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Electrostatically defined quantum dot arrays offer a compelling platform for quantum computation
and simulation. However, tuning up such arrays with existing techniques becomes impractical when
going beyond a handful of quantum dots. Here, we present a method for systematically adding
quantum dots to an array one dot at a time, in such a way that the number of electrons on previously
formed dots is unaffected. The method allows individual control of the number of electrons on each
of the dots, as well as of the interdot tunnel rates. We use this technique to tune up a linear array
of eight GaAs quantum dots such that they are occupied by one electron each. This new method
overcomes a critical bottleneck in scaling up quantum-dot based qubit registers.

I. INTRODUCTION

Quantum-dot based electron spin qubit systems [1–3]
have made significant steps towards becoming a scalable
platform for quantum computation. Important land-
marks include the realization of 99.9%-fidelity single-
qubit gates [4], the implementation of two-qubit gates [5–
10] and two-qubit algorithms [11]. Although a high de-
gree of control of the charge and spin degrees of free-
dom has been shown, research has been mainly limited
to single, double and triple dot systems. Recently, con-
trol of the charge occupation of four dot systems has
been demonstrated [12–15] and a single electron could be
controllably placed in a 3x3 array [16]. However, device
specific approaches to tuning quantum dots will need to
be replaced by a systematic approach, as arrays become
larger with the scale-up of quantum-dot based quantum
circuits.

The controlled formation and filling of large quantum
dot (QD) arrays poses multiple challenges. Individual
gate voltages affect not only the parameter they are de-
signed to control, typically the electrochemical potential
of a specific QD or the tunnel barrier between two ad-
jacent QDs, but through capacitive cross-talk also affect
other electrochemical potentials and tunnel barriers [17].
Furthermore, tuning devices is complicated by a disor-
dered potential landscape arising from charges trapped in
randomly located impurities and defects in the substrate
and at the surface [18, 19]. Finally, electrons are loaded
into QDs from an electron reservoir. When a target dot
is separated from the reservoir by one or more other dots,
electrons are typically loaded by co-tunneling, only virtu-
ally occupying the intermediate dots. However, for more
than three or four dots, the co-tunnel rates become im-
practically low.

These challenges present themselves when measuring
the charge occupation in quantum dot arrays through
conventional charge stability diagrams. In such dia-

grams, the signal from a charge sensor is recorded while
sweeping two gate voltages, resulting in a 2D plot that
exhibits regions in gate voltage space with a fixed num-
ber of electrons on each dot, separated by lines indicating
charge additions to the array, or charge transitions be-
tween dots [17]. Such a 2D plot corresponds to a plane in
a multi-dimensional space spanned by all the gate volt-
ages. As arrays get larger, when sweeping just two gate
voltages, cross-talk leads to slopes of charge transition
lines that are almost parallel and hard to distinguish.
Assignment of charge transition lines to specific dots is
further complicated by non-uniform addition energies.
Furthermore, the intersections between different charge
addition lines can cluster together in a small gate volt-
age region. Finally, the difficulty of loading electrons to
dots far from the reservoir leads to postponed loading of
dots (latching) or to missing charge addition lines [20].
Those complications lead to plots that are difficult to
interpret [21].

Cross-talk and the background disorder potential have
been compensated for in short dot arrays using so called
virtual gates, which are linear combinations of multiple
gate voltages chosen such that only a single electrochem-
ical potential or tunnel barrier is addressed [2]. Vir-
tual gates also make it possible to strategically choose
the measured 2D plane in gate-space, so that multi-
dot charge stability diagrams become easy to inter-
pret [2, 16, 23]. The difficulty of loading electrons
into large arrays has been circumvented using additional
reservoirs in between groups of three dots [24]. In an-
other approach, an additional access point to a reservoir
was created halfway a linear array of five QDs [21]. In-
stead of loading electrons by co-tunneling, electrons can
also be made to sequentially tunnel through a chain of
dots to reach their target location [25], but this approach
requires the chain of dots to be already formed in the first
place.

We explored several approaches to form long linear ar-
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rays in a controlled way, such as forming individual single
dots first and stitching them together, stitching together
double dots, or starting with a large QD and then split-
ting it up into an array of separate dots. However, we
found it difficult to make these approaches work well.

