of the considered DIQKD protocols, Protocol 1 and Protocol 2.

2.2. Comparison of key rates for depolarizing noise model

We now compare the key rates achieved in the finite regime under the assumption of

collective attacks (IID scenario) and against general coherent attacks (fully DI scenario).

As a benchmark, we focus on an honest implementation where the maximally entangled

state is prepared and subjected to depolarizing noise‖:

ρ = (1− ν)
∣∣∣Φ+

〉〈
Φ+
∣∣∣+ ν

I

4
. (11)

In this case, the parameters of interest – the value of the CHSH inequality β and the

QBER Q – relate to the noise parameter ν by

Q =
ν

2
and β = 2

√
2(1− ν) → β = 2

√
2(1− 2Q). (12)

In Figure 3 we compare the key rates achievable under the IID assumption, given

by Theorem 1, and in the fully DI scenario, Theorem 2, for an honest implementation

with depolarizing noise.

‖ This noise model can also be seen as the case where each individual qubit suffers a depolarization

with parameter ν′, where ν = 2ν′ − ν′2.
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Figure 3. Key rates vs logarithm of the number of rounds for collective attacks

(dashed lines) and coherent attacks (solid lines). The different curves represent

different values of QBER Q = (0.5%, 2.5%.5%) considering an implementation where

the maximally entangled state is subjected to depolarizing noise (see relation (12)).

The security parameters are taken as εcDIQKD = 10−2 and εsDIQKD = 10−5.
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Figure 3 shows that the key rates approach the same asymptotic values, however

the minimum number of rounds required to guarantee security is significantly higher

for general coherent attacks. Indeed, by adding the assumption that the eavesdropper

is restricted to collective attacks, the minimum number of signals required to have a

positive key rate drops by about two orders of magnitude. However, even for collective

attacks, this minimum number of required rounds is considerably large given the current

entanglement generation rates. This is one of the big challenges to be overcome for a

DIQKD implementation. In the next Section we are going to discuss the state of the art

of experiments, and situate the current achievable parameters (Bell violation, QBER

and entanglement generation rate) in the security proofs.

2.3. The state-of-the-art experimental DIQKD

In the following, we discuss experimental platforms in which DIQKD may be

implemented. We analyse Bell violations and expected QBER achieved in previous

Bell tests with distant setups and situate these parameters in the context of the key

rates derived in Theorems 1 and 2. A summary of the findings is presented in Table 4

and Figures 5 and 6.

In experimental setups, distant entanglement is typically generated using photons

to establish the connection. We distinguish two approaches based on the role of the

photonic qubits: (i) All-photonic schemes: Approaches in which the entangled state is

encoded in the photonic state directly. In this case, measurements of the photonic states

on two remote setups enable to infer their entanglement. (ii) Heralded schemes: In this

case, the entangled state is typically created in a long-lived system and the photons are

used as a means of establishing the entanglement between two distant systems.

In this section we provide a discussion of the parameters in each of these schemes

and the related challenges towards an implementation of DIQKD. We provide a more

detailed discussion of one of the systems, namely nitrogen-vacancy (NV) centres in
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diamonds, and describe improvements in experimental parameters that can lead to a

DIQKD implementation in the near future.

2.3.1. DIQKD with all-photonic entanglement. Since in all-photonic schemes the

entangled state is directly encoded on the photonic state, photon losses limit the

entangled state detection efficiency. Closing the detection loophole in a Bell test

thus requires very efficient entangled-photon sources and photon detectors. Recent

technological advances enabled all-photonic Bell tests that close the detection-loophole

[56,57], later combined with spacelike separation in loophole-free Bell tests [53,54].

In photonic systems the detection efficiency also impacts the entangled state fidelity.

We thus may expect that Bell violations are low in photonic systems. To avoid having

to deal with undetected events, photonic Bell tests typically employ the CH-Eberhard

inequality [62, 63]. The CHSH and CH-Eberhard inequalities are equivalent¶, such

that we can estimate the CHSH violation achieved in photonic experiments. Table 4

presents the corresponding value for the CHSH inequality achieved in the experiments

of Refs. [53,54,56,57]. One can note that the violations achieved are indeed low, ranging

from 2.00004 to 2.02. Combined with a finite QBER (> 2%), this poses a significant

challenge for the implementation of a DIQKD protocol in photonic systems.

However, if these systems would enter the regime of positive key rates, the

entanglement generation rate can be very high (∼ 105 Hz), such that they could easily

reach the asymptotic key rate values.

Recently, heralded schemes for all-photonic systems were proposed in [64]. In this

case, the entangled state is created between photons and, also, this entanglement is

heralded by the interference of other photons. The proposed scheme uses a combination

of spontaneous parametric down conversion sources and single-photon sources in order

to achieve a setup where a heralding process could overcome transmission photon losses.

This setup is a promising proposal to bring the parameters of all-photonic systems to

the region of positive asymptotic key rates (see Figure 5 and 6). However single-photon

sources still lack the required performance for an implementation of these schemes.

2.3.2. DIQDK with heralded entanglement. Due to the nature of heralded entangling

schemes, photon losses do not influence the entangled state detection efficiency or

fidelity. Heralded schemes have been used to entangle distant atomic ensembles [65,66],

trapped ions [67], atoms [68], NV centres [69], quantum dots [70], and mechanical

oscillators [71]. So far, entangled state fidelities sufficiently high to violate Bell’s

inequalities have only been reached with trapped ions [58, 59], atoms [55, 68], and with

NV centres [52, 72]. The Bell violations observed in Refs. [52, 55, 58, 59, 72] are in the

range β = 2.22 to β = 2.41, with a lower bound on the QBER, estimated from detection

efficiencies alone, around 0.04 (see Table 4 for a full overview). Apart from the results

reported in [59], these parameters are not in the region of positive key rate (see Figures

¶ One can see that by replacing non-detected events by the deterministic classical strategy “output 1”

in a test of the CHSH inequality.
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5 and 6). However, all of them are in the proximity of this region, such that setup

improvements may enable to reach it.

The challenge for these implementations is however their low entangling rate,

induced by photon losses. Current rates range from (minutes)−1 [55, 58, 59, 68] to

(hours)−1 [52, 72]. A significant speed-up in the entanglement generation rate is thus

needed in order to achieve the minimum number of rounds required for DIQKD. Higher

entangling rates in heralded schemes were recently achieved with trapped ions [73] and

NV centres [74, 75], although with lower state fidelities, and no Bell violations are

reported. Even though in Ref. [75] the state fidelity is just high enough to be able

to violate Bell inequalities, the expected Bell violation would be low. Enhancement in

entangling rates, e.g. with optical cavities to improve light-matter coupling efficiency

[76] is therefore crucial to achieving an implementation of DIQKD with heralded

schemes.

2.3.3. Nitrogen-vacancy centre-based networks. In this section, we focus on heralded

entanglement generation between nitrogen-vacancy centres in diamond for DIQKD.

Nitrogen-vacancy (NV) centres are defect centres in the diamond lattice. They contain

an electronic spin with good coherence properties and spin-selective optical transitions

that can be used for intialization, readout and entanglement generation [69, 77]. Next

to the electronic spin, nearby weakly coupled nuclear spins can serve as long-lived

memories [78,79]. These properties make the NV centre a promising quantum network

node.

Entanglement between distant NV centres can be generated using an heralded

scheme. Typically, local entanglement is first generated between the NV electronic

spin and a photon mode. And subsequently, entanglement between distant NV centres

is achieved through entanglement swapping by interfering the two photon modes from

distant setups [80]. As discussed above for heralded protocols, photon attenuation does

not influence the fidelity of the generated entangled state or the detection efficiency.

The detection of the spin states has near-unit efficiency [81].

DIQKD parameters. In a loophole-free Bell test with NV centres [52, 72], a CHSH

violation β = 2.38 ± 0.14 was observed between systems separated by 1.3 kilometers.

Taking into account the entangled state fidelity and detection efficiency, we estimate

that the corresponding QBER would be Q = 0.06±0.03. The Bell violation achieved in

[52,72] is considerably high, especially if compared to loophole-free Bell test experiments

in photonic systems [53,54]. However, these parameters are not good enough to generate

a secure key. Indeed, using Theorems 1 and 2, one concludes that it is not possible to

achieve positive key rate with these parameters (see Figures 5 and 6).

In the following, we suggest two near-term experimental improvements to enhance

these parameters.

Firstly, the frequency stability of the laser used to excite NV centres during the

entanglement protocols can be increased using an external cavity. The instability of the
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laser can influence the indistinguishability of photons emitted by the distant NV centres.

The indistinguishability is crucial for photon interference, which can be quantified by

the visibility of the two-photon quantum interference (TPQI). We expect that compared

to previous implementation [52], the improved laser frequency stability can lead to an

improvement in TPQI visibility from 0.88 to 0.90.

Secondly, both the CHSH violation β and the QBER Q are impacted by the NV

electronic spin state readout. The readout can be performed using resonant excitation

of a spin-selective optical transition [81]. Improvements to the detection efficiency can

be obtained by storing the spin state in the nearby nitrogen spin state, and performing

repeated readout [82]. We estimate that the repeated readout can lead to an average

readout fidelity of ≈ 0.985, compared to an initial 0.97 [83] +.

Other improvements can be envisioned, such as enhancement of the detection

efficiency by improving the photon collection efficiency through the use of parabolic

reflectors [84] or optical cavities [85]. In the following discussion we limit ourselves to

the two advances listed above and summarized in Table 3.

DIQKD parameters Ref. [52, 72] Expected

setup A B A B

average readout fidelity 0.974 0.969 0.985 0.985

TPQI visibility 0.88 0.90

β 2.38 ± 0.14 2.47

Q 0.06 ± 0.03 0.051

Table 3. The CHSH violation β and QBER Q in NV centre-based implementations

are strongly dependent on the TPQI visibility and the readout fidelity. The resulting

values are shown for parameters achieved in a loophole-free Bell test, and for expected

values from several readily-implementable improvements.

