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The spin of an electron placed in a magnetic field provides a natural two-
level system suitable as a qubit in a quantum computer [1]. In this work, we
describe the experimental steps we have taken towards using a single electron
spin, trapped in a semiconductor quantum dot, as such a spin qubit [2].

The outline is as follows. Section 1 serves as an introduction into quantum
computing and quantum dots. Section 2 describes the development of the
“hardware” for the spin qubit: a device consisting of two coupled quantum
dots that can be filled with one electron (spin) each, and flanked by two
quantum point contacts (QPCs). The system can be probed in two different
ways, either by performing conventional measurements of transport through
one dot or two dots in series, or by using a QPC to measure changes in the
(average) charge on each of the two dots. This versatility has proven to be
very useful, and the type of device shown in this section was used for all
subsequent experiments.

In Sect. 3, it is shown that we can determine all relevant parameters of
a quantum dot even when it is coupled very weakly to only one reservoir.
In this regime, inaccessible to conventional transport experiments, we use a
QPC charge detector to determine the tunnel rate between the dot and the
reservoir. By measuring changes in the effective tunnel rate, we can determine
the excited states of the dot.

In Sect. 4, the QPC as a charge detector is pushed to a faster regime
(∼100 kHz), to detect single electron tunnel events in real time. We also de-
termine the dominant contributions to the noise, and estimate the ultimate
speed and sensitivity that could be achieved with this very simple method of
charge detection.

In Sect. 5, we develop a technique to perform single-shot measurement of
the spin orientation of an individual electron in a quantum dot. This is done by
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combining fast QPC charge detection with “spin-to-charge conversion”. This
fully electrical technique to read out a spin qubit is then used to determine
the relaxation time of the single spin, giving a value of 0.85 ms at a magnetic
field of 8 Tesla.

Finally, Sect. 6 puts the results in perspective, arriving at a realistic path
towards the experimental demonstration of single- and two-qubit gates and
the creation of entanglement of spins in quantum dot systems.

1 Introduction

This section gives a brief introduction into quantum computing, continuing
with a description of semiconductor quantum dots that covers their fabrication
as well as their electronic behavior. We also describe our experimental setup
for performing low-temperature transport experiments to probe such quantum
dots.

1.1 Quantum Computing

More than three quarters of a century after its birth, quantum mechanics re-
mains in many ways a peculiar theory [3]. It describes many physical effects
and properties with great accuracy, but uses unfamiliar concepts like super-
position, entanglement and projection, that seem to have no relation with the
everyday world around us. The interpretation of these concepts can still cause
controversy.

The inherent strangeness of quantum mechanics already emerges in the
simplest case: a quantum two-level system. Unlike a classical two-level system,
which is always either in state 0 or in state 1, a quantum two-level system can
just as well be in a superposition of states |0〉 and |1〉. It is, in some sense, in
both states at the same time.

Even more exotic states can occur when two such quantum two-level sys-
tems interact: the two systems can become entangled. Even if we know the
complete state of the system as a whole, for example (|01〉 − |10〉)/

√
2, which

tells us all there is to know about it, we cannot know the state of the two
subsystems individually. In fact, the subsystems do not even have a definite
state! Due to this strong connection between the two systems, a measurement
made on one influences the state of the other, even though it may be arbitrar-
ily far away. Such spooky non-local correlations enable effects like “quantum
teleportation” [4, 5].

Finally, the concept of measurement in quantum mechanics is rather spe-
cial. The evolution of an isolated quantum system is deterministic, as it is
governed by a first order differential equation – the Schrödinger equation.
However, coupling the quantum system to a measurement apparatus forces
it into one of the possible measurement eigenstates in an apparently non-
deterministic way: the particular measurement outcome is random, only the
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probability for each outcome can be determined [3]. The question of what
exactly constitutes a measurement is still not fully resolved [6].

These intriguing quantum effects pose fundamental questions about the
nature of the world we live in. The goal of science is to explore these questions.
At the same time, this also serves a more opportunistic purpose, since it might
allow us to actually use the unique features of quantum mechanics to do
something that is impossible from the classical point of view.

And there are still many things that we cannot do classically. A good ex-
ample is prime-factoring of large integers: it is easy to take two prime numbers
and compute their product. However, it is difficult to take a large integer and
find its prime factors. The time it takes any classical computer to solve this
problem grows exponentially with the number of digits. By making the integer
large enough, it becomes essentially impossible for any classical computer to
find the answer within a reasonable time – such as the lifetime of the universe.
This fact is used in most forms of cryptography nowadays [7].

In 1982, Richard Feynman speculated [8] that efficient algorithms to solve
such hard computational problems might be found by making use of the
unique features of quantum systems, such as entanglement. He envisioned
a set of quantum two-level systems that are quantum mechanically coupled to
each other, allowing the system as a whole to be brought into a superposition
of different states. By controlling the Hamiltonian of the system and therefore
its time-evolution, a computation might be performed in fewer steps than is
possible classically. Essentially, such a quantum computer could take many
computational steps at once; this is known as “quantum parallelism”.