Here, we show the controlled filling of an array of eight
QDs, which we call a Qubyte register, using a method
that is both conceptually simple and effective. Starting
from a double dot, we introduce the “n + 1 method”,
adding dots one by one using virtual gates. Every new
dot added adjacent to the existing array is right next
to a reservoir so the dot can be filled easily. The use
of virtual gates saves the charge occupation in the pre-
viously formed dots while adding a new dot, and also
keeps the charge stability diagrams simple to interpret.
We show that we can locally control the number of elec-
trons on each dot down to the last electron, and that
we can set all interdot tunnel couplings to typical values
used in spin qubit experiments. Finally, we discuss the
limitations and potential pitfalls of the n+ 1 method.

II. RESULTS

A. Device and Initial Characterization

Fig. 1(a) shows a scanning electron micrograph of a
device nominally identical to the one used in the exper-
iment. The gate layout has been adapted from previous
triple and quadruple quantum dot devices [14, 23]. On
one side, 17 gates with a pitch of 80 nm are fabricated to
control the tunnel barriers and electrochemical potentials
of the QDs. The upper part of the sample accommodates
two sensing dots (SD) that are capacitively coupled to the
linear QD array. The circles indicate the intended posi-
tions of the QDs. All measurements are carried out in
a dilution refrigerator with a base temperature below 20
mK.

Initially, the device is characterized by DC transport
measurements. The pinch-off characteristics of the chan-
nel between each of the plunger Pi or barrier Bi gates
and the central gate D is measured (see schematics in
Fig. 1(a)) and single QDs are formed by sweeping pairs
of neighbouring barrier gates. These measurements con-
firm that all QDs, including the sensing dots, can be
formed. Moreover, the pinch-off values determined for
each gate act as starting parameters for further tuning.
In all subsequent measurements, we probe the linear QD
array via the two sensing dots, which are sensitive to the
number of electrons in the array, as well as to their po-
sition in the array. The charge sensors are probed using
RF reflectometry (see Methods section).

To illustrate the difficulty of traditional tuning strate-
gies, Fig. 1(b) shows a charge stability diagram for a
linear six-dot array (sextuple dot) confined between the
barrier gates B1 to B7. The charge stability diagram has
been recorded sweeping the voltages of gates P2 and P7,
i.e. the gates mostly coupled to the outer QDs. In the

diagram charge addition lines with different slopes can
be identified. However, charge transitions with similar
slopes can be only be assigned unambiguously to specific
dots, after also stepping other gate voltages (see e.g. the
small difference in slope between the transitions for dots
6 and 7). Even then, the complex pattern of transitions
in the center of the diagram makes it extremely diffi-
cult to determine the charge occupation at every point
in this gate space. Moreover, cross-capacitances hinder
local tuning of the electrochemical potential and tunnel
rates.

B. n+ 1 method

To tune up a multi-dot array dot by dot, we make use
of virtual gates, which compensate for the cross-talk that
occurs when sweeping actual gate voltages (see Fig. 1(c-
d)). The virtual gates as used here compensate for cross-
talk on the electrochemical potentials only, not for cross-
talk effects on tunnel barriers. The virtual plunger gate
VPi directly corresponds to the electrochemical poten-
tial of QDi, up to a lever arm. The compensation is per-
formed to first order, so that we can express the virtual
gates as linear combinations of the physical gate voltages,
summarized by a cross-capacitance matrix [2, 5].

The tuning procedure consists of the following steps,
described in more detail below:
1. Tune up a double quantum dot (DQD) and the two
sensing dots with the traditional strategy (Fig 2(a)).
2. Measure the cross-capacitance between all gates and
the electrochemical potentials of these four QDs and
record them in a cross-capacitance matrix. This matrix
can now be used to generate virtual gates (Fig 2b).
3. Use the virtual plunger and barrier gates adjacent to
the existing dots to form the next QD without disturbing
the former.
4. Measure the cross-capacitance of every gate to the
newly formed QD and place these values in the corre-
sponding row of the matrix.
5. Re-measure the cross-capacitances to the previously
formed QDs and update the matrix accordingly.
Steps 3 to 5 are repeated to extend the array, adding
one QD at a time.

The matrix entries for the initial DQD (QDi and
QDi+1) are determined by how much an addition line
for QDi in a Pi scan is displaced when stepping any of
the other plunger (barrier) gates Pj (Bj) by an amount
δV (see Supplementary Fig. S1). The ratio of the shift of
the charge transition line of QDi in the Pi scan and δV
yields the corresponding entry in the cross-capacitance
matrix. We do this for all eight plunger and nine barrier
gates of the linear array, as well as for the plunger gates
of the sensing dots.

