Coherent Control of a Single Electron Spin with Electric Fields

K. C. Nowack,* F. H. L. Koppens,† Yu. V. Nazarov, L. M. K. Vandersypen*

Manipulation of single spins is essential for spin-based quantum information processing. Electrical control instead of magnetic control is particularly appealing for this purpose, because electric fields are easy to generate locally on-chip. We experimentally realized coherent control of a single-electron spin in a quantum dot using an oscillating electric field generated by a local gate. The electric field induced coherent transitions (Rabi oscillations) between spin-up and spin-down with 90° rotations as fast as ~55 nanoseconds. Our analysis indicated that the electrically induced spin transitions were mediated by the spin-orbit interaction. Taken together with the recently demonstrated coherent exchange of two neighboring spins, our results establish the feasibility of fully electrical manipulation of spin qubits.

References and Notes
17. J. S. Foord et al., Diamond Relat. Mater. 11, 856 (2002).
36. J. Zhao, J. Han, J. Lu, Phys. Rev. B 65, 1934011 (2002).
54. We thank J. Adin Mann and D. J. Lacks for useful discussions. C. C. Hayman provided invaluable experimental support. Financial support of the NSF (grant CHEM 0314688) and Case Western Reserve University is gratefully acknowledged.
55. 6 August 2007; accepted 16 October 2007 10.1126/science.1148841
periodically displacing the electron wave function around its equilibrium position (Fig. 1B).

The experiment consists of four stages (Fig. 1C). The device is initialized in a spin-blockade regime where two excess electrons, one in each dot, are held fixed with parallel spins (spin triplet), either pointing along or opposed to the external magnetic field [the system is never blocked in the triplet state with antiparallel spins, because of the effect of the nuclear fields in the two dots combined with the small interdot tunnel coupling; see (16) for details]. Next, the two spins are isolated by a gate voltage pulse, such that electron tunneling between the dots or to the reservoirs is forbidden. Then, one of the spins is rotated by an ac voltage burst applied to the gate, over an angle that depends on the length of the burst (17) (most likely the spin in the right dot, where the electric field is expected to be strongest). Finally, the readout stage allows the left electron to tunnel to the right dot if and only if the spins are antiparallel. Subsequent tunneling of one electron to the right reservoir gives a contribution to the current. This cycle is repeated continuously, and the current flow through the device is thus proportional to the probability of having antiparallel spins after excitation.

To demonstrate that electrical excitation can indeed induce single-electron spin flips, we apply a microwave burst of constant length to the right side gate and monitor the average current flow through the quantum dots as a function of external magnetic field (Fig. 2A). A finite current flow is observed around the single-electron spin resonance condition, i.e., when $B_{\text{res}} = \hbar g_e\mu_B B_{\text{ext}}$, with h Planck’s constant, g_e the electron Landé g factor, and μ_B the Bohr magneton. From the position of the resonant peaks measured over a wide magnetic field range (Fig. 2B), we determine a g factor of $|g_e| = 0.39 \pm 0.01$, which is in agreement with other reported values for electrons in GaAs quantum dots (18).

In addition to the external magnetic field, the electron spin feels an effective nuclear field B_N arising from the hyperfine interaction with nuclear spins in the host material and fluctuating in time (19, 20). This nuclear field modifies the electron spin resonance condition and is generally different in the left and right dot (by ΔB_N). The peaks shown in Fig. 2A are averaged over many magnetic field sweeps and have a width of about 10 to 25 mT. This is much larger than the expected linewidth, which is only 1 to 2 mT as given by the statistical fluctuations of B_N (21, 22). Looking at individual field sweeps measured at constant excitation frequency, we see that the peaks are indeed a few mT wide (Fig. 2C), but that the peak positions change in time over a range of ~20 mT. Judging from the dependence of the position and shape of the averaged peaks on sweep direction, the origin of this large variation in the nuclear field is most likely dynamic nuclear polarization (4, 23–26).

To demonstrate coherent control of the spin, we varied the length of the microwave bursts and monitored the current level. In Fig. 3A we varied the length of the microwave bursts repeated continuously, and the current flow through the device is thus proportional to the probability of having antiparallel spins after excitation.
The two oscillations at average over six sweeps). and 2.6 GHz (black, average over five sweeps) transitions at 15.2 GHz (blue, Fig. 3. measured at the respective excitation frequencies. The error bars are given by \(f_{\text{Rabi}}/E \sqrt{(\delta f_{\text{Rabi}}/E)^2 + (\delta E/E)^2} \)

where \(\delta f_{\text{Rabi}} \) and \(\delta E \) are the error in the Rabi frequency and electric field amplitude, respectively. The gray lines are the 95% confidence bounds for a linear fit through the data (weighting the data points by the inverse error squared). B. Estimated electric field amplitudes at which the Rabi oscillations of (A) were measured at the respective excitation frequencies (27). C. Construction of the direction of \(\mathbf{n} \) resulting from the Rashba and Dresselhaus spin-orbit interaction for an electric field along [110] following Eq. 1. The coordinate system is set to the crystallographic axis [100] and [010].