Taking into account these improvements, the expected DIQKD parameters are β ≈
2.47 and Q ≈ 0.051. In Figure 4 we illustrate the rates achievable for these parameters

against general coherent attacks and under the assumption that the eavesdropper is

restricted to collective attacks. We see that the required minimum number of rounds is

of order 108 for general attacks, and about 5× 106 for collective attacks.

+ We note that this readout method increases the readout duration, which compromises spacelike

setup-separation. However, security in a DIQKD implementation does not require spacelike separation

since it is superfluous with the assumption of isolated labs in place (see Assumptions 1). Therefore, an

increased readout time does not present a problem for security.
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Figure 4. Key rates vs logarithm of the number of rounds n for parameters that

are readily-implementable in NV centres setups (CHSH violation β = 2.47 and QBER

Q = 0.051). The red line shows the key rates obtained against general coherent attacks,

and the blue dashed line shows the key rates under the assumption of collective attacks.

The security parameters are chosen to be εcDIQKD = 10−2 and εsDIQKD = 10−5.

Entangling rate. Although the improved parameters lead to a positive key rate, this

does not mean that DIQKD with NV centres is readily achievable. The system faces

another challenge: the probabilistic nature of the heralded entanglement scheme limits

the entanglement generation rate.

In the heralded entanglement generation protocol used in [52,69] the photonic qubit

is time-bin encoded and entanglement is heralded with the detection of a photon in each

of two time-bins [80]. Since two photons have to be detected, the rate of the protocol

is proportional to the square of the photon losses. For the spacelike separated setups

in [52] the total emission and detection efficiency per photon is ≈ 10−4, leading to a

total success probability of ≈ 10−8. Since the repetition rate, limited by the spin-state

reset time, is of the order of ≈ µs, generating a raw key of length 106 bits would take

≈ 103 days. It is clear that a speed-up of entanglement generation rate is required to

use NV centres in a DIQKD protocol. We describe two approaches toward this.

Firstly, this could be achieved by adapting the entanglement generation protocol. A

linear dependency of the rate on photon losses can be achieved by employing an extreme-

photon-loss (EPL) protocol [86] or single-photon (SP) protocol [87]. Demonstrated

implementations of these protocols with NV centres indeed provide a speed-up in

entanglement rate of three orders of magnitude [74,75]. However, these implementations

do not yet provide the entangled state fidelities leading to Bell violations that allow for

DIQKD (the entangled state fidelities are FEPL = 0.65 ± 0.03 and FSP = 0.81 ± 0.02,

leading to no Bell violation for the EPL protocol and a small violation βSP = 2.1 for the

single photon protocol). Better parameters may be achieved with improvements of the

robustness of the nuclear-spin memories [79] and with an improved photon detection

versus dark-count rate [87].

Secondly, an increase in the entanglement rate can be achieved by a reduction of

the photon losses per round. These losses consist of three parts: a low coherent-photon
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emission probability, a non-unit collection efficiency and fiber attenuation. The photon

attenuation during transmission over fibers is ≈ 8 dB for the NV emission wavelength

(637 nm). To maintain high entangling rates for distant setups, this should be reduced.

This can be achieved by frequency downconversion of the photons at a wavelength of 637

nm emitted by the NV centres to telecom frequencies [88,89]. The emission probability

of coherent photons, ≈ 3%, and subsequent collection efficiency (≈ 10%, [69]) together

limit the best achievable entangling rates. They can be addressed simultaneously by

embedding the NV centre in an optical cavity to enhance coherent-photon emission and

the collection efficiency [85]. A promising approach employs NV centres in diamond

membranes in Fabry-Perot microcavities [90–92]. In such a design NV centres remain far

away from the optical interface, retaining bulk-like optical coherence properties. These

cavities are expected to provide three orders of magnitude enhancement in entangling

rate for a two-click protocol [91]. Together with the improved DIQKD parameters

described above, this makes a demonstration of DIQKD with NV centres experimentally

feasible.

β Q

(1) Matsukevich et al., PRL 100, 150404 (2008) [58] 2.22± 0.07 0.041± 0.003

(2) Pironio et al., Nature 464, 1021-1024 (2010) [59] 2.414± 0.058 0.041± 0.003

(3) Giustina et al., Nature 497, 227-230 (2013) [56] 2.02096± 0.00032 0.0297± 0.0003

(4) Christensen et al., PRL 111, 130406 (2013) [57] 2.00022± 0.00003 0.0244± 0.0009

(5) Giustina et al., PRL 115, 250401 (2015) [53] 2.000030± 0.000002 0.0379± 0.0002

(6) Shalm et al., PRL 115, 250402 (2015) [54] 2.00004± 0.00001 0.0292± 0.0002

(7) Hensen et al., Nature 526 682-686 (2015) [52] 2.38± 0.14 0.06± 0.03

(8) Rosenfeld et al., PRL 119, 010402 (2017) [55] 2.221± 0.033 0.035± 0.003

(9) Expected improvements in NV systems 2.47 0.051

Table 4. Summary of the estimated parameters of interest for DIQKD. (1,2) are

Bell tests with trapped ions, (3-5) are all-photonic experiments, (7) uses NV centres

and (8) trapped atoms. (9) reports on near-term achievable parameters with NV

centers as described in Section 2.3.3. In all experiments the detection loophole is

closed; (5-8) additionally close the locality loophole. The CHSH violations for neutral

atoms (8), trapped ions (1,2) and NV centres (7) are as reported in the corresponding

experiments. For (3), (4) and (5), in which the value of the CH-Eberhard inequality J

is reported, we make use of the relation β = 4J + 2 between the CHSH value and the

CH-Eberhard value. This relation is found if one attributes “output 1” to undetected

events in a CHSH inequality test. For (6) the CHSH violation was estimated directly

from the reported data. For the estimation of the QBER (Q), in (1),(2) and (8) we

assume perfect classical correlation in the generated state and find a lower bound for

the QBER from reported detection efficiencies (0.979± 0.002 [93] for (1) and (2), and

0.982±0.002 [94] for (8)). For NV centres (7), we additionally account for imperfections

in the entangled state based on the reported density matrix. For all-photonic systems

(3-6), the QBER is estimated by taking into account the detection efficiency and using

the reported estimated state and the measurements performed by Alice, optimizing

over measurements for Bob.
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Figure 5. Region of positive key rates for coherent attacks: The red area is the region

of values of QBER (Q) and CHSH violation (β) for which a positive key rate cannot be

reached with any number of rounds. In the green area, the dashed curves represents

the minimum number of rounds required to get positive key rate. For parameters

above each curve, a key rate can be extracted if the number of rounds is higher

than specified in the curve. The points show the Bell violation and estimated QBER

achieved by previous experiments (see Table 4). They, however, do not reflect the

corresponding entanglement generation rates. Similarly to [1], we take εcDIQKD = 10−2

and εsDIQKD = 10−5.
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Figure 6. Region of positive key rates for collective attacks: The red area is the region

of values of QBER (Q) and CHSH violation (β) for which a positive key rate cannot be

reached with any number of rounds. In the green area, the dashed curves represents

the minimum number of rounds required to get positive key rate. For parameters

above each curve, a key rate can be extracted if the number of rounds is higher

than specified in the curve. The points show the Bell violation and estimated QBER

achieved by previous experiments (see Table 4). They, however, do not reflect the

corresponding entanglement generation rates. Similarly to [1], we take εcDIQKD = 10−2

and εsDIQKD = 10−5.
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3. Discussion

Detection-loophole-free Bell tests between separated setups mark an important step

towards the implementation of DIQKD. Progress towards extending Bell experiments

to larger distances were also achieved, in particular by the Bell tests additionally closing

the locality loophole. However a DIQKD protocol has not yet been implemented.

In order to shed light on the experimental performance needed for DIQKD, we

have derived the key rates in the finite size regime as a function of the experimental

parameters: CHSH violation β and QBER Q. For comparison of the key rates obtained

in the finite regime for coherent and collective attacks, we have used as a benchmark

an implementation where the maximally entangled state is subjected to depolarizing

noise. Although the asymptotic key rates against collective attacks and general coherent

attacks coincide, it is known that this is not the case in the finite regime. We find that,

with the currently available tools, security against coherent attacks requires a minimum

number of rounds about two orders of magnitude higher than what is necessary for

security against collective attacks for realistic near-term parameters.

Here, we have focused on DIQKD protocols that use the CHSH inequality. So
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far the CHSH inequality is the one which leads to the best performance for a DIQKD

protocol. The challenge in using other Bell inequalities is that, up to date, only non-

tight lower bounds on the secure key rates can be derived. Therefore, it is still an open

question whether any other Bell inequality can outperform the CHSH, either in terms of

maximum tolerable QBER, higher rates or lower minimum number of rounds required.

Towards exploring the potential of different experimental platforms to implement

DIQKD, we have analyzed the Bell violation and expected QBER of previously

performed Bell tests and situated these parameters in the context of the derived key

rates. Figures 5 and 6 summarize this analysis.

For photonic systems, a DIQKD implementation is currently barred by the very

low CHSH violation. To overcome this, a strong reduction of photon losses is required.

Detection-loophole free Bell tests based on heralded entanglement schemes

approach the allowed region, with the Bell test of Ref. [59], performed with trapped

ions separated by 1 meter, even exhibiting parameters in the allowed region. These

heralded schemes however suffer from low entangling rates resulting from photon

losses. An increase in the entangling rates is expected to be achieved by improving

collection efficiencies, e.g. by employing optical cavities. Moreover, with frequency

downconversion these results can be extended to long (� 1 km) distances. We illustrate

that with near-term experimental improvements for NV centres, in combination with

optical cavities for enhancing entangling rate, described in Section 2.3.3, a demonstration

of DIQKD is achievable.

4. Methods

We now present the theoretical tools that allows us to derive the key rates for the device-

independent quantum key distribution protocols, Protocol 1 and Protocol 2. We start

by defining some quantities that are going to play an important role in the security

proof and state in more details the security definition for device-independent quantum

key distribution.