We illustrate how the cross-capacitance matrix is used
to create virtual gates for the first three dots (leaving out
the outer barrier gates for simplicity). The following re-
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FIG. 1. Device design and tuning principle. (a) Scanning electron micrograph of a device nominally identical to the one
used in the experiment. The circles indicate the intended positions of eight quantum dots (QDs) that define a Qubyte register
and of two additional dots that are used for charge sensing. For the linear array, the designed dot-to-dot pitch is 160 nm. The
plunger gates connected to high frequency lines are marked with blue triangles. The squares indicate the position of the Fermi
reservoirs. Two on-board tank circuits for RF reflectometry readout are connected to each of the sensing dots. (b) Charge
stability diagram of a sextuple dot formed between barrier gates B1 and B7. The sum of the differential demodulated voltages
of both sensing dots is plotted. The dashed lines highlight charge transitions of each of the six QDs (the numbers refer to
the labels in panel (a)). (c) Illustration of the potential landscape of a double QD. Gates P4 and B4 are used to form a third
QD. Due to capacitive cross-talk, indicated by the capacitor symbols, these gates influence the potential of the other QDs as
well (to avoid clutter, we did not draw any other capacitor symbols). (d) A double QD is extended to a triple QD using the
virtual plunger VP4 and barrier VB4. Due to cross-capacitance compensation these parameters only act locally on the potential
landscape.

lationship expresses how much each physical gate affects
each virtual gate:

∆VP1

∆VB1

∆VP2

∆VB2

∆VP3

 =


1 α12 α13 α14 α15

0 1 0 0 0
α31 α32 1 α34 α35

0 0 0 1 0
α51 α52 α53 α54 1




∆P1

∆B1

∆P2

∆B2

∆P3


For convenience, we set the diagonal entries to 1 (dimen-
sionless), disregarding the lever arm. This implies we ex-
press virtual gates in units of Volt, similar to the physical
gates. Furthermore, since we do not include cross-talk ef-
fects on tunnel barriers, the off-diagonal matrix elements
relating the physical gate voltages to virtual barrier gates
are set to zero. The inverse matrix expresses the linear
combination of physical gate voltages that is needed to
sweep a virtual gate. We note that the diagonal entries
of the inverse matrix do not need to be equal to 1.

The effectiveness of the cross-talk compensation can
be seen by recording a charge stability diagram in the
virtual gate space, i.e. using VPi and VPi+1 as sweep
parameters (see Fig. 2(b)). Ideally, addition lines of QDi

and QDi+1 appear as orthogonal (horizontal and vertical)
lines. In practice, the compensation is not always perfect

because we extrapolate each cross-capacitance from just
two data points (see Supplementary Fig. S1), but it is
usually good enough.

To extend the DQD to a triple dot, we form a new tun-
nel barrier using a neighbouring virtual barrier gate, e.g.
VBi+2. The pinch-off values determined in DC transport
indicate a suitable voltage range to scan with the barrier
gate. Optionally, we then monitor the charge stability di-
agram VPi - VPi+1 while stepping VBi+2. Once the bar-
rier is raised sufficiently to form an additional QD, new
addition lines appear in the charge stability diagram (see
arrows in Fig. 2(c)). The charge transitions of the pre-
viously tuned QDs are only slightly affected, indicating
the effectiveness of the virtual gate concept.

We complete the tuning of the newly formed dot to the
single electron regime by measuring a charge stability
diagram sweeping virtual plunger VPi+2 versus virtual
barrier VBi+2. A set of diagonal lines indicates charge
transitions of the newly formed QD (see Fig. 2(d)). We
can identify the last charge transition in the bottom left
of the figure.