Only two remaining possible coupling mechanisms: spin-orbit interaction and the spatial variation of the nuclear field.

In principle, moving the wave function in a nuclear field gradient can drive spin transitions (5, 28), as was recently observed (26). However, the measurement of each Rabi oscillation lasted more than 1 hour, much longer than the time during which the nuclear field gradient is constant (~100 μs to a few s). Because this field gradient and, therefore, the corresponding effective driving field, slowly fluctuates in time around zero, the oscillations would be strongly damped, regardless of the driving amplitude (26). Possibly, a (nearly) static gradient in the nuclear spin polarization could develop as a result of electron-nuclear feedback. However, such polarization would be parallel to \(\mathbf{B}_{\text{ext}} \) and thus cannot be responsible for the observed coherent oscillations.

In contrast, spin orbit-mediated driving can induce coherent transitions (12), which can be understood as follows. The spin-orbit interaction in a GaAs heterostructure is given by \(H_{\text{SO}} = \alpha (p_x \sigma_y - p_y \sigma_x) + \beta (p_z \sigma_x + p_x \sigma_y) \), where \(\alpha \) and \(\beta \) are the Rashba and Dresselhaus spin-orbit coefficients, respectively, and \(p_x, p_y, \) and \(p_z \) are the momentum and spin operators in the \(x, y \), and \(z \) directions (along the [100] and [010] crystal directions, respectively). As suggested in (13), the spin-orbit interaction can be conveniently accounted for up to the first order in \(\alpha, \beta \) by applying a (gauge) transformation, resulting in a position-dependent correction to the external magnetic field. This effective magnetic field, acting on the spin, is proportional and orthogonal to the field applied

\[
\mathbf{B}_{\text{eff}}(x, y) = \mathbf{n} \otimes \mathbf{B}_{\text{ext}}; n_x = \frac{2m^*}{\hbar} (-\alpha y + \beta x) \quad n_y = \frac{2m^*}{\hbar} (\alpha x + \beta y) \quad n_z = 0
\]

An electric field \(\mathbf{E}(t) \) will periodically and adiabatically displace the electron wave function (Fig. 1B) by \(\mathbf{k}(t) = (e/\epsilon \mathbf{E} \cdot \mathbf{B}_{\text{ext}}/\hbar) \mathbf{E}(t) \), so the electron spin will feel an oscillating effective field \(\mathbf{B}_{\text{eff}}(t) + \mathbf{B}_{\text{ext}} \) through the dependence of \(\mathbf{B}_{\text{eff}} \) on the position. The direction of \(\mathbf{n} \) can be constructed from the direction of the electric field as shown in Fig. 4C and together with the direction of \(\mathbf{B}_{\text{ext}} \) determines how effectively the electric field couples to the spin. This Rashba contribution always gives \(\mathbf{n} \perp \mathbf{E} \), while for the Dresselhaus contribution this depends on the orientation of the electric field with respect to the crystal axis. Given the gate geometry, we expect the dominant electric field to be along the double dot axis (Fig. 1A), which here is either the [110] or [101] crystallographic direction. For these orientations, the Dresselhaus contribution is also orthogonal to the electric field (Fig. 4C). This is why both contributions will give \(\mathbf{n}_{\text{eff}} \neq 0 \) and lead to coherent oscillations in the present experimental geometry, where \(\mathbf{E} \parallel \mathbf{B}_{\text{ext}} \). In (26), a very similar gate geometry was used, but the orientation of \(\mathbf{B}_{\text{ext}} \) was different, and it
can be expected that $E \perp B_{\text{ext}}$. In that experiment, no coherent oscillations were observed, which is consistent with the considerations here.