4.1. Notation and definitions

In cryptographic tasks, we are often interested in estimating what is the maximum

probability with which an adversary can guess the value of a classical variable A∗. This

is defined as the guessing probability pguess. In the general case where the adversary

might have access to a quantum side information E, and therefore the state of interest

is a cq-state (classical-quantum state) ρAE, the guessing probability is defined as:

pguess(A|E)ρ = sup
{Ma

E}

∑
a

p(A = a)ρTr
(
Ma

EρE|A=a

)
, (13)

∗ In QKD, for example, the classical variable is the string of bits that Alice holds after measuring her

quantum systems.
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where the supremum is taken over all POVMs {Ma
E} that can be performed on the

system E. The min-entropy of the classical variable A conditioned on the quantum side

information E is then given by [95]

Hmin(A|E)ρ = − log pguess(A|E)ρ. (14)

A smoothed version of the min-entropy can also be defined.

Definition 3 (Smooth min-entropy). For a quantum state ρAE and ε ∈ [0, 1)

Hε
min(A|E)ρ = sup

ρ̃AE∈Bε(ρAB)
Hmin(A|E)ρ̃, (15)

where the supremum is taken over positive sub-normalized operators that are ε-close to

ρAB in the purifying distance [96].

The smoothing parameter ε allows us to restrict attention to typical events (the ones

that occur with probability higher than 1−δ(ε), where δ(ε) is a function of the smoothing

parameter). As a consequence, the smoothed min- and max-entropies (see Appendix A

for definition) have many nice properties and find an operational interpretation in many

applications [96,97].

Other quantities of interest that will appear along the text are the conditional von-

Neumann entropy, H(A|E)ρ, and the conditional collision entropy H2(A|E)ρ. They are

particular cases of the one-parameter family of entropies called sandwiched conditional

Réyni entropies, first defined in Ref. [98].

Definition 4. For any density operator ρAE and for α ∈ [1
2
, 1)∪ (1,∞) the sandwiched

α-Réyni entropy of A conditioned on E is defined as

Hα(A|E)ρ :=
1

1− α
log

(
Tr
[(
ρ

1−α
2α
E ρAEρ

1−α
2α
E

)α])
, (16)

where ρ
1−α
2α
E is a short notation for IA ⊗ ρ

1−α
2α
E .

A variant can also be defined as

H↑α(A|E)ρ := sup
σE∈S

1

1− α
log

(
Tr
[(
σ

1−α
2α
E ρAEσ

1−α
2α
E

)α])
, (17)

where S denotes the set of quantum states and the supremum is taken over density

operators σE.

The min- and max- entropy correspond to the extremal cases of definition (17) for

α = ∞ and α = 1
2

respectively. For α → 1, definition (16) and (17) coincide and one

recover the standard conditional von-Neumann entropy. Properties of the conditional

α-Réyni entropies are presented in Appendix A.

4.2. Security of DIQKD

In order to determine what it means for a DIQKD protocol to be secure, we adopt

the security definition used in [39]. This security definition follows the universally

composable security definition for standard QKD protocols [40]. However it is important

to note that for the device-independent case composability was never proved and attacks
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proposed in Ref. [41] show that composability is not achieved if the same devices are

re-used for generation of a subsequent key.

In the composably secure paradigm, the security of a protocol is defined in terms

of its distance to an ideal protocol [40, 99]. Following this definition, given a protocol

described by the completely positive and trace preserving (CPTP) map diqkdreal, we

say that the protocol is εsDIQKD-secure for any εsDIQKD ≥ ε if:

ε :=
1

2
‖diqkdreal − diqkdideal‖� (18)

= sup
ρABE

1

2
‖diqkdreal(ρABE)− diqkdideal(ρABE)‖1. (19)

Expression (19) can be split into two terms that reflect independently the

correctness and the secrecy of the protocol (see [40]), given by Definitions 1 and 2.

Correctness is the statement that Alice and Bob share equal strings of bits at the end

of the protocol. And secrecy states how much information the eavesdropper can have

about their shared key.

Another requirement for a good DIQKD protocol is that there exist a realistic

implementation that do not lead the protocol to abort almost all the time, i.e., the

protocol should have some robustness. This is captured by the concept of completeness.

Definition 5 (Security). A DIQKD protocol is (εsDIQKD, ε
c
DIQKD, l)-secure if

(i) (Soundness) For any implementation of the protocol, either it aborts with probability

greater than 1−εsDIQKD or an εsDIQKD-correct-and-secret key of length l is obtained.

(ii) (Completeness) There exists an honest implementation of the protocol such that the

probability of not aborting, p(Ω), is greater than 1− εcDIQKD.

The correctness of the final key is ensured by the error correction step. During

error correction, Alice sends to Bob a sufficient amount of information so that he can

correct his raw key. If Alice and Bob do not abort in this step, then the probability

that they end up with different raw keys is guaranteed to be very small. For the

secrecy of the protocol, according to Definition 2, one needs to estimate how far the

final state describing Alice’s key and the eavesdropper system is from a state where

the eavesdropper is totally ignorant about Alice’s key, see Eq. (4). The formal security

proof of quantum key distribution became possible due to the quantum Leftover Hashing

Lemma [48, 100] that quantifies the secrecy of a protocol as a function of a conditional

entropy of the state before privacy amplification and the length of the final key.

Theorem 4 (Leftover Hashing Lemma ( [48], Theorem 5.5.1)). Let ρAn1E be a classical-

quantum state and let H be a 2-universal family of hash functions, from {0, 1}n to

{0, 1}l, that maps the classical n-bit string An1 into KA. Then

‖ρKAHE − τKA ⊗ ρHE‖1 ≤ 2−
1
2(H↑2 (An1 |E)ρ−l). (20)

For the proof of the Leftover Hashing Lemma we refer to Ref. [48]. In Ref. [48],

it was shown that the Leftover Hashing lemma can also be formulated in terms of the
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smooth min-entropy, and the price to pay is only a linear term in the security parameter].

Theorem 5 (Leftover Hashing Lemma with smooth min-entropy [11, 48]). Let ρAn1E
be a classical-quantum state and let H be a 2-universal family of hash functions, from

{0, 1}n to {0, 1}l, that maps the classical n-bit string An1 into KA. Then

‖ρKAHE − τKA ⊗ ρHE‖1 ≤ 2−
1
2(Hε

min(An1 |E)ρ−l) + 2ε. (21)

Given the Leftover Hash Lemma, stated in Theorems 4 and 5, and the definition of

secrecy, Definition 2, we can now express the length of a secure key as a function of the

entropy of Alice’s raw key conditioned on Eve’s information before privacy amplification.

Theorem 6 (Key length). Let p(Ω) be the probability that the DIQKD protocol does not

abort for a particular implementation. If the length of the key generated after privacy

amplification is given by

l = H↑2 (An1 |E)ρ|Ω − 2 log
(

1

2εPA

)
. (22)

then the DIQKD protocol is εPA-secret.

We can also express the key length in terms of the smooth min-entropy, where if l

satisfies

l = H
εs/p(Ω)
min (An1 |E)ρ|Ω − 2 log

(
p(Ω)

2εPA

)
(23)

≥ H
εs/p(Ω)
min (An1 |E)ρ|Ω − 2 log

(
1

2εPA

)
, (24)

then the DIQKD protocol is εPA + εs-secret.

We see that the leftover hashing lemma expressed in terms of smooth min-entropy

only leads to an extra εs term in the security parameter. However, the smooth

min-entropy can be much larger than the 2-Rényi entropy H↑2 and, therefore, it is

advantageous to lower bound the key by the smooth min-entropy.

4.3. Security analysis

In the previous section we have seen that in order to determine the length of a secret

key generated by a particular protocol one needs to estimate the (smooth-min or 2-

Rényi) entropy of Alice’s string conditioned on all the information available to the

eavesdropper before privacy amplification. Now, in order to estimate this quantity for

a DIQKD protocol one faces two main challenges:

• How to evaluate the entropy of a very long string of bits?

• How to evaluate the one-round entropy in the device-independent scenario?

] In Ref. [48], the leftover hash lemma was formulated with the smooth min-entropy defined as a

supremum over states that are ε-close to ρ in the trace norm. The proof of Theorem 5, with the smooth

min-entropy defined according to Definition 4, can be found in Ref. [11].
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In Section 4.3.1 we present the theoretical tools that allow to reduce the problem of

evaluating the entropy of a string of bits to the evaluation of a single round. Moreover, in

the DI scenario we do not want to make any assumptions over the underlying quantum

state and measurement devices. In Section 4.3.2 we present a tight bound derived

in [16,27] for the one round conditional von Neumann entropy of protocols where Alice

and Bob test the CHSH inequality. Moreover we explore further this bound to prove a

tight bound on the single round conditional collision entropy as a function of the CHSH

violation.

4.3.1. Reducing the problem to the estimation of one round. We now present the

techniques that allow to reduce the evaluation of the entropy H
εs/p(Ω)
min (An1 |E)ρ|Ω to

the estimation of the conditional von Neumann entropy of a single round for the

two adversarial scenarios under consideration, collective attacks and coherent attacks.

Moreover, for the IID scenario, i.e. when the eavesdropper is assumed to be restricted

to collective attacks, we show how to break the analysis of the entropy H↑2 (An1 |E)ρ|Ω into

single rounds evaluation.

The IID scenario (collective attacks). When we restrict the eavesdropper to collective

attacks, we are assuming that, even though she can perform an arbitrary operation in

her quantum side information, the state distributed by the source and the behavior of

Alice’s and Bob’s devices are the same in every round of the protocol. This implies

that after n rounds, the state shared by Alice, Bob and Eve is ρAn1Bn1E = ρ⊗nABE. In this

case, the quantum asymptotic equipartition property (AEP) [60] allows to break the

conditional smooth min-entropy of state ρ⊗nAE into n times the conditional von Neumann

entropy of the state ρAE.

Theorem 7 (Asymptotic equipartition property [60]). Let ρ = ρ⊗nAE be an i.i.d. state.

Then for n ≥ 8
5

log 2
ε2

Hε
min(An1 |En

1 )ρ⊗nAE
≥ nH(A|E)ρAE −

√
n δ(ε, η) (25)

and similarly

Hε
max(An1 |En

1 )ρ⊗nAE
≤ nH(A|E)ρAE +

√
n δ(ε, η) (26)

where δ(ε, η) = 4 log η
√

log 2
ε2

and η =
√

2−Hmin(A|E)ρAE +
√

2Hmax(A|E)ρAE + 1.