A simplified view of the difference between a classical and a quantum
computer is shown in Fig. 1. A one-bit classical computer is a machine that
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Fig. 1. Difference between a classical and a quantum computer. (a) To determine
the function f for the two possible input states 0 and 1, a one-bit classical computer
needs to evaluate the function twice, once for every input state. In contrast, a one-
qubit quantum computer can have a superposition of |0〉 and |1〉 as an input, to end
up in a superposition of the two output values, F |0〉 and F |1〉. It has taken only half
the number of steps as its classical counterpart. (b) Similarly, a two-qubit quantum
computer needs only a quarter of the number of steps that are required classically.
The computing power of a quantum computer scales exponentially with the number
of qubits, for a classical computer the scaling is only linear
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takes one input value, 0 or 1, and computes the corresponding output value,
f(0) or f(1). A quantum computer with one quantum bit (or “qubit”) could
take as an input value a superposition of |0〉 and |1〉, and due to the linearity
of quantum mechanics the output would be a superposition of F |0〉 and F |1〉.
So, in a sense it has performed two calculations in a single step. For a two-
qubit system, the gain becomes even more significant: now the input can be
a superposition of four states, so the quantum computer can perform four
calculations in one step. In fact, it can be proved [9] that the computing
power of a quantum computer scales exponentially with the number of qubits,
whereas this scaling is only linear for a classical computer. Therefore, a large
enough quantum computer can outperform any classical computer.

It might appear that a fundamental problem has been overlooked: accord-
ing to quantum mechanics, a superposition of possible measurement outcomes
can only exist before it is measured, and the measurement gives only one actual
outcome. The exponential computing power thus appears inaccessible. How-
ever, by using carefully tailored quantum algorithms, an exponential speed-up
can be achieved for some problems such as factoring integers [10] or simulat-
ing a quantum system [11]. For other tasks, such as searching a database, a
quadratic speed-up is possible [12]. Using such quantum algorithms, a quan-
tum computer can indeed be faster than a classical one.

Another fundamental problem is the interaction of the quantum system
with the (uncontrolled) environment, which inevitably disturbs the desired
quantum evolution. This process, known as “decoherence”, results in errors
in the computation. Additional errors are introduced by imperfections in the
quantum operations that are applied. All these errors propagate, and after
some time the state of the computer will be significantly different from what
it should be. It would seem that this prohibits any long computations, mak-
ing it impossible for a quantum computer to use its exponential power for a
non-trivial task. Fortunately, it has been shown that methods to detect and
correct any errors exist [13, 14], keeping the computation on track. Of course,
such methods only help if the error rate is small enough, since otherwise the
correction operations create more errors than they remove. This sets a so-
called “accuracy threshold” [15, 16], which is currently believed to be around
10−4. If the error per quantum operation is smaller than this threshold, any
errors can be corrected and an arbitrarily long computation is possible.

Due to the development of quantum algorithms and error correction, quan-
tum computation is feasible from a theoretical point of view. The challenge
is building an actual quantum computer with a sufficiently large number of
coupled qubits. Probably, more than a hundred qubits will be required for
useful computations, but a system of about thirty qubits might already be
able to perform valuable simulations of quantum systems.



Semiconductor Few-Electron Quantum Dots as Spin Qubits 29

1.2 Implementations

A number of features are required for building an actual quantum com-
puter [17]:

1. A scalable physical system with well-characterized qubits
2. A “universal” set of quantum gates to implement any algorithm
3. The ability to initialize the qubits to a known pure state
4. A qubit-specific measurement capability
5. Decoherence times much longer than the gate operation time

Many systems can be found which satisfy some of these criteria, but it is
very hard to find a system that satisfies all of them. Essentially, we have to
reconcile the conflicting demands of good access to the quantum system (in
order to perform fast and reliable operations or measurements) with sufficient
isolation from the environment (for long coherence times). Current state-of-
the-art is a seven-bit quantum computer that has factored the number 15 into
its prime factors 3 and 5, in fewer steps than is possible classically [18]. This
was done using an ensemble of molecules in liquid solution, with seven nuclear
spins in each molecule acting as the seven qubits. These could be controlled
and read out using nuclear magnetic resonance (NMR) techniques. Although
this experiment constitutes an important proof-of-principle for quantum com-
puting, practical limitations do not allow the NMR approach to be scaled up
to more than about ten qubits.

Therefore, many other implementations are currently being studied [19].
For instance, trapped ions have been used to demonstrate a universal set of
one- and two-qubit operations, an elementary quantum algorithm, as well as
entanglement of up to three qubits and quantum teleportation [19]. Typically,
microscopic systems such as atoms or ions have excellent coherence properties,
but are not easily accessible or scalable – on the other hand, larger systems
such as solid-state devices, which can be accessed and scaled more easily, usu-
ally lack long decoherence times. A solid-state device with a long decoherence
time would represent the best of both worlds. Such a system could be provided
by the spin of an electron trapped in a quantum dot: a spin qubit.

1.3 The Spin Qubit

Our programme to build a solid-state qubit follows the proposal by Loss and
DiVincenzo [2]. This describes a quantum two-level system defined by the spin
orientation of a single electron trapped in a semiconductor quantum dot. The
electron spin can point “up” or “down” with respect to an external magnetic
field. These eigenstates, | ↑〉 and | ↓〉, correspond to the two basis states of the
qubit.