An important characteristic of spin orbit–mediated driving is the linear dependence of the effective driving field on the external magnetic field, which follows from Eq. 1 and is predicted in (12, 13, 29). We aim to verify this dependence by measuring the Rabi frequency as a function of the resonant excitation frequency (Fig. 4A), which is proportional to the external magnetic field. Each point is rescaled by the estimated applied electric field (Fig. 4B). Even at fixed output power of the microwave source, the electric field at the dot depends on the microwave frequency due to various resonances in the line between the microwave source and the gate (caused by reflections at the bonding wires and microwave components). However, we use the photon-assisted–tunneling response as a probe for the ac voltage drop across the interdot tunnel barrier, which we convert into an electric field amplitude by assuming a typical interdot distance of 100 nm. This allows us to roughly estimate the electric field at the dot for each frequency (17). Despite the large error bars, which predominantly result from the error made in estimating the electric field, an overall upward trend is visible in Fig. 4A.

For a quantitative comparison with theory, we extract the spin-orbit strength in GaAs, via the expression of the effective field B_{eff} perpendicular to B_{ext} for the geometry of this experiment (12)

$$B_{\text{eff}}(t) = 2 \left| B_{\text{ext}} \right| \frac{\int_{t_{\text{lat}}}^{t_{\text{lat}}} |E(t)| dt}{I_{SO} \Delta} \tag{2}$$

with I_{SO} the spin-orbit length (for the other definitions, see Fig. 1B). Here, $I_{SO}^{-1} = m^* (\alpha + \beta) \hbar$ for the case with the gate symmetry axis along [110] or [110], respectively. Via $f_{\text{Rabi}} = (g \mu_B E_{\text{ext}}) / 2 \hbar$, the confidence interval of the slope in Fig. 4A gives a spin-orbit length of 28 to 37 Å (with a level splitting Δ in the right dot of 0.9 meV extracted from high-bias transport measurements). Additional uncertainty in I_{SO} is due to the estimate of the interdot distance and the assumption of a homogeneous electric field, deformation effects of the dot potential (15), and extra cubic terms in the Hamiltonian (7). Still, the extracted spin-orbit length is of the same order of magnitude as other reported values for GaAs quantum dots (18).

Both the observed trend of B_{eff} with f_{Rabi} and the extracted range for I_{SO} are consistent with our supposition (by elimination of other mechanisms) that spin transitions are mediated by spin-orbit interaction. We note that also for relaxation of single electron spins in which electric field fluctuations from phonons couple to the spin, it is by now well established that the spin-orbit interaction is dominant at fields higher than a few 100 mT (12, 18, 28, 29). It can thus be expected to be dominant for coherent driving as well.

The electrically driven single-spin resonance reported here, combined with the so-called $\sqrt{\text{SWAP}}$ gate based on the exchange interaction between two neighboring spins (30), brings all-electrical universal control of electron spins within reach. Whereas the $\sqrt{\text{SWAP}}$ gate already operates on subnanosecond time scales, single-spin rotations still take about 100 ns (the main limitation is photon-assisted tunneling). Faster operations could be achieved by suppressing photon-assisted tunneling (e.g., by increasing the tunnel barriers or operating deeper into Coulomb blockade), by working at still higher magnetic fields, by using materials with stronger spin-orbit interaction, or through optimized gate designs. Furthermore, the electrical control offers the potential for spatially selective addressing of individual spins in a quantum dot array, because the electric field is produced by a local gate. Finally, the spin rotations were realized at magnetic fields high enough to allow for single-shot read-out of a single spin (31), so that both elements can be integrated in a single experiment.

References and Notes

10. Supporting Online Material
11. www.sciencemag.org/cgi/content/full/1148092/DC1
12. Materials and Methods
13. SOM Text
14. Figs. S1 and S2
15. References
16. 20 July 2007; accepted 16 October 2007
Published online 1 November 2007; 10.1126/science.1148092
Include this information when citing this paper.

Flow of Mantle Fluids Through the Ductile Lower Crust: Helium Isotope Trends

B. Mack Kennedy1 and Matthijs C. van Soest2

Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum $^{4}He/He$ ratios in surface fluids from the northern Basin and Range Province, western North America, increase systematically from low crustal values in the east to high mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active transtensional deformation indicates a deformation-enhanced permeability and that mantle fluids can penetrate the ductile lithosphere, even in regions where there is no substantial magmatism. Superimposed on the regional trend are local, high $^{4}He/He$ anomalies indicating hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

Mantle volatiles, principally water and CO$_2$, play an important role in lithospheric rheology and the production of buoyant fluids that can be injected into the shallow crust. Regional and local trends in the crustal occurrence of mantle volatiles provide insight into the coupling between mantle-crust tectonics (1, 2), heat and mass exchange between the mantle and crust (3–5), and the occurrence and distribution of economic resources.
Coherent Control of a Single Electron Spin with Electric Fields

Science 318 (5855), 1430-1433.
DOI: 10.1126/science.1148092 originally published online November 1, 2007