The quantum AEP is a generalization to quantum systems of the classical statement

that, in the limit of many repetitions of a random experiment, the output sequence is

one from the typical set. Therefore, under the assumption of collective attacks, the

quantum AEP reduces the problem of estimating the key rate of a string of n bits to

the problem of bounding the one-round conditional von Neumann entropy. We remark

that the AEP implies an additional term, proportional to
√
n, which is significant for

the finite regime analyses.
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In Section 4.2, we have seen that the left-over hashing lemma can also be stated

in the terms of the 2-Réyni conditional entropy H↑2 (A|E)ρ. A useful property of the

conditionalH↑α entropies is additivity [96] (see Appendix A Property 1(ii)), which implies

the following lemma.

Lemma 1. Let ρ = ρ⊗nAE be an i.i.d. state. Then

H↑2 (An1 |En
1 )ρ⊗nAE

= nH↑2 (A|E)ρAE ≥ nH2(A|E)ρAE , (27)

where H2(A|E)ρAE is denoted collision entropy.

Validity of Lemma 1 can be seen from the following: equality in (27) follows from

the additivity property of H↑α entropies, Property 1(ii) in Appendix A, and the inequality

follows from the definition of α-Rényi entropies, Definition 4.

Therefore, for collective attacks one can break the analysis into the evaluation of

a single-round entropy by using both, the formulation of the left-over hashing lemma

in terms of the smooth-min entropy, Theorem 5, and in terms of the 2-Rényi entropy,

Theorem 4. The possible advantage of using Lemma 1 over the AEP, Theorem 7, is that

no extra overhead term O(
√
n) is gained due to the additive property of the 2-Réyni

conditional entropy H↑2 (A|E)ρ. However, in general the von Neumann entropy can be

much larger than the collision entropy, and this trade-off has to be taken into account.

We remark that, for protocols based on other Bell inequalities, the techniques used for

deriving Theorem 3 can be advantageous for collective attack analysis. This is due to

the fact that for other Bell inequalities there is no known technique to directly bound

the conditional von-neumann entropy and a good bound on the min-entropy can be

found using semidefinite-programming techniques (see Section 4.3.2).

The fully DI scenario (coherent attacks). In the fully device-independent scenario the

eavesdropper can perform a general coherent attack, and the state shared by the parties

may not be of the form ρ⊗nABE. Therefore, the tools presented in the previous section are

not applicable in this scenario. In standard QKD, de Finetti techniques [47,48,50] allow

one to extend the proofs against collective attacks to coherent attacks for protocols

that present some symmetry. The price to pay is an overhead term O(
√
n) whose

pre-factor depends on the dimension of the underlying system. However, in the device-

independent scenario, we do not want to make assumptions on the dimension of the

underlying system. Moreover, symmetry of the protocol is not guaranteed, as we do

not know the behaviour of the measurement devices. Therefore, de Finetti techniques

cannot be used to straightforwardly extend the security proofs against collective attacks

to coherent attacks in the device-independent scenario.

Recently, this problem was overcome by the entropy accumulation theorem (EAT)

[1,51]. In this section, we state the entropy accumulation theorem, which allows to break

the entropy H
εs/p(Ω)
min (An1 |E)ρ|Ω into the entropy of single rounds and therefore extends

proofs against collective attacks to coherent attacks.
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An important ingredient in the formulation of the EAT is the concept of

min-/max-tradeoff function of a channel.

Definition 6. Let Ni be a CPTP map that maps Ri−1 to ÂiB̂iCiRi, where Âi, B̂i and Ci
are classical registers and the value of Ci can be inferred from Âi and B̂i. Let ~q denote a

probability distribution on the possible values the random variable Ci can assume. The

min- and max-tradeoff functions for the channel Ni are defined as:

fmin(~q) ≤ inf
σ∈Σi(~q)

H(Âi|B̂iR)σ, (28)

fmax(~q) ≥ sup
σ∈Σi(~q)

H(Âi|B̂iR)σ, (29)

where

Σi(~q) =
{
σCiÂiB̂iRiR = (Ni ⊗ IR)(ωRi−1R)|σCi = ~q

}
, (30)

and the infimum and supremum are set to +∞,−∞, respectively, if the set Σi(~q) is

empty.

Definition 6 states that the min-(max-)tradeoff function is a lower (upper) bound

on the conditional von Neumann entropy H(Âi|B̂iR)σ of a final state σCiÂiB̂iRiR, for

all states that result from the action of the channel Ni on an arbitrary initial state

and exhibit a particular distribution ~q over the classical variable Ci, where R is a

side information. In particular, for a DIQKD protocol, where we are testing the

CHSH inequality, the variable Âi can be the outputs of Alice and Bob in round i,

Â = {Ai, Bi}. The variable B̂i can be the inputs of Alice and Bob together with the

variable that determines whether the round is a test round or a key generation round,

B̂i = {Xi, Yi, Ti}. And R can represent any quantum side information E that the

eavesdropper holds. We will then be interested in defining a variable Ci that assumes

value 1 if the condition of the CHSH game is satisfied (i.e. if the outputs of Alice and

Bob satisfy Ai +Bi = Xi · Yi), 0 if it is not satisfied and we attribute the value ⊥ if the

inequality was not tested in that round (i.e. if Ti = 0, the key generations rounds). Now

the distributions ~q = (q(0), q(1), q(⊥)) of interest are the ones that achieve a winning

probability ω for the CHSH game, i.e. q(1)
1−q(⊥)

= ω. The EAT channel Ni represents

local maps that, according to the value of Ti, generate the variables Xi, Yi randomly

and independently, and then generate the outcomes Ai and Bi. Finally, the set of states

Σi(~q) of interest are all the states resulting from the action of this channel in an arbitrary

state and exhibiting a violation β = 8ω−4 for the CHSH inequality. For a more detailed

description of the EAT channel associated to Protocol 1, we refer the reader to [1, 39].

We now state the entropy accumulation theorem.

Theorem 8 (The entropy accumulation theorem (EAT) [51]). For an event Ω that

happens with probability p(Ω), and for t such that fmin(freq(cn1 )) ≥ t ∀ cn1 ∈ Ω, it holds

that

Hε
min(An1 |Bn

1E)ρ|Ω > nt− ν
√
n (31)
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and similarly, for t′ such that fmax(freq(cn1 )) ≤ t′ ∀ cn1 ∈ Ω,

Hε
max(An1 |Bn

1E)ρ|Ω < nt′ + ν
√
n (32)

with

ν = 2 (log (1 + 2dA) + d‖∇f‖∞e)
√

1− 2 log (εs · p(Ω)) (33)

for f equals to fmin and fmax respectively .

Analogous to the AEP, the entropy accumulation theorem allows us to break the

entropy of the string of bits into the entropy of a single round. Note, however, that this

single-round entropy does not refer to the real entropy of each round of the protocol, but

is evaluated over the hypothetical states that would achieve the observed violation. It

is important to remark that a crucial assumption in the EAT [1,51] is that some of the

variables of interested satisfy what is called the Markov condition. This is the case for

QKD protocols performed sequentially. For definition and discussion of the implications

of the Markov condition, see [51].

4.3.2. Estimating the one-round entropy. Now that we have reduced the evaluation

of the secret key length to the estimation of the conditional von Neumann entropy of

a single round, we are ready to face the next challenge: How to estimate the single

round entropy without any assumptions on the quantum states and behavior of the

measurement devices.

The CHSH scenario: The CHSH scenario [37], where Alice and Bob each perform

one among two possible binary measurements, is significantly simpler than other Bell

scenarios. Due to the fact that the CHSH inequality has only two binary inputs per

party, a strong result [101, 102] states that the description of any realization of a

CHSH experiment can be decomposed into subspaces of dimension two, where projective

measurements are performed in each subspace. This allows one to restrict the analysis

to qubits, which significantly simplifies the problem. Exploring these nice properties,

a tight bound on the von Neumann entropy of Alice’s outcome conditioned on Eve’s

information, as a function of the CHSH violation, was derived in [16,27].

Lemma 2. Given that Alice and Bob share a state ρAB that achieves a violation β for

the CHSH inequality, it holds that

H(A|E)ρ ≥ 1− h

1

2
+

1

2

√√√√(β
2

)2

− 1

 . (34)

In Section 4.3.1 we have seen that for collective attacks the key rate can also be

estimated by the single round collision entropy. And due to the additivity property of

H↑2 , no overhead
√
n term is present. Therefore, this analysis can potentially lead to

an advantage with respect to the minimum number of rounds required for positive key

rate. The conditional collision entropy satisfies the following relation [96, Corollary 5.3]

H2(A|E)ρ ≥ Hmin(A|E)ρ. (35)
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And a lower bound for the conditional min-entropy as a function of the Bell violation

was derived in [103]:

Hmin(A|E)ρ ≥ − log

1

2
+

1

2

√
2− β2

4

 . (36)

Therefore expression (36) can be used to bound the conditional collision entropy as

a function of the violation β. We now prove that this bound is actually tight.

Theorem 9. There exist a state ρ∗AB and measurements for Alice and Bob such that,

ρ∗AB achieves violation β and the collision entropy of Alice’s output A conditioned on

Eve’s quantum information E is

H2(A|E)ρ∗ = − log

1

2
+

1

2

√
2− β2

4

 . (37)

The proof of Theorem 9 is presented in Appendix C. Theorem 9 together with

relations (35) and (36) imply a tight lower bound for the conditional collision entropy

as a function of the CHSH violation β. In Figure 4.3.2 we plot H(A|E) and H2(A|E) as

a function of the violation β. One can see that the points of maximum and minimum

entropy (corresponding to maximal violation β = 2
√

2 and no violation, respectively)

coincide, but for intermediate values of β the conditional collision entropy is smaller

than the conditional von Neumann entropy.
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Figure 7. Graph illustrating

the difference of the conditional

von Neumann entropy H(A|E) and

the conditional collision entropy

H2(A|E) as a function of the

CHSH violation β.