The quantum dot that holds the electron spin is defined by applying neg-
ative voltages to metal surface electrodes (“gates”) on top of a semiconductor
(GaAs/AlGaAs) heterostructure (see Fig. 2). Such gated quantum dots are



30 J.M. Elzerman et al.

ee e

2DEG back gatehigh-g layer

B

Bac
e

Fig. 2. Schematic picture of the spin qubit as proposed by Loss and DiVincenzo [2].
The array of metal electrodes on top of a semiconductor heterostructure, containing
a two-dimensional electron gas (2DEG) below the surface, defines a number of quan-
tum dots (dotted circles), each holding a single electron spin (arrow). A magnetic
field, B, induces a Zeeman splitting between the spin-up and spin-down states of
each electron spin. The spin state is controlled either via an oscillating magnetic
field, Bac (on resonance with the Zeeman splitting), or via an oscillating electric
field created with the back gates, which can pull the electron wavefunction into a
layer with a large g-factor. Coupling between two spins is controlled by changing
the voltage on the electrodes between the two dots (Adapted from [2])

very controllable and versatile systems, which can be manipulated and probed
electrically. Increasing the number of dots is straightforward, by simply adding
more electrodes. Tuning all these gate voltages allows control of the number
of electrons trapped on each dot, as well as the tunnel coupling between the
dots. With the external magnetic field, B, we can tune the Zeeman splitting,
∆EZ = gµBB, where g ≈ −0.44 is the g-factor of GaAs, and µB = 9.27×10−24

J/T is the Bohr magneton. In this way, we can control the energy levels of
the qubit.

To perform single-qubit operations, different techniques are available. We
can apply a microwave magnetic field on resonance with the Zeeman splitting,
i.e. with a frequency f = ∆EZ/h, where h is Planck’s constant. The oscillat-
ing magnetic component perpendicular to the static magnetic field B results
in a spin nutation. By applying the oscillating field for a fixed duration, a su-
perposition of | ↑〉 and | ↓〉 can be created. This magnetic technique is known
as electron spin resonance (ESR).

A completely electrical alternative might be the emerging technique of g-
tensor modulation [20]. In this scheme, an oscillating electric field is created
by modulating the voltage applied to a (back) gate. The electric field does not
couple to the spin directly, but it can push or pull the electron wavefunction
somewhat into another semiconductor layer with a different g-factor. This
procedure modulates the effective g-tensor felt by the electron spin. If the
modulation frequency is resonant with the Zeeman splitting, the required
spin nutation results and superpositions of spin states can again be created.
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Two-qubit operations can be carried out purely electrically, by varying
the gate voltages that control the potential barrier between two dots. It has
been shown [2] that the system of two electron spins on neighboring dots,
coupled via a tunnel barrier, can be mapped onto the Heisenberg exchange
Hamiltonian H = JS1 ·S2. This Hamiltonian describes an indirect interaction
between the two spins, S1 and S2, mediated by the exchange interaction, J ,
which depends on the wavefunction overlap of the electrons. By lowering the
tunnel barrier for some time and then raising it again, the effective spin-spin
interaction is temporarily turned on. In this way, the two electron spins can
be swapped or even entangled. Together with arbitrary single-spin rotations,
the exchange interaction can be used to construct a universal set of quantum
gates [2].

A last crucial ingredient is a method to read out the state of the spin qubit.
This implies measuring the spin orientation of a single electron – a daunting
task, since the electron spin magnetic moment is exceedingly small. Therefore,
an indirect spin measurement is proposed [2]. First the spin orientation of the
electron is correlated with its position, via “spin-to-charge conversion”. Then
an electrometer is used to measure the position of the charge, thereby revealing
its spin. In this way, the problem of measuring the spin orientation has been
replaced by the much easier measurement of charge.

The essential advantage of using the electron’s spin degree of freedom
to encode a qubit, lies in the fact that the spin is disturbed only weakly
by the environment. The main source of spin decoherence and relaxation is
predicted to be the phonon bath, which is coupled to the spin via the (weak)
spin-orbit interaction [21, 22, 23]. In addition, fluctuations in the nuclear-
spin configuration couple to the electron spin via the (even weaker) hyperfine
coupling [21, 24]. In contrast, the electron’s charge degree of freedom is much
easier to manipulate and read out, but it is coupled via the strong Coulomb
interaction to charge fluctuations, which are the source of the ubiquitous 1/f
noise in the “dirty” semiconductor environment. This leads to typical charge
decoherence times of a few nanoseconds [25, 26]. The spin decoherence and
relaxation times are predicted to be about four orders of magnitude longer [22].

Finally, it should be stressed that our efforts to create a spin qubit are
not purely application-driven. Aside from the search for a spin quantum com-
puter, many interesting questions await exploration. If we have the ability to
(coherently) control and read out a single electron spin in a quantum dot, this
spin could be used as a local probe of the semiconductor environment. This
could shed light for instance on many details of the spin-orbit interaction or
the hyperfine coupling.

1.4 Quantum Dots

In this paragraph, the properties of semiconductor quantum dots are described
in more detail [27]. In essence, a quantum dot is simply a small box that can
be filled with electrons. The box is coupled via tunnel barriers to a source
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Fig. 3. Schematic picture of a quantum dot in a lateral (a) and a vertical
(b) geometry. The quantum dot (represented by a disk) is connected to source
and drain contacts via tunnel barriers, allowing the current through the device, I,
to be measured in response to a bias voltage, VSD and a gate voltage, Vg

and drain reservoir, with which particles can be exchanged (see Fig. 3). By
attaching current and voltage probes to these reservoirs, we can measure the
electronic properties of the dot. The box is also coupled capacitively to one or
more “gate” electrodes, which can be used to tune the electrostatic potential of
the dot with respect to the reservoirs. When the size of the box is comparable
to the wavelength of the electrons that occupy it, the system exhibits a discrete
energy spectrum, resembling that of an atom. As a result, quantum dots
behave in many ways as artificial atoms.