The next step is to update the cross-capacitance ma-
trix. First, we fill the row corresponding to VPi+2. The
effect of all VPj and VBj on VPi+2 is determined, as
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FIG. 2. Tuning method. (a) Charge stability diagram of
a DQD in the single electron regime. The charge sensor re-
sponse is plotted in color scale (the differential demodulated
voltage, in arbitrary units, is plotted here and in similar plots
below) as a function of the plunger gate voltages P2 and P3.
(b) Charge stability diagram of the same DQD recorded as
a function of the virtual plungers VP2 and VP3. (c) Charge
stability diagram where an additional QD has been formed
to the right of the DQD by raising the relevant tunnel bar-
rier. The arrows indicate the position of the addition lines of
the newly formed dot. (d) Differentiated demodulated charge
sensor signal as a function of virtual plunger VP4 and vir-
tual barrier VB4. The charge addition lines corresponding to
the newly formed QD are clearly visible. No transitions of
the pre-existing dots are observed, due to the use of virtual
gates. (e) Visualization of the cross-capacitance matrix of the
eight-dot array. The entries of each row show how the virtual
plunger value (and hence the electrochemical potential) of a
QD is influenced by other gate voltages. The rows for virtual
barrier gates are omitted for simplicity. The plungers of both
sensing dots are included in the matrix.

described for the first double dot, with the distinction
that we now start from a set of virtual gates, expressed
by matrix A.

As a final step, the existing matrix entries are updated
to account for reduced screening of the gate potentials
when the two-dimensional electron gas at the location of
QDi+2 is depleted. To do so, we remeasure the cross-

talk from all the virtual plunger and barrier gates to all
the virtual plunger gates. This results in a matrix A′.
The updated cross-capacitance matrix is found by matrix
multiplication Anew = A′A.

C. Qubyte in the single electron regime

We apply the n+1 method to form a sextuple QD and
octuple QD. We start with a DQD confined between the
barrier gates B1 and B3 and initially extend the array to
the right. The electrochemical potentials and thus the
number of electrons residing on all QDs can be indepen-
dently controlled. The results are verified by charge sta-
bility diagrams of neighbouring pairs of virtual plunger
gates, see Fig. 3(b-f), where the sextuple dot has been
initialized with one electron in each of the QDs. The
gate voltages at the center of all of these plots are iden-
tical. All data sets have been acquired by fast voltage
sweeps. At low resolution and low averaging, sufficient
for initial tuning, the acquisition time per panel is on the
order of a few 100 ms. High-quality data such as those
shown in Fig. 3(b-f) take approximately 10 s per panel.
Each plot can be interpreted as a charge stability dia-
gram of a DQD, independent of the neighbouring QDs.
The virtual gates control the electrochemical potential of
the DQD and the number of electrons can be determined
easily from the measurements. This set of measurements
contains the full information of the charge state of the
sextuple QD and is much easier to interpret and work
with than conventional charge stability diagrams, where
multiple charge addition lines as well as interdot transi-
tions are visible in a single plot. In our experience, this
new method renders the conventional charge stability di-
agram obsolete. In fact, the data of Fig. 1(b) was taken
for illustration purposes only, after forming the sextuple
dot using measurements such as those in Fig. 3.

Following the same n + 1 method, the sextuple QD
is further extended to an octuple QD array by adding
another QD on each side. Due to limitations of the ex-
perimental setup, the plunger gates P1 and P8 are not
connected to high-frequency lines necessary to apply fast
gate voltage sweeps. Therefore, any measurement involv-
ing these gates must rely on slow gate voltages sweeps,
in practice with a cut-off frequency below 1 Hz. For this
reason, we first formed a sextuple dot in the center and
only then extended it to an octuple dot. Fig. 3(a) and (g)
show charge stability diagrams as a function of VP1, VP2

and VP7, VP8, respectively, completing the formation of
the Qubyte register.

The cross-capacitance matrix for the octuple QD con-
figuration of Fig. 3 is shown in Fig. 2(e). It visualizes the
effect of plunger and barrier gates on the electrochemical
potential of all QDs. As discussed, each row has been
normalized such that the diagonal elements are 1. In
these units, the effect of the closest barrier gates on the
electrochemical potential of a QD is typically between
0.9 and 1.1. This is in agreement with the device geom-
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FIG. 3. Qubyte in the single electron regime. (a-g) Charge stability diagrams of pairs of neighbouring QDs within the
array. The differential demodulated voltage is plotted as a function of the virtual plunger gates. For panels (b-f), the charge
stability diagrams were measured with a sextuple QD defined between barrier gates B1 and B7. The measurements are centered
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QD array. (h) Scan along the interdot detuning axis of QD3 and QD4 with one electron in those two dots (see arrow in (c)).
The data has been fit according to the model described in [1, 2].

etry (see Fig. 1(a)) where the barrier gates are 30 nm
longer than the plunger gates, bringing them close to the
expected QD position. The influence of a neighbouring
plunger gate on a dot potential is on the order of 0.4
to 0.5 and the one of the next-nearest neighbour 0.15 to
0.2, so the coupling diminishes with distance, as expected
(Supplementary Fig. S2 plots the cross-capacitance ver-
sus distance). The cross-capacitance to the sensing dots
is small (typically below 0.1), but nevertheless it is rel-
evant to correct for, as the sensing dots are operated at
a steep slope of a Coulomb peak to maximize the charge
detection sensitivity.