Other Bell inequalities and the min-entropy estimation: The use of different Bell

inequalities has proved to be advantageous in different taks. For example, a tilted

CHSH inequality was used to certify maximal randomness in states arbitrarily close

to separable [104], and inequalities with more inputs and outputs have shown to

exhibit higher noise robustness [105]. Therefore it is natural to ask whether other

Bell inequalities can also bring advantage to the task of device-independent quantum

key distribution.

By considering an arbitrary Bell inequality, one faces the problem that the

techniques used to bound the conditional von Neumann entropy as a function of the

CHSH violation do not apply. Indeed, the proof of Lemma 2 is highly based on the fact

that one can reduce the analysis to qubits. In fact, very few results are known on tight

bounds for the conditional von Neumann entropy as a function of the Bell violation for
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other inequalities. In [106] a bound was derived for a family of inequalities denoted

measurement-device-dependent inequalities [107], which are very suitable for the task

of randomness amplification. In [108] a tight bound was derived as a function of the

violation of the multipartite MABK inequality [109–111]. However in these two cases

the proof is based on a reduction to the CHSH inequality.

In general, the conditional von Neumann entropy can be lower bounded by the

conditional min-entropy

H(A|E)ρ ≥ Hmin(A|E)ρ. (38)

The advantage of looking at the conditional min-entropy is that it can be computed

as a function of the Bell violation by a semi-definite programming [103]. The idea is

that in order to estimate the min-entropy one can upper bound the guessing probability,

pguess (see Eq. (13)), of the eavesdropper. This problem can then be expressed as an

optimization over probability distributions, which is exactly the information available

in the device-independent scenario. As shown in Ref. [103], for any Bell inequality, an

upper bound on the pguess can be obtained by a semidefinite programming making use

of the NPA-hierarchy [112,113].

Lower bounding the conditional von-Neumann entropy by the min-entropy might

be far from optimal. For example, for the CHSH inequality we have that the conditional

von Neumann entropy as a function of the violation is much larger than the conditional

min-entropy, as illustrated in Fig. 7 (recall that, in Theorem 9, Hmin(A|E)ρ was shown

to be a tight bound on H2(A|E)ρ as a function of the CHSH violation). By making use

of the tight bound on the conditional von Neumann entropy, eq. (34), one can prove

security for DIQKD up to 7.1% of QBER [16], whereas using the min-entropy, eq. (36),

security can only be guaranteed up to a QBER of 5.2% [103].

It is still an open problem whether any other Bell inequality can lead to better

performance for DIQKD than the CHSH inequality. Recently, an extensive analysis of

the performance of different Bell inequalities for the task of randomness expansion was

presented in [114].

4.3.3. Key rates. The techniques presented in Sections 4.3.1 and 4.3.2 allows us to

establish the length of a secure key that can be extracted as a function of the CHSH

violation β and QBER Q.

For coherent attacks, the entropy accumulation theorem (Theorem 8) and the tight

lower bound on the conditional von Neumann entropy (Lemma 2) are the key tools to

establish Theorem 1. The complete proof of Theorem 1 includes several intermediate

steps, and is presented in details in Appendix B.3.

For collective attacks, the key ingredients to derive Theorem 2 are the asymptotic

equipartition property (Theorem 7) and Lemma 2. A detailed proof of Theorem 2 is

presented in Appendix B.1. We have also presented a different technique of breaking the

entropy of Alice’s string into the entropy of single rounds in the IID scenario, namely by

making use use of the additivity of 2-Réyni entropy, Lemma 1. This technique, together
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with Theorem 9 leads to Theorem 3. A detailed proof of Theorem 3 can be found in

Appendix B.2.
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Appendix A. Definitions

In this Appendix we present some properties of the conditional sandwiched α-Réyni

entropies [98], Definition 4, and the smoothed entropies that are used for the security

proof.

Properties 1. The conditional α-Rényi entropies satisfy:

(i) Data processing ( [96] Corollary 5.1): Let τAB′ = IA ⊗ EB(ρAB), where EB is a

CPTP(B,B′) channel, then

Hα(A|B)ρ ≤ Hα(A|B′)τ and H↑α(A|B)ρ ≤ H↑α(A|B′)τ . (A.1)

(ii) Additivity ( [96] Corollary 5.2): For ρAB ⊗ τA′B′ it holds that

H↑α(AA′|BB′)ρ⊗τ = H↑α(A|B)ρ +H↑α(A′|B′)τ . (A.2)

(iii) Entropy of classical information( [96] Lemma 5.3): For ρABX classical in X

Hα(XA|B)ρ ≥ Hα(A|B)ρ and H↑α(XA|B)ρ ≥ H↑α(A|B)ρ. (A.3)

(iv) Conditioning on classical information (see [96] Lemma 5.4): For ρABX
classical in X,

H↑α(A|XB) ≥ H↑α(A|B)− log (rank(ρX)) (A.4)

≥ H↑α(A|B)− log |X|, (A.5)

where rank(ρX) is the rank of matrix ρX and |X| is the dimension of system X.

(v) Conditioning on classical information (see [96] Proposition 5.1): Let ρABX =∑
x pxρ

x
AB ⊗ |x〉〈x| then,

Hα(A|BX)ρ =
1

1− α
log

(∑
x

p(X = x)2((1−α)Hα(A|BX=x)ρ)

)
, (A.6)

H↑α(A|BX)ρ =
α

1− α
log

(∑
x

p(X = x)2( 1−α
α
H↑α(A|BX=x)ρ)

)
. (A.7)

And for the conditional von Neumann it holds that

H(A|BX)ρ =
∑
x

p(X = x)H(A|BX = x)ρ. (A.8)

https://www.its.caltech.edu/~phfaist/entropyzoo
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In Property 1.(iv), the relation H↑α(A|XB) ≥ H↑α(A|B)− log |X| was stated in [96].

We remark that the middle inequality follows from the fact that H↑α(A|XB) is invariant

under local isometries. Therefore if X ′ = V(X) is a full rank operator where V(·) is an

isometry, we have that

H↑α(A|XB) = H↑α(A|X ′B) ≥ H↑α(A|B)− log |X ′| (A.9)

and since V(·) is an isometry |X ′| = rank(ρX).

The min- and max- entropy are the particular extreme cases of H↑α for α =∞ and

α = 1
2

respectively. For α → 1 one recovers the standard conditional von-Neumann

entropy. The smoothed min- and max-entropies are defined as an optimization over

operators that are ε-close, in the purified distance, to the state of interest. This

optimization takes into account also operators that are sub-normalized, i.e. positive

operators with trace smaller than 1.

Definition 7 (Smoothed entropies [96]). Let ρAB be a quantum state and ε ≥ 0. The

smooth min-entropy of system A conditioned on B is defined as

Hε
min(A|B)ρ = max

ρ̃AB∈Bε(ρAB)
Hmin(A|B)ρ̃. (A.10)

The smooth max-entropy is

Hε
max(A|B)ρ = min

ρ̃AB∈Bε(ρAB)
Hmax(A|B)ρ̃. (A.11)

In Definition 7, Bε(ρAB) is an ε-ball of sub-normalized operators around state ρAB
defined in terms of the purified distance.

Definition 8 (Purified distance [96]). For sub-normalized positive operators X and Y ,

i.e. X, Y ≥ 0 and Tr(X) ≤ 1,Tr(Y ) ≤ 1, the purified distance is given by

D(X, Y ) =
√

1− F∗(X, Y ), (A.12)

where F∗(·, ·) is the generalized fidelity, defined as

F∗(X, Y ) =
(

Tr |
√
X
√
Y |+

√
(1− Tr ρ)(1− Tr(Y ))

)2

. (A.13)

The smoothed entropies satisfy several chain rules. Some of them are stated below.

A more complete list of chain rule relations can be found in [96,115].

Properties 2 (Chain rules for the smooth min-entropy). The smooth min-entropy

satisfy the following relations

(i) For a quantum state ρABC,

Hε
min(A|BC)ρ ≥ H

ε
4
min(AB|C)ρ −H

ε
4
max(B|C)ρ (A.14)

− 2 log

1−
√

1−
(
ε

4

)2
 .
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(ii) If X is a classical register and ρABX a quantum-quantum-classical state, it holds

that††

Hε
min(A|XB)ρ ≥ Hε

min(A|B)ρ − log (rank(ρX)) , (A.15)

where rank(ρX) is the rank of state ρX .

A fully contained overview with properties and relations between different entropies

can be found in [96] (see also, [116]).

Appendix B. Security proof

According to Definition 5, a security proof of a DIQKD protocol consists in completeness

and soundness. We start by proving completeness of Protocols 1 and 2.

Theorem 10 (Completeness). The DIQKD protocols in consideration, Protocols 1 and

2 are εcDIQKD complete, with

εcDIQKD ≤ εcEC + εest + εEC . (B.1)

Proof. The protocols in consideration can abort in two steps. Either because the error

correction fail, or because the estimated Bell violation is not high enough. Let us

consider an honest implementation consisting of IID rounds where the expected winning

CHSH probability is ωexp.

p(abort) = p((EC abort) or (EC does not abort and Bell test fail))

≤ p(EC abort) + p(EC does not abort and Bell test fail)

Now, the probability that the error correction protocol abort for an honest

implementation is p(EC abort) ≤ εcEC . And for the other term we have

p(EC does not abort and Bell test fail)

= p(KA = KB)p(
∑
i

Ci <
∑
i

Ti × (ωexp − δest) |KA = KB)

+ p(KA 6= KB)p(
∑
i

Ci <
∑
i

Ti × (ωexp − δest) |KA 6= KB)

≤ εest + εEC ,

where εest = e−2γn(δest)2
follows from Hoeffding’s inequality.