Because a quantum dot is such a general kind of system, there exist quan-
tum dots of many different sizes and materials: for instance single molecules
trapped between electrodes, metallic or superconducting nanoparticles, self-
assembled quantum dots, semiconductor lateral or vertical dots, and even
semiconducting nanowires or carbon nanotubes between closely spaced elec-
trodes. In this work, we focus on lateral (gated) semiconductor quantum dots.
These lateral devices allow all relevant parameters to be controlled in the fab-
rication process, or tuned in situ.

Fabrication of gated quantum dots starts with a semiconductor het-
erostructure, a sandwich of different layers of semiconducting material (see
Fig. 4a). These layers, in our case GaAs and AlGaAs, are grown on top of each
other using molecular beam epitaxy (MBE), resulting in very clean crystals.
By doping the n-AlGaAs layer with Si, free electrons are introduced. These ac-
cumulate at the interface between GaAs and AlGaAs, typically 100 nm below
the surface, forming a two-dimensional electron gas (2DEG) – a thin (10 nm)
sheet of electrons that can only move along the interface. The 2DEG can have
a high mobility and relatively low electron density (typically 105–106 cm2/Vs
and ∼3 × 1015 m−2, respectively). The low electron density results in a large
Fermi wavelength (∼40 nm) and a large screening length, which allows us to
locally deplete the 2DEG with an electric field. This electric field is created
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Fig. 4. Confining electrons in a semiconductor. (a) Semiconductor heterostructure
containing a 2DEG (indicated in white) approximately 100 nm below the surface,
at the interface between GaAs and AlGaAs. The electrons in the 2DEG result from
Si donors in the n-AlGaAs layer. (The thickness of the different layers is not to
scale.) (b) By applying negative voltages to the metal electrodes on the surface
of the heterostructure, the underlying 2DEG can be locally depleted. In this way,
electrons can be confined to one or even zero dimensions

by applying (negative) voltages to metal gate electrodes on top of the het-
erostructure (Fig. 4b).

To fabricate these electrodes, we first spin a layer of organic resists
(typically poly-methyl-methacrylate, PMMA) on the heterostructure surface
(Fig. 5a). Then the gate pattern is defined by writing with a focused elec-
tron beam in the electron-sensitive resist. This locally breaks up the polymer
chains, so that the exposed parts can be removed by a developer. (Note that
there is some undercut of the bottom resist layer, caused by electrons backscat-
tering from the heterostructure during exposure to the electron beam.) In the
next step, metal is evaporated, which only makes contact to the heterostruc-
ture at the places where the resist has been exposed and removed. In our
devices, the metal gates consist of a thin (5 nm) “sticking” layer of titanium,
with a 30 nm layer of gold on top. In the final so-called “lift-off” step, the
remaining resist is removed with acetone. Now metal electrodes are left at the
places that were exposed to the electron beam.

resist

heterostructure

e-beam after
development

metal
evaporation after

lift-off
a b c d

Fig. 5. Fabrication of metal electrodes on the surface of the heterostructure.
(a) Writing a pattern in the resist layer with an electron beam. (b) After devel-
oping, the resist has been locally removed. (c) Evaporating metal. (d) After lift-off,
a metal electrode remains
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Fig. 6. Lateral quantum dot device defined by metal surface electrodes.
(a) Schematic view of a device. Negative voltages applied to metal gate electrodes
(dark gray) lead to depleted regions (white) in the 2DEG (light gray). Ohmic con-
tacts (light gray columns) enable bonding wires (not shown) to make electrical con-
tact to the 2DEG reservoirs. (b) Scanning electron microscope image of an actual
device, showing the gate electrodes (light gray) on top of the surface (dark gray).
The two white dots indicate two quantum dots, connected via tunable tunnel barri-
ers to a source (S) and drain (D) reservoir, indicated in white. The two upper gates
can be used to create two quantum point contacts, in order to detect changes in the
number of electrons on the dot

The electron beam can accurately write very small patterns with a reso-
lution of about 20 nm, allowing us to make very complicated gate structures
(Fig. 6). By applying negative voltages to the gates, the 2DEG is locally
depleted, creating one or more small islands that are isolated from the large
2DEG reservoirs. These islands are the quantum dots. In order to probe them,
we need to make electrical contact to the reservoirs. For this, we use rapid
thermal annealing to diffuse AuGeNi from the surface to the 2DEG below.
This forms ohmic contacts that connect the 2DEG source and drain reser-
voirs electrically to metal bonding pads on the surface. Metal wires bonded to
these pads run toward the current or voltage probes, enabling us to perform
transport measurements.