By means of the virtual barrier gates VBi, we can ad-
just the interdot tunnel couplings while cross-capacitance
correction compensates the influence on the electro-
chemical potentials. To determine the interdot tun-
nel coupling, we measure the charge sensor response
along the detuning axis across a single-electron transi-
tion. Fig. 3(h) shows an example for the (1,1,0,1,1,1)-
(1,0,1,1,1,1) transition, where the numbers in brackets
indicate the number of charges on each of the six dots,
from QD2 to QD7. The data is fit according to a sim-
ple model considering broadening of the transition due
to tunnel coupling and thermal excitation [1, 2], using a
measured effective electron temperature of Te = 90 mK.
The tunnel coupling for all pairs of neighbouring dots has
been tuned to a range of 5 to 15 GHz (see Supplementary
Fig. S3).

To further verify the validity of the n+ 1 method im-
plemented via the use of virtual gates, we record the
charge stability diagram of two neighbouring dots, while
all other dots are kept in Coulomb blockade. One by

one we step the virtual plunger gates of the neighbouring
dots, which ideally should not affect the measured charge
stability diagram. Fig. 4 depicts such a test for QD5 and
QD6. In panel (a) VP4 has been increased compared to
panel (b) and in panel (c) VP7 has been increased. The
charge stability diagram is not affected by small changes
in neighbouring electrochemical potentials, which implies
that the virtual gates behave as expected and verifies
that the charge stability diagram indeed shows addition
lines of the expected dots. The same measurements are
repeated for all QDs; charge stability diagrams of neigh-
bouring QDs were measured while the electrochemical
potential of all other QDs has been altered. Data sets
for all gate combinations are shown in Supplementary
Fig. S4, showing similar results as presented in Fig. 4.

We note that it is not trivial that this method works
flawlessly and care has to be taken to ensure the elec-
tron occupation of each dot is as intended. Specifically,
it is important that the neighbouring QDs remain suf-
ficiently far from any charge transitions. This requires
that the cross-capacitances are measured with a reason-
able accuracy, and that the neighbouring QDs be de-
tuned from the Fermi level by more than the interdot
capacitive coupling energy. To illustrate this point, a set
of charge stability diagrams for QD4 and QD5 is shown
in Fig. 5(a-c), with increasing values for VP6 per panel
(A video available as supplementary information shows
a similar series of charge stability diagrams in steps of
0.5 mV in VP6.). Fig. 5(a) shows a reference plot of a
clean charge stability diagram. In Fig. 5(b), the same
gate voltages are scanned but VP6 has been changed by
10 mV. Extra lines appear, which disappear again when
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increasing VP6 further (Fig. 5(c)). The extra lines can be
understood if we inspect the charge stability diagram for
QD5 and QD6, which is depicted in Fig. 5(d) with arrows
indicating the values of QD6 used in panels (a-c). We see
that arrow b, which corresponds to the case of Fig. 5(b),
passes through an interdot transition of QD5 and QD6,
then intersects an addition line for QD6 (since the vir-
tual gates are not perfect, this addition line is slightly
tilted) and finally cuts through another interdot transi-
tion of QD5 and QD6. These three crossings occur at the
positions of the red circles in Fig. 5(b). By comparison,
arrows a and c do not pass through any charge transi-
tions involving QD6. This set of data makes clear how to
avoid ambiguity in controlling and verifying the number
of electrons on each dot.