For the soundness proof we have to evaluate correctness and secrecy, Definitions 1

and 2. For an error correction protocol with error parameter εEC we have that given

that the error correction protocol does not abort, the probability that the string B̃ after

error correction is equal to An1 with probability higher than 1− εEC and consequently

P (KA 6= KB) ≤ εEC . (B.2)

†† In [96] relation Hε
min(A|XB)ρ ≥ Hε

min(A|B)ρ− log |X| was proved. Relation (A.15) with the rank of

ρX follows as pointed out in Property 1.(iv).
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For the secrecy let us recall that, for each considered Protocol, Ω is defined as

the event that the respective protocols do not abort. That happens when the error

correction protocol does not abort and they achieved the required violation of CHSH

according to Bob’s estimation of Alice’s string. Now, let us the define the event Ω̂ as

the event Ω of the Protocol not aborting and the error correction being successful, i.e.

B̃n
1 = An1 . Now the quantity we need to estimate for the secrecy, relates to the event Ω̂

by

‖ρKAE |Ω − τKA ⊗ ρE‖1
≤ ‖ρKAE |Ω − ρKAE |Ω̂‖1

+ ‖ρKAE |Ω̂ − τKA ⊗ ρE‖1

≤ εEC + ‖ρKAE |Ω̂ − τKA ⊗ ρE‖1
(B.3)

which follows from the fact that, since when error correction succeeds, the probability

of B̃n
1 = An1 is higher than (1 − εEC) then the following operator inequality holds:

ρKAE |Ω ≥ (1− εEC)ρKAE |Ω̂.

In the following, we proceed to evaluate ‖ρKAE |Ω̂ − τKA ⊗ ρE‖1
in order to prove

Theorems 1, 2 and 3.

Appendix B.1. Proof of Theorem 2

In this Appendix we present the proof of Theorem 2, that determines the size of a

secret key one can extract from Protocol 2 under the assumption that the eavesdropper

is restricted to collective attacks. Importantly, Theorem 2 is based on the asymptotic

equipartition property, Theorem 7, in order to break the entropy of the n rounds into

the one-round entropy.

The collective attacks assumption implies that in each round of the protocol the

state distributed to Alice and Bob is the same, as well as their devices function in the

same way, i.e. the rounds are independent and identically distributed (IID). Therefore

the state shared between Alice, Bob and Eve after Alice and Bob measure their raw

keys is described by a tensor product form ρ⊗nABE.

The asymptotic equipartition property (AEP) [60], Theorem 7, states that the

smooth min-entropy of a tensor product of states is almost equivalent (up to terms of

order of
√
n) to n times the von-Neumann entropy of an individual system. We now

make use of the quantum AEP to derive the length of a secure key that one can achieve

for Protocol 2.

As established by the leftover hashing lemma, Theorem 5, the maximal length of a

secure key is determined by the smooth min-entropy of Alice’s raw key conditioned on

all information available to the eavesdropper, given that the protocol did not abort. In

the case of Protocol 2, it is given by

H
εs
p(Ω)

min (An1 |Xn
1 Y

n
1 T

n
1 EOEC)ρ|Ω̂ . (B.4)

Here we recall that OEC is the information exchanged by Alice and Bob during the error

correction protocol. T n1 , X
n
1 , Y

n
1 are, respectively, the variable that determines whether

the round is a test or a key generation round, and Alice and Bob’s inputs, which are

communicated publicly. Ω̂ is the event that error correction protocol succeeds, i.e.
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KA = KB and the CHSH probability estimated by Bob is ω ≥ ωexp − δest. In the

following we describe the steps to estimate (B.4).

Step 1: Accounting for the leakage in the error correction.

Using the chain rule relation for the smooth min-entropy conditioned on classical

information, Property 2(ii), we have

H
εs
p(Ω)

min (An1 |Xn
1 Y

n
1 T

n
1 EOEC)ρ|Ω̂ ≥ H

εs
p(Ω)

min (An1 |Xn
1 Y

n
1 T

n
1 E)ρ|Ω̂ − leakEC , (B.5)

where leakEC = rank(ρOEC
) represents the minimum amount of classical information

that needs to be communicated from Alice to Bob in order to perform error correction†.
We consider that Alice and Bob use a protocol based on universal hashing which has

minimum leakage [117]. In [118] it was proved that the minimum leakage is given by

leakEC ≤ H
ε′EC
0 (An1 |Bn

1X
n
1 Y

n
1 T

n
1 ) + log

(
1

εEC

)
, (B.6)

where, if Alice and Bob do not abort, then KA = KB with probability at least 1− εEC .

And for an honest implementation, the error correction protocol aborts with probability

at most εcEC = ε′EC + εEC . Here H0 is a Rényi entropy first introduced in Ref. [48] (in

Ref. [96], it is denoted H̄↑0 ). The entropy Hε
0, relates to the smooth max-entropy in the

following way [100, Lemma 18],

H
ε′EC
0 (An1 |Bn

1X
n
1 Y

n
1 T

n
1 ) ≤ H

ε′
EC
2

max (An1 |Bn
1X

n
1 Y

n
1 T

n
1 ) (B.7)

+ log

(
8

ε′2EC
+

2

2− ε′EC

)
.

We now can use of the Asymptotic equipartition property, Theorem 7, to decompose

(B.7) into the sum of the entropy of single rounds. Moreover, for an honest

implementation with winning CHSH probability ωexp and QBER Q we have that

for the test rounds H(A|BXY T = 1) = h(ωexp) and for the key generation rounds

H(A|BXY T = 0) = h(Q). Therefore the one round entropy is given by

H(A|BXY T ) = p(T = 0)H(A|BXY T = 0) + p(T = 1)H(A|BXY T = 1)

= (1− γ)h(Q) + γh(ωexp), (B.8)

where in the first equality we have use Property 1(v).

Therefore, the leakage due to error correction is given by

leakEC ≤ n((1− γ)h(Q) + γh(ωexp)) +
√
n

(
4 log

(
2
√

2 + 1
)√

log
8

ε′2EC

)

+ log

(
8

ε′2EC
+

2

2− ε′EC

)
+ log

(
1

εEC

)
. (B.9)

† Note that in a realistic implementation Alice might send the error correction information using an

encoding in order to overcome errors in the transmission due to channel losses. Therefore, in general

ρOEC
may not be full rank.
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Step 2: Breaking the entropy into single rounds.

We now can use the asymptotic equipartition property in order to bound

H
εs
p(Ω)

min (An1 |Xn
1 Y

n
1 T

n
1 E)ρ|Ω . The assumption of collective attacks implies that the state

under consideration has the tensor product form and therefore

H
εs
p(Ω)

min (An1 |Xn
1 Y

n
1 T

n
1 E)ρ|Ω̂ ≥ nH(A|XY TE)ρ|Ω̂ −

√
nδ(εs, η), (B.10)

where δ(εs, η) and η are specified in Theorem 7.

For the scenario under consideration we have

η ≤ 2
√

2Hmax(A|XY TE)ρ + 1 ≤ 2
√

2 + 1. (B.11)

The first inequality follows from the fact that A is a classical register and

therefore has positive conditional min-entropy, which implies −Hmin(A|XY TE)ρ ≤
Hmin(A|XY TE)ρ ≤ Hmax(A|XY TE)ρ. The second inequality follows from the fact

that since A is a binary variable Hmax(A|XY TE)ρ ≤ 1. Therefore,

δ(εs, η) ≤ 4 log
(
2
√

2 + 1
)√√√√log

(
2

ε2s

)
. (B.12)

Step 3: Estimating the one-round entropy.

Now it only remains to lower bound H(A|XY TE)ρ|Ω̂ . Lemma 2 states the tight lower

bound for the conditional von-Neumann entropy as a function of the winning probability

ω for the CHSH game derived in [16, 39]. Using this bound we have that if ρ is a state

that achieves winning probability ω then

H(A|XY TE)ρ|Ω̂ ≥ 1− h
(

1

2
+

1

2

√
16ω(ω − 1) + 3

)
. (B.13)

Now, Protocol 2 aborts if the observed frequency of winning events is smaller than

ωexp − δest. Therefore, given the event Ω̂ that Protocol 2 does not abort and KA = KB,

we have that Alice and Bob observe a violation higher than ωexp− δest. Now we need to

take into account that the CHSH violation is estimated with a finite number of rounds.

So in order to infer the real winning probability ω∗ of the IID implementation, we

can make use of the Hoeffding’s inequality in order to define a confidence interval: If

ω∗ < ωexp − δest − δcon then

Prob (ωobserved ≥ ωexp − δest) ≤ e−2γn(δcon)2

:= εcon. (B.14)

Therefore, given that Alice and Bob do not abort the protocol, we infer that the expected

winning probability of the system under consideration is higher than ωexp − δest − δcon,

and therefore

H(A|XY TE)ρ|Ω̂ ≥ (B.15)

1− h
(

1
2

+ 1
2

√
16(ωexp − δest − δcon)((ωexp − δest − δcon)− 1) + 3

)
.
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Putting the results of these steps together we have that either Protocol 2 aborts

with probability higher than 1 − (εcon + εEC), or the probability of aborting is smaller

than (εcon+ εEC) and a (2εEC + εs+ εPA)-correct-and-secret key can be generated of size

l ≥ n
[
1− h

(
1

2
+

1

2

√
16(ωexp − δest − δcon)((ωexp − δest − δcon)− 1) + 3

)
− (1− γ)h(Q)− γh(ωexp)

]
(B.16)

−
√
n

(
4 log

(
2
√

2 + 1
)(√

log
2

ε2s
+

√
log

8

ε′2EC

))

− log

(
8

ε′2EC
+

2

2− ε′EC

)
− log

(
1

εEC

)
− 2 log

(
1

2εPA

)
.

This establishes Theorem 2.

Appendix B.2. Proof of Theorem 3

We now present the proof of Theorem 3, that determines the size of a secret key one

can extract from Protocol 2 for collective attacks, but differently from Theorem 2, we

now use the additivity property of the 2-Rényi entropy, Lemma 1, in order to break the

entropy of the string into the one-round entropy.

We are now interested in estimate the length of a secure key as established in

Theorem 4, which is given by

H↑2 (An1 |Xn
1 Y

n
1 T

n
1 EOEC)ρ|Ω̂ . (B.17)

As in Appendix B.1 we now present the steps that lead to the proof of Theorem 3.