1.5 Transport Though Quantum Dots

We use two different ways to probe the behavior of electrons on a quantum
dot. In this work, we mostly rely on a nearby quantum point contact (QPC) to
detect changes in the number of electrons on the dot. In addition, we can per-
form conventional transport experiments. These experiments are conveniently
understood using the constant interaction (CI) model [27]. This model makes
two important assumptions. First, the Coulomb interactions among electrons
in the dot are captured by a single constant capacitance, C. This is the total
capacitance to the outside world, i.e. C = CS + CD + Cg, where CS is the
capacitance to the source, CD that to the drain, and Cg to the gate. Second,
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the discrete energy spectrum is independent of the number of electrons on the
dot. Under these assumptions the total energy of a N -electron dot with the
source-drain voltage, VSD, applied to the source (and the drain grounded), is
given by

U(N) =
[−|e|(N − N0) + CSVSD + CgVg]2

2C
+

N∑
n=1

En(B) (1)

where −|e| is the electron charge and N0 the number of electrons in the
dot at zero gate voltage, which compensates the positive background charge
originating from the donors in the heterostructure. The terms CSVSD and
CgVg can change continuously and represent the charge on the dot that is
induced by the bias voltage (through the capacitance CS) and by the gate
voltage Vg (through the capacitance Cg), respectively. The last term of (1)
is a sum over the occupied single-particle energy levels En(B), which are
separated by an energy ∆En = En−En−1. These energy levels depend on the
characteristics of the confinement potential. Note that, within the CI model,
only these single-particle states depend on magnetic field, B.

To describe transport experiments, it is often more convenient to use the
electrochemical potential. This is defined as the energy required to add an
electron to the quantum dot:

µ(N) ≡ U(N)−U(N − 1) =
(

N − N0 −
1
2

)
EC − EC

|e| (CSVSD +CgVg)+EN

where EC = e2/C is the charging energy. The electrochemical potential for
different electron numbers N is shown in Fig. 7a. The discrete levels are spaced
by the so-called addition energy:

Eadd(N) = µ(N + 1) − µ(N) = EC + ∆E . (2)

The addition energy consists of a purely electrostatic part, the charging energy
EC , plus the energy spacing between two discrete quantum levels, ∆E. Note
that ∆E can be zero, when two consecutive electrons are added to the same
spin-degenerate level.

Of course, for transport to occur, energy conservation needs to be satisfied.
This is the case when an electrochemical potential level falls within the “bias
window” between the electrochemical potential (Fermi energy) of the source
(µS) and the drain (µD), i.e. µS ≥ µ ≥ µD with −|e|VSD = µS − µD. Only
then can an electron tunnel from the source onto the dot, and then tunnel
off to the drain without losing or gaining energy. The important point to
realize is that since the dot is very small, it has a very small capacitance
and therefore a large charging energy – for typical dots EC ≈ a few meV.
If the electrochemical potential levels are as shown in Fig. 7a, this energy is
not available (at low temperatures and small bias voltage). So, the number of
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Fig. 7. Schematic diagrams of the electrochemical potential of the quantum dot
for different electron numbers. (a) No level falls within the bias window between
µS and µD, so the electron number is fixed at N − 1 due to Coulomb blockade.
(b) The µ(N) level is aligned, so the number of electrons can alternate between N
and N − 1, resulting in a single-electron tunneling current. The magnitude of the
current depends on the tunnel rate between the dot and the reservoir on the left,
ΓL, and on the right, ΓR. (c) Both the ground-state transition between N − 1 and
N electrons (black line), as well as the transition to an N -electron excited state
(gray line) fall within the bias window and can thus be used for transport (though
not at the same time, due to Coulomb blockade). This results in a current that is
different from the situation in (b). (d) The bias window is so large that the number
of electrons can alternate between N −1, N and N +1, i.e. two electrons can tunnel
onto the dot at the same time

electrons on the dot remains fixed and no current flows through the dot. This
is known as Coulomb blockade.

Fortunately, there are many ways to lift the Coulomb blockade. First,
we can change the voltage applied to the gate electrode. This changes the
electrostatic potential of the dot with respect to that of the reservoirs, shifting
the whole “ladder” of electrochemical potential levels up or down. When a level
falls within the bias window, the current through the device is switched on. In
Fig. 7b µ(N) is aligned, so the electron number alternates between N −1 and
N . This means that the Nth electron can tunnel onto the dot from the source,
but only after it tunnels off to the drain can another electron come onto the
dot again from the source. This cycle is known as single-electron tunnelling.

By sweeping the gate voltage and measuring the current, we obtain a trace
as shown in Fig. 8a. At the positions of the peaks, an electrochemical potential
level is aligned with the source and drain and a single-electron tunnelling
current flows. In the valleys between the peaks, the number of electrons on
the dot is fixed due to Coulomb blockade. By tuning the gate voltage from
one valley to the next one, the number of electrons on the dot can be precisely
controlled. The distance between the peaks corresponds to EC +∆E, and can
therefore give information about the energy spectrum of the dot.

A second way to lift Coulomb blockade is by changing the source-drain
voltage, VSD (see Fig. 7c). (In general, we keep the drain potential fixed, and
change only the source potential.) This increases the bias window and also
“drags” the electrochemical potential of the dot along, due to the capacitive
coupling to the source. Again, a current can flow only when an electrochemical
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Fig. 8. Transport through a quantum dot. (a) Coulomb peaks in current versus gate
voltage in the linear-response regime. (b) Coulomb diamonds in differential conduc-
tance, dI/dVSD, versus VSD and Vg, up to large bias. The edges of the diamond-
shaped regions (black) correspond to the onset of current. Diagonal lines emanating
from the diamonds (gray) indicate the onset of transport through excited states

potential level falls within the bias window. By increasing VSD until both the
ground state as well as an excited state transition fall within the bias window,
an electron can choose to tunnel not only through the ground state, but also
through an excited state of the N -electron dot. This is visible as a change in
the total current. In this way, we can perform excited-state spectroscopy.

