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We present a scheme for achieving coherent spin squeezing of nuclear spin states in semiconductor

quantum dots. The nuclear polarization dependence of the electron spin resonance generates a unitary

evolution that drives nuclear spins into a collective entangled state. The polarization dependence of the

resonance generates an area-preserving, twisting dynamics that squeezes and stretches the nuclear spin

Wigner distribution without the need for nuclear spin flips. Our estimates of squeezing times indicate that

the entanglement threshold can be reached in current experiments.

DOI: 10.1103/PhysRevLett.107.206806 PACS numbers: 73.21.La, 42.50.Dv, 74.25.nj, 76.30.�v

Entanglement generation and detection are two of the
most sought-after goals in the field of quantum control.
Besides offering a means to probe some of the most
peculiar and fundamental aspects of quantum mechanics,
entanglement in many-body systems can be used as a tool
to reduce fluctuations below the standard quantum limit
[1]. Recently, squeezing of the collective spin state of
many atoms [2] was achieved using atom-light or atom-
atom interactions [3–6], allowing unprecedented precision
of measurements in atomic ensembles [7]. Similarly, future
progress in spin-based information processing hinges on
our ability to find ways of precisely controlling the dynam-
ics of nuclear spins in nanoscale solid-state devices [8,9].
In particular, electron spin coherence times [10,11] can be
improved by driving the nuclear spin bath into reduced-
entropy ‘‘narrowed’’ states [12–17], as seen in experiments
[18]. Furthermore, with quantum control, a nuclear spin
bath can be turned into a resource, serving as a long-lived
quantum memory [19–21], or a medium for high-precision
magnetic field sensing [22].

Here we describe a coherent spin squeezing mechanism
for gate-defined quantum dots [23], see Fig. 1(a). With
suitable modification, our approach can also be applied to
other systems which can be approximately described by a
central-spin model. We consider a single electron in a
quantum dot, in contact with a large group of nuclear spins,

fÎng. The electron and nuclear spins are coupled by the

hyperfine interaction HHF ¼ P
nAnŜ � În, where Ŝ is the

electron spin, and each coupling constant An is propor-
tional to the local electron density at the position of nucleus
n. The electron spin is driven by an applied rf field with
frequency close to the electron spin resonance (ESR) in the
presence of an externally applied magnetic field. Because
the electron spin evolves rapidly on the time scale of
nuclear spin dynamics, the nuclear spins are subjected to
an effective hyperfine field (the ‘‘Knight field’’) produced
by the time-averaged electron spin polarization. Nuclear

spin squeezing results from the dependence of the elec-
tronic hyperfine field on the detuning from the ESR con-
dition, which in turn depends on the nuclear polarization;
see Fig. 1(b).

In a system composed of many spins fÎng, such as
a quantum dot or an atomic ensemble, the collective

total spin Î ¼ P
nÎn is a quantum mechanical angular-

momentum variable. Because different vector components

FIG. 1 (color online). Nuclear spin squeezing in a quantum
dot. (a) An electron in a quantum dot, with the electron spin S
coupled to a large group of nuclear spins fIng. Electron spin
resonance is excited by microwave radiation applied in the
presence of an external magnetic field. (b) Flowchart describing
the squeezing mechanism. (c) Schematic depiction of twisting
dynamics on the Bloch sphere, shown in a rotating frame where
the mean polarization is stationary. We focus on dynamics
between the initial time t0 and an intermediate time t1, during
which the phase space (Wigner) distribution is squeezed within a
small, flat region of the Bloch sphere, see Eqs. (7) and (8). At
longer times, indicated by t2, the distribution extends around the
Bloch sphere.
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of Î do not commute, they are subject to the Heisenberg
uncertainty relations

�Iy�Iz � @

2
jhÎxij; (1)

and its cyclic permutations [2,24] (without loss of general-
ity, we focus on the spin 1=2 case). Squeezing is achieved
by reducing fluctuations in one spin component below the

‘‘standard quantum limit,’’ �I� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 @jhÎxij

q
. As we dis-

cuss below, depending on the application, a variety of
criteria can be used for identifying ‘‘useful’’ levels of
squeezing (see Refs. [2,7,24]).

Typically, the inequality in Eq. (1) is far from saturated
in quantum dots under ambient conditions. In equilibrium,
the typical nuclear polarization and the uncertainties �I�

are all of order
ffiffiffiffi
N

p
(see, e.g., Ref. [25]), where N � 106 is

the number of nuclear spins in the quantum dot. Here we
consider an initial state prepared by polarizing nuclear
spins to a fraction p of the maximal polarization, and
then rotating this polarization into the equatorial plane of
the Bloch sphere such that the mean spin points along x,

hÎxi ¼ pN@=2. Experimentally, nuclear spin polarizations
of up to 40% have been reported for electrically
driven systems [26], and up to 60% in optically pumped
systems [27].