Step 1: Accounting for the leakage in the Error Correction.

Using Property 1(v), we have

H↑2 (An1 |Xn
1 Y

n
1 T

n
1 EOEC)ρ|Ω̂ ≥ H↑2 (An1 |Xn

1 Y
n

1 T
n
1 E)ρ|Ω̂ − leakEC , (B.18)

where leakEC = rank(ρOEC
) represents the minimum amount of classical information

that needs to be communicated from Alice to Bob in order to perform error correction.

Now the error correction leakage leakEC is the same as derived in Equation (B.9).

Step 2: Breaking the entropy into single rounds.

We can now make use the additivity property of 2-Réyni entropy, Lemma 1, in order

to bound H↑2 (An1 |Xn
1 Y

n
1 T

n
1 E)ρ|Ω̂ . The assumption of collective attacks implies that the

state under consideration has the tensor product form and therefore

H↑2 (An1 |Xn
1 Y

n
1 T

n
1 E)ρ|Ω̂ ≥ nH2(A|XY TE)ρ|Ω̂ , (B.19)

where now the single round entropy in consideration is the conditional collision entropy.
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Step 3: Estimating the one-round entropy.

Now it only remains to lower bound H2(A|XY TE)ρ|Ω̂ . Theorem 9 shows that a tight

lower bound for the conditional collision entropy as a function of the violation β coincides

with the previously derived conditional min-entropy [103], eq.(36). In terms of the

winning probability ω for the CHSH game we have

H2(A|XY TE)ρ|Ω̂ ≥ − log
(

1

2
+

1

2

√
16ω(1− ω)− 2

)
. (B.20)

Again, given that Alice and Bob do not abort the protocol, we infer that

the expected winning probability of the system under consideration is higher than

ωexp − δest − δcon, and

H2(A|XY TE)ρ|Ω̂ ≥ (B.21)

− log
(

1

2
+

1

2

√
16(ωexp − δest − δcon)(1− (ωexp − δest − δcon))− 2

)
In conclusion we have that, either Protocol 2 aborts with probability higher than

1 − (εcon + εEC), or the probability of not aborting is greater than (εcon + εEC) and a

(2εEC + εPA)-correct-and-secret key is generated of size:

l ≥ n
[
− log

(
1

2
+

1

2

√
16(ωexp − δest − δcon)(1− (ωexp − δest − δcon))− 2

)
− (1− γ)h(Q)− γh(ωexp)

]
(B.22)

−
√
n

(
4 log

(
2
√

2 + 1
)√

log
8

ε′2EC

)

− log

(
8

ε′2EC
+

2

2− ε′EC

)
− log

(
1

εEC

)
− 2 log

(
1

2εPA

)
.

This establishes Theorem 3.

Appendix B.3. Proof of Theorem 1

In this Appendix we present the proof of Theorem 1, which establishes the size of a

secure key that can be extracted from Protocol 1 for general coherent attacks. We

follow closely the proof developed in [1, 39].

In Protocol 1, the number of rounds is not fixed. Instead, Protocol 1 has a fixed

number of blocks m, such that the maximum number of rounds inside a block is set to

smax =
⌈

1
γ

⌉
. This is a technicality introduced in [1,39] in order to get a better pre-factor

for the overhead terms that scale with
√
n. For each block j Alice and Bob run the

protocol until they have a test round or they reach the maximum number of rounds smax.

At each round ji Alice and Bob choose a random bit Tji , such that P (Tji = 1) = γ,

which determines whether they are going to test the CHSH inequality or make a key

generation round. They repeat the process until they obtain Tji = 1 or i = smax. With

these constraints the expected number of rounds in a block is given by

s̄ =
1− (1− γ)d

1
γe

γ
, (B.23)
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and the expected number of rounds is

n = ms̄. (B.24)

For details on the derivation of equations (B.23) and (B.24) see Ref. [39, Appendix B]

We now proceed to derive the key rates against a general coherent attack. In order

to calculate the size of the key we need to estimate

H
εs
p(Ω)

min ( ~Am1 | ~Xm
1
~Y m

1
~Tm1 EO)ρ|Ω̂ . (B.25)

Now ~Am1 denotes the total string of bits, expected to be of size n, and ~Ai denotes the

string of outputs generated in the block i, and similarly for the other variables. In the

following, we proceed step by step in order to lower bound H
εs
p(Ω)

min ( ~Am1 | ~Xm
1
~Y m

1
~Tm1 EO)ρ|Ω̂

and we detail the changes introduced to the original analysis [1, 39].

Step 1: Accounting for the leakage in the error correction.

Similar to the proof of Protocol 2, we have that

H
εs
p(Ω)

min ( ~Am1 | ~Xm
1
~Y m

1
~Tm1 EO)ρ|Ω̂ ≥ H

εs
p(Ω)

min ( ~Am1 | ~Xm
1
~Y m

1
~Tm1 E)ρ|Ω̂ − leakEC ,(B.26)

and

leakEC ≤ H
ε′EC
0 ( ~Am1 | ~Bm

1
~Xm

1
~Y m

1
~Tm1 ) + log

(
1

εEC

)
(B.27)

≤ H
ε′
EC
2

max ( ~Am1 | ~Bm
1
~Xm

1
~Y m

1
~Tm1 ) (B.28)

+ log

(
8

ε′EC
2 +

2

(2− ε′EC)

)
+ log

(
1

εEC

)
.

However, now we need to take into account for the fact that the number of rounds in

the protocol is not fixed. Following the steps of Ref. [39], we first note that the number

of rounds N obtained in an implementation of the Protocol 1 satisfies:

P [N ≥ n+ t] ≤ exp

(
− 2t2γ2

m(1− γ)2

)
:= εt, (B.29)

where n = ms̄ is the expected number of rounds and t =

√
−m(1−γ)2 log εt

2γ2 . Moreover, by

the definition of smooth max-entropy one have that

Hε
max( ~Am1 | ~Bm

1
~Xm

1
~Y m

1
~Tm1 N) ≤ Hε−√εt

max ( ~Am1 | ~Bm
1
~Xm

1
~Y m

1
~Tm1 N ≤ n+ t).(B.30)

Note that N can be included in the entropy since it is completely determined by ~Tm1 .

Now applying the asymptotic equipartition property, Theorem 7, to the maximal

length N = n+ t we have

leakEC ≤ (n̄+ t) · [(1− γ)h(Q) + γh(ωexp)]

+
√
n̄+ t ν2 + log

(
8

ε′EC
2 +

2

(2− ε′EC)

)
+ log

(
1

εEC

)
,

where ν2 = 4 log
(
2
√

2 + 1
)√√√√2 log

(
8

(ε′EC−2
√
εt)

2

)
and εt is a free parameter to be

optimised.
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If the error correction protocol does not abort, then

P (KA 6= KB) ≤ εEC . (B.31)

And the completeness of the error correction protocol (i.e., the probability of not

aborting in an honest IID implementation) is given by εcEC = ε′EC + εEC .

Step 2: Chain rule.

In Protocol 1, a statistical test is performed on the variable Ci which accounts for the

condition of winning the CHSH game being satisfied or not. In order to use the entropy

accumulation theorem, we need to be able to infer the value of this variable Ci from the

variables that appear in the smooth min-entropy we are calculating.

Here we choose to use a chain rule, relation (A.14), with the variable Ci itself, as

opposed to using the variable Bi as is done in [39]. The reason is that the dimension of

the variable Ci is smaller than Bi, as for each block the variable Ci assumes one out of

three values. This leads to a slight improvement in rates achieved in the finite regime:

H
εs
p(Ω)

min ( ~Am1 | ~Xm
1
~Y m

1
~Tm1 E)ρ|Ω̂ ≥ H

εs
4p(Ω)

min ( ~Am1 C
m
1 | ~Xm

1
~Y m

1
~Tm1 E)ρ|Ω̂

−H
εs

4p(Ω)
max (Cm

1 | ~Am1 ~Xm
1
~Y m

1
~Tm1 E)ρ|Ω̂ (B.32)

− 3 log

1−

√√√√1−
(

εs
4p(Ω)

)2


≥ H
εs

4p(Ω)

min ( ~Am1 C
m
1 | ~Xm

1
~Y m

1
~Tm1 E)ρ|Ω̂

−H
εs

4p(Ω)
max (Cm

1 |~Tm1 E)ρ|Ω̂ (B.33)

− 3 log

1−

√√√√1−
(

εs
4(εEA + εEC)

)2
 .

In inequality (B.33) we use the fact that p(Ω) ≥ (εEA + εEC) and that removing the

conditioning on classical variables can only increase the entropy, which can be seen as

a particular case of data processing, Property 1(i).

Step 3: Upper bound on H
εs

4p(Ω)
max (Cm

1 |~Tm1 E)ρ|Ω̂.

We can use the entropy accumulation theorem to upper bound H
εs

4p(Ω)
max (Cm

1 |~Tm1 E)ρ|Ω̂ . In

order to do that we only have to find a max-tradeoff function for a protocol with m

rounds. We have that for any distribution ~p = (p(1), p(0), p(⊥)) of the variable C:

H(Ci|~TiE)ρ|Ω̂ = p(~Ti = ~0)H(Ci|~Ti = ~0E)ρ|Ω̂ (B.34)

+ p(~Ti 6= ~0)H(Ci|~Ti 6= ~0E)ρ|Ω̂

= p(~Ti 6= ~0)H(Ci|~Ti 6= ~0E)ρ|Ω̂ (B.35)

≤ h

(
p(1)

1− p(⊥)

)
= h

(
p(1)

1− (1− γ)smax

)
= h(ω), (B.36)
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where in (B.35) we use the fact that H(Ci|~Ti = ~0E) = 0, and in (B.36) we use that

p(~Ti 6= ~0) ≤ 1 and that p(1)
1−(1−γ)smax ≡ ω. Note that h(·) is a concave function.

Now we can take fmax = h(ωexp − δest) and ‖∇fmax‖∞ = 1
1−(1−γ)smax × ∂h

∂ω

∣∣∣
ωexp−δest

,

where ωexp is the expected winning probability of the CHSH game in an honest

implementation and δest accounts for the statistical confidence interval of the experiment.