Usually, we measure the current or differential conductance while sweeping
the bias voltage, for a series of different values of the gate voltage. Such a
measurement is shown schematically in Fig. 8b. Inside the diamond-shaped
region, the number of electrons is fixed due to Coulomb blockade, and no
current flows. Outside the diamonds, Coulomb blockade is lifted and single-
electron tunnelling can take place (or for larger bias voltages even double-
electron tunnelling is possible, see Fig. 7d). Excited states are revealed as
changes in the current, i.e. as peaks or dips in the differential conductance.
From such a “Coulomb diamond” the excited-state splitting as well as the
charging energy can be read off directly.

The simple model described above explains successfully how quantisation
of charge and energy leads to effects like Coulomb blockade and Coulomb
oscillations. Nevertheless, it is too simplified in many respects. For instance,
the model considers only first-order tunnelling processes, in which an electron
tunnels first from one reservoir onto the dot, and then from the dot to the
other reservoir. But when the tunnel rate between the dot and the leads, Γ , is
increased, higher-order tunnelling via virtual intermediate states becomes im-
portant. Such processes are known as “cotunnelling”. Furthermore, the simple
model does not take into account the spin of the electrons, thereby excluding
for instance exchange effects. Also the Kondo effect, an interaction between
the spin on the dot and the spins of the electrons in the reservoir, cannot be
accounted for.
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1.6 Spin Configurations in Few-Electron Quantum Dots

The fact that electrons carry spin determines the electronic states of the quan-
tum dot. In the simplest case – a dot containing just a single electron – spin
leads to a splitting of all orbitals into Zeeman doublets, with the ground state
corresponding to the electron spin pointing up (↑), and the excited state to
the spin pointing down (↓). The difference between the corresponding energy
levels E↑ and E↓ is given by the Zeeman energy, ∆EZ = gµBB, which is
approximately 25 µeV/T in GaAs.

For two electrons in a quantum dot, the situation is more complicated. For
a Hamiltonian without explicit spin-dependent terms, the two-electron state
is the product of the orbital and spin state. Since electrons are fermions, the
total two-electron state has to be anti-symmetric under exchange of the two
particles. Therefore, if the orbital part is symmetric, the spin state must be
anti-symmetric, and if the spin part is anti-symmetric, the orbital state must
be symmetric. The anti-symmetric two-spin state is the so-called spin singlet
(S):

S =
| ↑↓〉 − | ↓↑〉√

2
(3)

which has total spin S = 0. The symmetric two-spin states are the so-called
spin triplets (T+, T0 and T−):

T+ = | ↑↑〉T0 =
| ↑↓〉 + | ↓↑〉√

2
T− = | ↓↓〉 (4)

which have total spin S = 1 and a quantum number ms (corresponding to the
spin z-component) of 1, 0, and −1, respectively. In a finite magnetic field, the
three triplet states are split by the Zeeman splitting, ∆EZ .

Even at zero magnetic field, the energy of the two-electron system depends
on its spin configuration, through the requirement of anti-symmetry of the
total state. If we consider just the two lowest orbitals, ε0 and ε1, then there
are six possibilities to fill these with two electrons (Fig. 9). At zero magnetic
field [28], the two-electron ground state is always the spin singlet (Fig. 9a),
and the lowest excited states are always the three spin triplets (Fig. 9b–d).
The energy gain of T0 with respect to the excited spin singlet S1 (Fig. 9e)
is known as the exchange energy, J . It essentially results from the fact that
electrons in the triplet states tend to avoid each other, reducing their mutual
Coulomb energy. As the Coulomb interaction is very strong, the exchange
energy can be quite large (a few 100 µeV) [29].

The energy difference between T0 and the lowest singlet S, the “singlet-
triplet energy” EST , is thus considerably smaller than ε1−ε0. In fact, besides
the gain in exchange energy for the triplet states, there is also a gain in the
direct Coulomb energy, related to the different occupation of the orbitals [29].
For a magnetic field above a few Tesla (perpendicular to the 2DEG plane),
EST can even become negative, leading to a singlet-triplet transition of the
two-electron ground state [30].
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Fig. 9. Schematic energy diagrams depicting the spin states of two electrons occu-
pying two spin degenerate single-particle levels (ε0 and ε1). (a) Spin singlet, which
is the ground state at zero magnetic field. (b)–(d) Lowest three spin triplet states,
T+, T0 and T−, which have total spin S = 1 and quantum number ms = +1, 0 and
−1, respectively. In finite magnetic field, the triplet states are split by the Zeeman
energy. (e) Excited spin singlet state, S1, which has an energy J compared to triplet
state T0. (f) Highest excited spin singlet state, S2

In the presence of a magnetic field, the energies of the lowest singlet and
triplet states (Fig. 9a–d) can be expressed as:

ES = E↑ + E↓ + EC = 2E↑ + ∆EZ + EC

ET+ = 2E↑ + EST +EC

ET0 = E↑+E↓+EST +EC = 2E↑+EST +∆EZ +EC

ET− = 2E↓+EST +EC = 2E↑+EST +2∆EZ +EC .