To quantify the degree of squeezing for arbitrary polar-

ization, Wineland et al. [7] introduced the parameter � ¼ffiffiffiffi
N

p
�Iz=jhÎxij � 2�Iz=ðp@ ffiffiffiffi

N
p Þ, which characterizes the

angular resolution of the squeezed state relative to that of
an uncorrelated product state. Different physical effects are
described by three different conditions:

ð1Þ � < 1=p; ð2Þ � < 1=
ffiffiffiffi
p

p
; ð3Þ � < 1: (2)

Condition 1 is sufficient to achieve ESR narrowing in a
quantum dot in a large magnetic field, where the electron
Zeeman energy is sensitive to the Overhauser shift, pro-
portional to �Iz. Condition 2 indicates that the standard
quantum limit has been surpassed. Finally, the most strin-
gent condition (� < 1) is sufficient to imply entanglement
of the constituent spin-1=2 particles (cf. Ref. [24]) and
enhanced resolution for atomic clocks.

Below we demonstrate that with realistic values of p, all
three conditions (2) can be met. Compared with the ideal
case p ¼ 1, we find that incomplete initial polarization,
p < 1, and fluctuations in the prepared value of p should
not hamper efforts to obtain useful squeezing (all three
conditions are close for p of order 1).

In Ref. [28], Fernholz et al. achieved squeezing of the
internal spin variables of individual composite particles,
cesium atoms with total spin F ¼ 4. In contrast, here we
describe a mechanism for squeezing the collective spin
state of a large ensemble of spatially distributed spins
which can in principle be selectively addressed.

To describe the coupled electron-nuclear spin dynamics,
we model the system with the microscopic Hamiltonian
(below we set @ ¼ 1)

H ¼ !ZŜ
z þ!0Î

z þ AÎzŜz þ A

2
ðÎþŜ� þ Î�ŜþÞ þHel;

(3)

where !Z is the electron Zeeman energy in the magnetic
field, !0 is the nuclear Larmor frequency, and Hel de-
scribes the driving of the electron spin and its coupling to
an environment, which leads to fast dephasing and relaxa-
tion. For simplicity, here we consider a single species of
nuclear spin, and take all hyperfine coupling constants to
be equal, An ¼ A. The latter condition amounts to the
assumption that electron density is approximately constant
inside the dot, and zero outside. In this case, the electron

spin couples directly to the total nuclear spin Î ¼ P
nÎn,

with the square of the total nuclear spin, Î2, conserved by
the dynamics. The effects of nonuniform couplings will be
discussed at the end.
We begin by writing the Heisenberg equation of motion

for the total nuclear spin operator Î, dÎ=dt ¼ i½Î; H�:
dÎ

dt
¼ b� Î; b ¼ !0zþ AŜ: (4)

In the motional-narrowing regime where electron dynam-
ics are fast compared to the nuclear spin evolution, we use
Eq. (3) to adiabatically eliminate the electron spin from
the right-hand side of Eq. (4). Because of the large mis-
match between the electron and nuclear Zeeman energies,
!Z=!0 � 1, averaging over fast oscillations of the elec-

tron allows us to replace Ŝ by an operator-valued semiclas-

sical mean polarization SzðÎzÞ which depends on the

nuclear polarization Îz through the Overhauser shift of
the ESR frequency, cf. Ref. [29]:

Sz ¼ 1

2

ð�!� AÎzÞ2 þ �2

ð�!� AÎzÞ2 þ ~�2
; ~�2 ¼ �2 þ �

�1

�2; (5)

where �! is the detuning between the driving frequency
and!Z,� is the driving strength, � 	 1=T2 is the electron
spin dephasing rate, and �1 is the electron spin relaxation

rate. Linearizing Eq. (5) in AÎz around the optimal detun-

ing �!
 ¼ ~�=
ffiffiffi
3

p
where Sz is most sensitive to nuclear-

polarization-dependent frequency shifts, see Fig. 2, and
substituting into Eq. (4), we obtain an effective
Hamiltonian for the collective nuclear spin:

H � !0Î
z þ 1

2
�ðÎzÞ2; � ¼ A

@Sz

@Îz

�������� Îz¼0
�!¼�!


; (6)

with Î2 ¼ IðI þ 1Þ, I � N=2, conserved by the dynamics.
Note that here we have absorbed a constant shift into the
nuclear Larmor frequency !0. The Hamiltonian in Eq. (6)
is of the canonical squeezing Hamiltonian form [2]. It is
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interesting to note that while the end results, Eqs. (5) and
(6), have a similar form to those obtained for spin squeez-
ing in atomic systems [4–6], the underlying microscopic
mechanisms are quite different.