We can observe the same effects in classical simulations
of the charge stability diagrams. The simulation consid-
ers only three QDs and adopts the constant interaction
model [17], meaning the charging energies and capacitive
interdot coupling energies are assumed to be constant.
Imperfections of the cross-capacitance matrix are taken
into account in the model. Other effects, e.g. tunnel cou-
pling, non-linearities of the cross-talk and latching effects
are neglected. Fig. 5(e) shows a simulated charge stabil-
ity diagram for QD5 and QD6, with the arrows a, b and c
at similar locations as in the measurements of Fig. 5(d).
Fig. 5(f) shows the simulated charge stability diagram
for QD4 and QD5, for the case of arrow b. Similar to the
data in Fig. 5(b), we observe extra lines in the simulated
charge stability diagram, as arrow b passes through in-
terdot transitions and an addition line for QD6. While
details vary, in part because tunnel coupling is not in-
cluded in the simulation, the simulation results are in
good qualitative agreement with the experimental data.
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as explained in the text. (d) Charge stability diagram of QD6

and QD5. The arrows indicating cuts along the VP5 axis for
three different values of VP6 correspond to the arrows in pan-
els (a-c). (e) Simulated double dot charge stability diagram
computed for a triple quantum dot system. The simulation as-
sumes the constant interaction model, taking into account the
capacitive interdot coupling and using on purpose an imper-
fect cross-capacitance matrix. The simulation results exhibit
similar features as the measurements in panel (d). The three
arrows are drawn at the corresponding locations as in panel
(d) as well. (f) Simulated charge stability diagram computed
for the same triple quantum as in (e), but for the other DQD.
Similar to the data in panel (b), we observe several additional
interdot and dot-reservoir charge transition lines.

III. DISCUSSION

We developed a powerful technique to tune an array of
QDs one by one and load it in the few electron regime.
We apply this method to tune up a linear array of eight
quantum dots in GaAs from scratch. This currently
takes one to two days for an experienced user and a well
behaved sample. Additionally, the virtual gates tech-
nique facilitates tuning of the tunnel couplings, which
we showed could be tuned to a relevant range for qubit
operations in this device.

With regards to the scalability of this method, we make
the following observations. First, the cross-capacitance
quickly drops with distance between the gates and the
dots. Therefore, only the entries near the diagonal of the
cross-capacitance matrix are relevant and need to be de-
termined. This implies a linear scaling of the number of
cross-capacitance elements as a function of the number
of dots. Second, as we relied on charge addition lines in
charge stability diagrams of neighbouring QDs to deter-
mine the number of electrons per dot, each of the QDs
must be able to exchange electrons with at least one of
the reservoirs. QDs not positioned at the end of the array
need to exchange electrons via co-tunneling, mediated by
a virtual occupation of the QDs in between [17]. The co-
tunnel rate scales inversely proportional with the number
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of interdot tunnel barriers between a dot and the near-
est reservoir, as well as with the detuning of the dots
in between them [27]. However, this is by no means a
fundamental obstacle. When dots are formed one at a
time, the newly formed dot is immediately adjacent to a
reservoir and can thus be easily loaded. For dots in the
interior, the n+1 method we introduced in principle takes
care of maintaining their occupation through cross-talk
compensation. If desired, verifying the dot occupation in
the interior of a long array after it is formed can still be
done, for instance by emptying the array (while not re-
moving it), followed by sequential tunneling of electrons
to the desired locations [25]. Finally, we believe that the
n+1 method is not bound to a specific device geometry or
material. In particular, we expect that it is directly ap-
plicable to linear arrays in silicon based QD devices [28]
and can be extended to two-dimensional QD arrays. The
n + 1 method can become a standard method to con-
veniently tune QD arrays and should lend itself well to
automation [29, 30].

The data also shows the limitations of the current ap-
proach. We correct for the cross-capacitance of plunger
and barrier gates influencing electrochemical potentials
but not for the influence on tunnel barriers. As a conse-
quence, altering a virtual plunger gate will affect neigh-
bouring barriers, as can be seen in Fig. 3(b). Increas-
ing VP2 and VP3 increases the interdot tunnel coupling,
which can be deduced from the broadening of the inter-
dot transitions. In principle cross-capacitance effects on
barriers can also be taken into account, as was demon-
strated recently for a triple dot array [2]. However, this
task is not trivial since the dependence of gate voltage to
tunnel coupling is typically exponential and thus the lin-
ear approximation of the cross-capacitance matrix is only
valid over a limited voltage range. As we have shown in
this work, adjusting the interdot tunnel couplings indi-
vidually is not a very difficult task, and this can be imple-
mented using automated tuning algorithms as well [31].

Altogether, the n + 1 method shown here enables fu-
ture experiments involving increasing numbers of elec-
tron spin qubits in semiconductor quantum dot arrays. It
addresses an important bottleneck in scaling up quantum
dot arrays and highlights the potential of this approach
for large-scale quantum computation and simulation.