Figure 10a shows the possible transitions between the one-electron spin-split
orbital ground state and the two-electron states. We have omitted the transi-
tions ↑↔T− and ↓↔T+ since these require a change in the spin z-component
of more than 1/2 and are thus spin-blocked [31]. From the energy diagram we
can deduce the electrochemical potential ladder, which is shown in Fig. 10b.
Note that µ↑↔T+ = µ↓↔T0 and µ↑↔T0 = µ↓↔T− . Consequently, the three triplet
states lead to only two resonances in first order transport through the dot.

For more than two electrons, the spin states can be much more compli-
cated. However, in some cases and for certain magnetic field regimes they
might be well approximated by a one-electron Zeeman doublet (when N is
odd) or by two-electron singlet or triplet states (when N is even). But there
are still differences – for instance, if N > 2 the ground state at zero field can
be a spin triplet, due to Hund’s rule [32].

The eigenstates of a two-electron double dot are also spin singlets and
triplets. We can again use the diagrams in Fig. 9, but now the single-particle
eigenstates ε0 and ε1 represent the symmetric and anti-symmetric combi-
nation of the lowest orbital on each of the two dots, respectively. Due to
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Fig. 10. One- and two-electron states and transitions at finite magnetic field. (a) En-
ergy diagram for a fixed gate voltage. By changing the gate voltage, the one-electron
states (below the dashed line) shift up or down relative to the two-electron states
(above the dashed line). The six transitions that are allowed (i.e. not spin-blocked)
are indicated by vertical arrows. (b) Electrochemical potentials for the transitions
between one- and two-electron states. The six transitions in (a) correspond to only
four different electrochemical potentials. By changing the gate voltage, the whole
ladder of levels is shifted up or down

tunnelling between the dots, with tunnelling matrix element t, ε0 (the “bond-
ing state”) and ε1 (the “anti-bonding state”) are split by an energy 2t. By
filling the two states with two electrons, we again get a spin singlet ground
state and a triplet first excited state (at zero field). However, the singlet
ground state is not purely S (Fig. 9a), but also contains a small admixture of
the excited singlet S2 (Fig. 9f). The admixture of S2 depends on the compe-
tition between inter-dot tunnelling and the Coulomb repulsion, and serves to
lower the Coulomb energy by reducing the double occupancy of the dots [33].

If we focus only on the singlet ground state and the triplet first excited
states, then we can describe the two spins S1 and S2 by the Heisenberg
Hamiltonian, H = JS1 ·S2. Due to this mapping procedure, J is now defined
as the energy difference between the triplet state T0 and the singlet ground
state, which depends on the details of the double dot orbital states. From a
Hund-Mulliken calculation [34], J is approximately given by 4t2/U +V , where
U is the on-site charging energy and V includes the effect of the long-range
Coulomb interaction. By changing the overlap of the wavefunctions of the
two electrons, we can change t and therefore J . Thus, control of the inter-
dot tunnel barrier would allow us to perform operations such as swapping or
entangling two spins.
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1.7 Measurement Setup

Dilution Refrigerator

To resolve small energies such as the Zeeman splitting, the sample has to be
cooled down to temperatures well below a Kelvin. We use an Oxford Kelvi-
nox 300 dilution refrigerator, which has a base temperature of about 10 mK,
and a cooling power in excess of 300 µW (at 100 mK). The sample holder is
connected to a cold finger and placed in a copper can (36 mm inner diameter)
in the bore of a superconducting magnet that can apply a magnetic field up
to 16 T.

Measurement Electronics

A typical measurement involves applying a source-drain voltage over (a part
of) the device, and measuring the resulting current as a function of the volt-
ages applied to the gates. The electrical circuits for the voltage-biased current
measurement and for applying the gate voltages are shown in Fig. 11 and
Fig. 12, respectively. The most important parts of the measurement electron-
ics – i.e. the current-to-voltage (IV) convertor, isolation amplifier, voltage
source and digital-to-analog convertors (DACs) – were all built by Raymond
Schouten at Delft University. The underlying principle of the setup is to isolate
the sample electrically from the measurement electronics. This is achieved via
optical isolation at both sides of the measurement chain, i.e. in the voltage
source, the isolation amplifier, as well as the DACs. In all these units, the
electrical signal passes through analog optocouplers, which first convert it to
an optical signal using an LED, and then convert the optical signal back using
a photodiode. In this way, there is no galvanic connection between the two
sides. In addition, all circuitry at the sample side is analog (even the DACs
have no clock circuits or microprocessors), battery-powered, and uses a single
clean ground (connected to the metal parts of the fridge) which is separated
from the ground used by the “dirty” electronics. All these features help to
eliminate ground loops and reduce interference on the measurement signal.

Measurements are controlled by a computer running LabView. It sends
commands via a fiber link to two DAC-boxes, each containing 8 digital-to-
analog convertors, and powered by a specially shielded transformer. Most of
the DACs are used to generate the voltages applied to the gate electrodes
(typically between 0 and −5 V). One of the DACs controls the source-drain
voltage for the device. The output voltage of this DAC (typically between +5
and −5 V) is sent to a voltage source, which attenuates the signal by a factor
10, 102, 103 or 104 and provides optical isolation. The attenuated voltage is
then applied to one of the ohmic contacts connected to the source reservoir
of the device.