To illustrate the squeezing induced by the Hamiltonian
in Eq. (6), and to facilitate further investigation of the
effects of classical fluctuations in the initial state, as well
as the effect of time-dependent electron spin fluctuations
around the steady state Sz, we now analyze the evolution of
the nuclear spin Wigner distribution. For a large initial
polarization p, where I ¼ pN=2, and for short to inter-
mediate times t0 & t & t1 [see Fig. 1(c)], the ‘‘uncertainty
region’’ associated with the nuclear state is small on the
scale of the total spin and we can consider evolution in a

locally-flat patch of the Bloch sphere. Here the operators Îy

and Îz approximately obey canonical commutation rela-
tions, and the initial nuclear spin state (polarized along x)
is described by an isotropic 2D Gaussian Wigner distribu-
tion with width set by the initial transverse fluctuations,
�I 	 �Iy;z0 .

Semiclassically, Eq. (6) induces precession of the total
spin vector about the z axis with a polarization-dependent
Larmor frequency �¼@H=@Iz¼!0þ�Iz. Corre-
spondingly, the Gaussian Wigner distribution evolves as

ftðIy; IzÞ ¼ A exp

�
�ðIzÞ2 þ ðIy þ I�tIzÞ2

2�I2

�
; (7)

where without loss of generality we set !0 ¼ 0. The initial
(isotropic) and evolved (squeezed) distributions are shown
in Fig. 2(b).

The quadratic form in the exponential in Eq. (7) is
diagonalized in a suitably chosen orthonormal basis y0, z0
[30]. As shown in Fig. 2(b), stretching in one direction (y0)
is accompanied by squeezing in the perpendicular direction
(z0), such that the phase space volume of the Wigner

distribution is exactly preserved if fluctuations of the elec-
tron spin are ignored. For times t * tS ¼ ðj�jIÞ�1, the

uncertainty f�I of the squeezed component decreases as

f�IðtÞ � �I
tS
t
; tS � 16�1 ~�

3

3
ffiffiffi
3

p
IA2��2

: (8)

Squeezing proceeds until long times when the phase space
distribution begins to extend around the Bloch sphere, see
Fig. 1(c). The curvature of the Bloch sphere imposes a limit
on the maximum achievable squeezing [2].
For an order-of-magnitude estimate of the squeezing

time, we set � ¼ �1 ¼ 1
5�. This choice selects the regime

of moderately strong electron spin dephasing where the
resonance is broader than the minimum value � ¼ 1

2 �1. In

this practically relevant regime, the motional-averaging ap-
proximation can be safely applied. Taking the ‘‘intrinsic’’
width of the resonance to be twice larger than the typical

Overhauser field fluctuations, � � A
ffiffiffiffi
N

p
, we obtain

tS;min � 20

ffiffiffiffi
N

p
IA

: (9)

Using a typical value of the hyperfine coupling for GaAs,

A � 0:1 �s�1, we obtain tS;min � 200 �sð ffiffiffiffi
N

p
=IÞ. The es-

timate for tS;min can be improved slightly by optimizing the

expression for tS in Eq. (8) with respect to driving power�.

The fast relaxation rate �1 � A
ffiffiffiffi
N

p
can be achieved by

working in a regime of efficient electron spin exchange
with the reservoirs in the leads. We see that the squeezing
time is inversely proportional to the initial length of the
nuclear spin vector, i.e., the degree of nuclear polarization
before squeezing.
To derive the squeezing time tS in Eq. (9), a coherent

nuclear spin state with �I ¼ ffiffiffiffiffiffiffiffi
I=2

p
was used. As discussed

above, however, when classical uncertainty in the nuclear
spin state is included, the initial width of the Wigner

distribution is given by �I ¼ ffiffiffiffi
N

p
=2. Given that the widthf�I of the squeezed component decays as 1=t, see Eq. (8),

the effect of the classical transverse fluctuations is simply
to increase the time required to reach a desired level of

fluctuations by an order-one factor
ffiffiffiffiffiffiffiffiffiffiffi
N=2I

p ¼ ffiffiffiffiffiffiffiffiffi
1=p

p
.