Using the entropy accumulation theorem, Theorem 8, we have

H
εs

4p(Ω)
max (Cm

1 |~Tm1 E)ρ|Ω̂ ≤ mh(ωexp − δest) +
√
mν1 (B.37)

where

ν1 = 2

(
log 7 +

⌈
|h′(ωexp + δest)|
1− (1− γ)smax

⌉)√
1− 2 log εs, (B.38)

and h′ represents the derivative of the binary entropy function, ∂h(ω)
∂ω

.

Step 4: Lower bound on H
εs
p(Ω)

min ( ~Am1 C
m
1 | ~Xm

1
~Y m

1
~Tm1 E)ρ|Ω̂.

Finally, we apply the entropy accumulation theorem to lower bound the term

H
εs
p(Ω)

min ( ~Am1 C
m
1 | ~Xm

1
~Y m

1
~Tm1 E)ρ|Ω̂ . Therefore we need to find a min-tradeoff function such

that

fmin(~q) ≤ inf
σRj−1E

:Mj(σ)Cj=~q
H( ~AjCj| ~Xj

~Yj ~TjE)Mj(σ) (B.39)

Note that the length of each block is variable. However, we can consider that all

the blocks have size smax and set all the variables to ⊥ for the rounds which are not

performed.

First note that

H( ~AjCj| ~Xj
~Yj ~TjE) ≥ H( ~Aj| ~Xj

~Yj ~TjE). (B.40)

And from now on, we follow the same steps as Ref. [39].

Using the chain-rule for Von Neuman, Property 1(v), entropy we have

H( ~Aj| ~Xj
~Yj ~TjE) =

smax∑
i=1

H(Aj,i| ~Xj
~Yj ~TjEAj

i−1
1 ). (B.41)

and for every i ∈ [smax],

H(Aj,i| ~Xj
~Yj ~TjEAj

i−1
1 ) =

= p(Tj
i−1
1 = ~0)H(Aj,i| ~Xj

~YjEAj
i−1
1 Tj

smax

i , Tj
i−1
1 = ~0) (B.42)

+ p(Tj
i−1
1 6= ~0)H(Aj,i| ~Xj

~YjEAj
i−1
1 Tj

smax

i , Tj
i−1
1 6= ~0)

= (1− γ)(i−1)H(Aj,i| ~Xj
~YjEAj

i−1
1 Tj

smax

i , Tj
i−1
1 = ~0), (B.43)

where we used the fact that H(Aj,i| ~Xj
~YjEAj

i−1
1 Tj

smax

i , Tj
i−1
1 6= ~0) = 0. Therefore

H( ~Aj| ~Xj
~Yj ~TjE) = (B.44)

smax∑
i=1

(1− γ)(i−1)H(Aj,i| ~Xj
~YjEAj

i−1
1 Tj

smax

i , Tj
i−1
1 = ~0).
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Each term H(Aj,i| ~Xj
~YjEAj

i−1
1 Tj

smax

i , Tj
i−1
1 = ~0) can be seen as the entropy of a single

round. An expression for the entropy of a single round was derived for collective attacks

in [16]. This gives us:

H( ~AjCj| ~Xj
~Yj ~TjE) = (B.45)
smax∑
i=1

(1− γ)(i−1)
[
1− h

(
1

2
+

1

2

√
16ωi(ωi − 1) + 3

)]
such that

p(1) =
smax∑
i=1

γ(1− γ)(i−1)ωi. (B.46)

Now, in [39] it is proved that the minimum of (B.45) is achieved for

ω∗i =
p(1)

1− (1− γ)smax
∀i, (B.47)

and therefore we have a min-tradeoff function:

g(~p) = s
[
1− h

(
1
2

+ 1
2

√
16 p(1)

1−(1−γ)smax

(
p(1)

1−(1−γ)smax
− 1

)
+ 3

)]
; (B.48)

for p(1)
1−(1−γ)smax

∈
[

3
4
, 2+

√
2

4

]
.

Note that as p(1) → ((1 − (1 − γ)smax)2+
√

2
4

, the gradient of g(~p) tends to infinity,

which compromises the
√
n term that depends on the norm of the gradient of f . Since

g(~p) is a convex function, the tangent line in any point ~pt is a lower bound to g(~p).

Therefore, as in [1, 39], we take the min-tradeoff function to be a tangent g in a point

~pt to be optimized†:

Fmin(p, pt) =
d

dp(1)
g(p)

∣∣∣
p̃t
· p(1) +

(
g(pt)−

d

dp(1)
g(p)

∣∣∣
pt
· pt(1)

)
. (B.49)

Then we have

H
εs

4p(Ω)

min ( ~Am1 C
m
1 | ~Xm

1
~Y m

1
~Tm1 E)ρ|Ω̂ > m · ηopt =

n̄

s̄
· ηopt, (B.50)

where

ηopt = max
3
4
<

p̃t(1)
1−(1−γ)smax

< 2+
√

2
4

[
Fmin(p̃, p̃t)−

1√
m
ν3

]
, (B.51)

such that

ν3 = 2

(
log (1 + 2 · 2smax3) +

⌈
d

dp(1)
g(p̃)|pt

⌉)√
1− 2 log εs. (B.52)

† In [1, 39] the authors consider the following min-tradeoff function

fmin(~p) =

{
g(~p) if pt(1) > p(1)

Fmin(~p, ~pt) = if pt(1) ≤ p(1)
.

We remark that, since the gradient of g(~p) is an increasing function of p(1), the optimum value for ηopt
is always achieved for pt(1) ≤ p(1).
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Finally, the length of a secure key that can be extracted is given by

l ≥ n̄

s̄
ηopt −

n̄

s̄
h(ωexp − δest)−

√
n̄

s̄
ν1

− (n̄+ t) · [(1− γ)h(Q) + γh(ωexp)] (B.53)

−
√
n̄+ t ν2 − log

(
8

ε′EC
2 +

2

(2− ε′EC)

)
− log

(
1

εEC

)

− 3 log

1−
√

1−
(
εs
4

)2
− 2 log

(
1

2εPA

)
.

Appendix C. Proof of Theorem 9

Theorem 9. There exist a state ρ∗AB and measurements for Alice and Bob such that,

ρ∗AB achieves violation β and the collision entropy of Alice’s output A conditioned on

Eve’s quantum information E is

H2(A|E)ρ∗ = − log

1

2
+

1

2

√
2− β2

4

 . (C.1)

Proof. The proof consists in exhibiting a state ρ∗AB and measurements for Alice and Bob

such that the lower bound given by eq.(36) is saturated. Our derivation is based on the

techniques presented in Ref. [16], which led to a tight lower bound for the conditional

von-Neumann entropy.

Let us consider that Alice and Bob share a Bell diagonal state ρAB

ρAB = λ00Φ00 + λ01Φ01 + λ10Φ10 + λ11Φ11 (C.2)

where Φij = |Φij〉〈Φij| and |Φij〉 = I ⊗ X iZj
(

1√
2
(|00〉+ |11〉)

)
. We first prove the

following result:

Lemma 3. For a Bell-diagonal state where Alice performs a measurement in the Z-basis

we have that

H2(A|XY E)ρ ≥ − log
(

1

2
+
√
λ00λ01 +

√
λ11λ10

)
. (C.3)

Proof. Given a Bell diagonal state ρAB(λ00, λ01, λ10, λ11), a purification |Ψ〉ABE of this

state is given by

|Ψ〉ABE =
√
λ00 |Φ00〉AB |e1〉E +

√
λ01 |Φ01〉AB |e2〉E (C.4)

+
√
λ10 |Φ10〉AB |e3〉E +

√
λ11 |Φ11〉AB |e4〉E .

After Alice measures in the Z basis we have

ρAE =
1

2
|0〉〈0| ⊗ ρE|0 +

1

2
|1〉〈1| ⊗ ρE|1 (C.5)

where

ρE|0 = |ψ1〉〈ψ1|+ |ψ2〉〈ψ2| and ρE|1 = |ψ3〉〈ψ3|+ |ψ4〉〈ψ4| , (C.6)
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with non-normalized states

|ψ1〉 =
(√

λ00 |e1〉+
√
λ01 |e2〉

)
,

|ψ2〉 =
(√

λ10 |e3〉+
√
λ11 |e4〉

)
,

|ψ3〉 =
(√

λ10 |e3〉 −
√
λ11 |e4〉

)
,

|ψ4〉 =
(√

λ00 |e1〉 −
√
λ01 |e2〉

)
.

The collision entropy of a cq-state ρAE is given by

H2(A|E)ρ = − log Tr
(
ρ
−1/2
E ρAEρ

−1/2
E ρAE

)
, (C.7)

which, evaluated for the state (C.5) gives

H2(A|E)ρ = − log
(

1

2
+
(√

λ00

√
λ01 +

√
λ10

√
λ11

))
.

Now let us consider a Bell diagonal state ρ∗AB such that

λ00 = R cos θ, λ01 = R sin θ, λ10 = λ11 = 0, (C.8)

s.t. cos θ + sin θ =
1

R

which can hold for R > 1√
2
. This choice is inspired by the optimal strategy that

maximizes the conditional von Neumann entropy as shown in [16].

For these parameters we have that

H2(A|XY E)ρ∗ ≥ − log

1

2
+R

√
1

2

(
1

R2
− 1

) (C.9)

Finally, we know from [119] that for a state ρAB(λ00, λ01, λ10, λ11), the maximal

violation βmax of the CHSH inequality is given by

βmax = max
{

2
√

2
√

(λ00 − λ11)2 + (λ01 − λ10)2, (C.10)

2
√

2
√

(λ00 − λ10)2 + (λ01 − λ11)2
}

and that this violation can be achieved with one of Alice’s measurement being in the Z

basis.

Therefore, for the state ρ∗AB, specified by (C.8), and Alice and Bob performing the

measurements that gives the maximum violation achievable for the CHSH inequality,

we have that β = 2
√

2R. This implies

H2(A|XY E)ρ∗ = − log

1

2
+

1

2

√
2− β

4

 . (C.11)
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