IV. METHODS

The sample is fabricated from a silicon-doped
GaAs/AlGaAs quantum well grown by molecular beam
epitaxy. A two-dimensional electron gas is formed 90 nm
below the surface. It shows a mobility of 1.6 · 106cm2/Vs
at an electron density of 1.9x1011 cm−2. A single layer of
metallic gates (Ti/Au), defined by electron-beam lithog-
raphy, is biased with appropriate voltages to selectively
deplete the 2DEG underneath. During cooldown the
gates have been biased individually with positive volt-
ages between +50 and +250 mV to reduce charge noise

[18] and to improve the uniformity of the pinch-off char-
acteristics of the gates. Details are shown in The Sup-
plementary Table I.

Gates P2 to P7 of the linear array and the plunger gates
of both sensing dots (X1 and X2) are, via bias-tees on the
printed circuit board (see Fig. 1(a)), connected to high-
frequency lines, which allows combining DC voltages and
nanosecond gate voltage pulses on the same gate. The
other gates are connected to DC lines.

Except for the initial characterization using DC trans-
port, RF reflectometry is used, enabling fast, simultane-
ous read out of both charge sensors by frequency mul-
tiplexing [32, 33]. As the capacitive coupling and thus
the sensitivity decreases with distance from the sensor,
we read out both sensors simultaneously to maximize the
readout quality. The charge stability diagrams shown in
Figs. 2-5 show the signal from the nearest charge detec-
tor. The sum of the derivative along both axis is plot-
ted. In Fig. 1(b), the signals from the two charge sensors
are added. LC tank circuits based on home-built super-
conducting NbTiN inductors are connected to the ohmic
contacts of the sensing dots (see labels RF in Fig. 1(a)).
RF tones close to the resonance frequencies of the tank
circuits, at 108.5 MHz and 171.9 MHz, are sent to the
sample. The reflected signal is amplified at 4K and at
room temperature, I/Q demodulated to baseband, fil-
tered with a 1 MHz low-pass filter, and recorded with a
fast data acquisition card.
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SUPPLEMENTARY INFORMATION

Figs. S1-S4 and Table I show additional data and in-
formation, referred to in the main text.

Fig. S5 shows an alternative visualization of the charge
transitions of the sextuple QD. Performing just 1D
sweeps of the virtual plunger gates, which are a horizontal
or vertical cut through a 2D charge stability diagram, al-
lows measuring all charge transitions with a refresh rate
of a few Hz. This allows to control parameters of the
sextuple dot and verify the effect on all the charge occu-

pations of all six dots in real-time. The data shows that
the left charge sensor is most sensitive to charge transi-
tions of QD2 and its sensitivity decreases for dots farther
away. It is practically insensitive to charge transitions
in QD6 and QD7. Both charge sensors are thus neces-
sary to read out the full device. While the 1D traces
can be recorded very fast, they lack certain information
and are more prone to incorrect interpretation. For in-
stance, in 1D traces, interdot tunnel couplings cannot be
extracted and the difference between interdot and dot-
reservoir transitions may or may not be easily seen. 2D
charge stability diagrams remove such ambiguities or lim-
itations.
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FIG. S4. Verification of charge addition lines. Charge stability diagrams of (a) VP2 and VP3, (b) VP3 and VP4, (c) VP4

and VP5, (d) VP5 and VP6 and (e) VP6 and VP7. In each of the panels the other gate voltages have been stepped by ±5 mV
as indicated in the figure.
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Gate names D B0 P1 B1 P2 B2 P3 B3 P4 B4 P5 B5 P6 B6 P7 B7 P8 B8 Y0 X1 Y1 Y2 X2 Y3

Bias cooling +100 +50 +50 +100 +100 +100 +100 +200 +100 +250 +100 +200 +100 +250 +100 +200 +150 +200 +50 +200 +100 +50 +200 +200

8dot configuration -340 -200 -295 -120 -200 -25 -385 -40 -240 -85 -220 -260 +10 -105 -75 -265 50 -230 -420 115 -515 -370 0 -500

TABLE I. Voltages in mV applied to the different gates during cooldown and typical gate voltages applied in the Qubyte
configuration (all eight QDs tuned). The voltages applied during cooldown were chosen based on measurements from an earlier
cooldown of the same device.
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