Besides fluctuations in the transverse components of the
initial polarization, the dynamical nuclear polarization
process used to prepare the initial nuclear spin state will
also leave behind uncertainty in the length I of the net
spin (typically with a scale much smaller than I itself).
However, because the rate of angular precession depends
only on the z component of the total spin, Eq. (7), sections
of the phase space distribution with constant Iz but varying
Bloch sphere radii will rigidly precess. Therefore fluctua-
tions in the initial polarization I do not pose a significant
threat to squeezing.
In addition to uncertainty in the initial nuclear spin state,

we must also consider the effect of time-dependent fluctu-
ations of the electron spin about its mean-field value Sz,

FIG. 2 (color online). (a) Time-averaged electron spin polar-
ization Sz, Eq. (5), and squeezing strength �, Eq. (6), versus rf
detuning �! from the ESR frequency. The average electron spin
polarization depends on Îz through the dependence of the
detuning on the Overhauser shift, as indicated by the shaded
region. (b) Contour plot representation of the Wigner distribution
of a large collective spin on a locally flat patch of the Bloch
sphere, in the rotating frame where !0 ¼ 0. The mean spin
points along x. Before squeezing, the Wigner distribution is
isotropic (blue circles). After squeezing, the Wigner distribution,
Eq. (7), is squeezed along an axis z0, and stretched along an
orthogonal axis y0 (red ellipses).
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Eq. (5). The mean-field approximation to Eq. (4) applies in
the motion-averaged limit when the electron spin evolves
quickly on the time scale of the nuclear spin dynamics,
and hence the contribution of time-dependent electron
spin fluctuations is small. The residual effect of such
fluctuations is to add a diffusive component to the
nuclear-polarization-dependent precession induced by
the time-averaged electron spin. It can be shown that the
diffusivity � associated with this phase diffusion approxi-
mately goes as �� 1=�, where ��W, �1 is the character-
istic rate of electron spin dynamics [30]. Thus phase
diffusion is indeed suppressed by motional averaging. At
long times, the competition between coherent twisting
dynamics, which squeezes fluctuations as 1=t, and phase

diffusion, which tends to increase fluctuations as t1=2, slows

down squeezing to f�I � t�1=2, but does not prevent it.
These results are based on a mean-field treatment of

Eq. (4), which we supplement by including phase diffu-
sion driven by electron spin fluctuations. This intuitive
approach is quantitatively supported by a lengthier calcu-
lation based on the full density matrix of the combined
electron-nuclear system, to be presented elsewhere. The
more powerful density-matrix approach can also be used to
study squeezing in the coherent driving regime of electron
spin dynamics where large correlations can build up be-
tween the electron and nuclear spins.

Is the approximation of uniform hyperfine coupling
justified? The hyperfine interaction in a quantum dot is
strong near the center, where electron density is high, and
weak at the edges. Notably, the atomic systems [4] display
a similar level of spatial inhomogeneity, since there is a full
modulation of coupling between zero and maximum cou-
pling in a standing wave of light. The observation of robust
squeezing in atomic clouds of size comparable to the
wavelength of light indicates that spatial variation of the
coupling does not compromise the effect.

For p � 20%, squeezing sets in after tS � 2 �s, and
fluctuations are suppressed by a factor of 10 within ap-
proximately 20 �s (neglecting phase diffusion). Because
of classical fluctuations in the initial state, the firstffiffiffiffiffiffiffiffiffi
1=p

p
-fold (1=p-fold) squeezing goes toward reaching

the standard quantum limit (entanglement threshold).
Taking into account phase diffusion, we arrive at time
scales that are at least 10 times shorter than typical nuclear
decoherence times (recently measured to be �1 ms in
vertical double quantum dots [31]). It should thus be
possible to squeeze the nuclear spin state faster than it
decoheres due to dipole-dipole interactions, etc.

All elements required for achieving and demonstrating
squeezing, i.e., dynamical nuclear polarization [26,27],
controlled rotations using NMR pulses [31,32], and coher-
ent control of single electron spins [23,33,34], have been
realized. In particular, we note that in Ref. [23] electron
spin resonance was achieved by excitation using micro-
wave magnetic fields, with driving amplitudes comparable

to the random nuclear field acting on the electron spin,
A�I. The corresponding transition rates are of the order of
10 MHz. In order to reach the motional-averaging regime,
the electron spin relaxation rate �1 must be comparable to
the transition rateW, which can be easily accomplished by
allowing cotunneling to the electron reservoirs next to the
dot. The degree of squeezing �, see Eq. (2), can be ascer-
tained by the combination of two separate measurements
on the final state: (1) an NMR pulse [31,32] which rotates
the minimum uncertainty axis (z0) into the z axis followed
by an electron spin dephasing measurement [35] of �Iz

and (2) an NMR pulse which rotates the net polarization
hIxi into to the z axis, followed by a measurement of the
average nuclear field along z.
In summary, squeezed and entangled states of nuclear

spins in quantum dots driven near the ESR are generated by
unitary evolution which does not involve incoherent spin
flips. Our estimates of the time scales for various effects
that compete with squeezing indicate that squeezing is
feasible and can be realized with current capabilities.
Such schemes may potentially open the door to unprece-
dented levels of quantum control over collective degrees of
freedom in nanoscale systems with mesoscopic numbers
(N � 104 to 106) of nuclear spins.
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