42 J.M. Elzerman et al.

O
X

F
O

R
D

K
E

L V
IN

O
X

30
0

0.4 nF 0.4 nF

0.5 nF 0.5 nF

0.5 nF 0.5 nF

25
0

Ω

25
0

Ω

tw
is

te
d

p a
ir

tw
is

te
d

p a
ir

po
w

de
r

fil
te

r

po
w

de
r

fil
te

r

0.4 nF 0.4 nF

(20 nF) (20 nF)

BASE-T

ROOM-T

sample

clean
groundS

G
N

G
N

D
G

N
D

S
G

N

0.22 nF

G
N

D

S
G

N

G
N

D

S
G

N

10 MΩ
100 M
1 G

Ω
Ω

x10
4

DMM

R
F

B

SAMPLEx1

fib
er

G
P

IB

computer computer

ELECTRONICS

cold
ground

co
ld

fin
ge

r

IV
co

nv
er

te
r

V
so

ur
ce

100 V/ V
1 mV/ V

10 mV/ V
100 mV/ V

µ

DAC 2

IS
O

am
p

connector box

Fig. 11. Electrical circuit for performing a voltage-biased current measurement.
Elements shown in gray are connected to ground. Gray lines indicate the shielding
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The resulting current coming from the drain reservoir is fed to a low-noise
IV convertor. In this work we use two types, depending on the desired band-
width. The first one is designed for low-frequency measurements. It has a
bandwidth of about 1 kHz, and a noise floor of ∼5 fA/Hz1/2. The feedback
resistance can be set to 10 MΩ, 100 MΩ or 1 GΩ, with an input resistance
that is a factor 103 or 104 smaller (for the “low noise” or “low input re-
sistance” setting, respectively). The faster IV convertor has a bandwidth of
about 150 kHz, and a current noise of ∼1 pA/Hz1/2 at 100 kHz. The feedback
resistance is 10 MΩ, corresponding to an input resistance of 1.3 kΩ. More
characteristics are given in Sect. 4.

The signal from the IV convertor is then sent to an isolation amplifier,
to provide optical isolation and possibly gain. Again we can choose a low-
frequency version (up to ∼1 kHz) or a high-frequency one (up to ∼300 kHz).
The voltage from the isolation amplifier is finally measured by a digital multi-
meter (Keithley 2700) and sent to the computer via GPIB interface. Alterna-
tively, we can use a lock-in amplifier (Stanford EG&G 5210) if the signal to be
measured is periodic, or an ADwin Gold module for very fast measurements
(up to 2.2 × 106 14-bit samples per second).

Measurement Wires

To make contact to the sample, 2 × 12 twisted pairs of wires run from two
connector boxes at room temperature all the way down to the “cold finger”
at base temperature. The diameter and material of these wires is chosen to
minimize the heat load on the mixing chamber. From room temperature to 1
Kelvin, 2 × 9 pairs consist of manganine wires (100 µm diameter), and 2× 3
pairs of copper wires (90 µm diameter). The copper wires can be used if a large
current has to be applied. From 1 Kelvin to the mixing chamber, supercon-
ducting “Niomax” wires (50 µm diameter) are used. From the mixing chamber
to the bottom of the cold finger, where thermal conductivity is no longer a
constraint, we have standard copper wires. At base temperature, one wire of
each twisted pair is connected to “cold ground” (i.e. the cold finger), which is
electrically connected to clean ground via the metal parts of the fridge.

All wires are thermally anchored to the fridge, by carefully wrapping them
around copper posts, at several temperature stages (4 K, 1 K, ∼100 mK and
∼10 mK). At room temperature, the resistance of the wires is about 250 Ω or
150 Ω for the manganine or copper wires, respectively. At low temperature it
is about 50 Ω. The wires have various parasitic capacitances to their twisted
partner and to ground, as indicated in Fig. 11 and Fig. 12.

Filtering

The wires connect the device to the measurement electronics at room tem-
perature, so they have to be carefully filtered to avoid that the electrons in
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the sample heat up due to spurious noise and interference. Several filtering
stages are required for different frequency ranges (see Fig. 11 and Fig. 12). In
the connector box at room temperature, all wires are connected to ground via
0.22 nF “feedthrough capacitors”. At base temperature, all signal wires run
through “copper powder filters” [35]. These are copper tubes filled with cop-
per powder, in which 4 signal wires with a length of about 2 meters each are
wound. The powder absorbs the high-frequency noise very effectively, leading
to an attenuation of more than −60 dB from a few 100 MHz up to more than
50 GHz [36].

To remove the remaining low-frequency noise, we solder a 20 nF capacitor
between each signal wire and the cold finger ground. In combination with the
∼100 Ω resistance of the wires, this forms a low-pass RC filter with a cut-off
frequency of about 100 kHz (even 10 kHz for the wire connected to the IV
convertor, due to its input resistance of about 1.3 kΩ). These filters are used
for the wires connecting to ohmic contacts (although they were taken out to
perform some of the high-bandwidth measurements described in this work).
For the wires connecting to gate electrodes, a 1:3 voltage divider is present
(consisting of a 20 MΩ resistance in the signal line and a 10 MΩ resistance to
ground). In this way, the gate voltages are filtered by a low-pass RC filter with
a cut-off frequency of about 1 Hz. By combining all these filters, the electrons
in the sample can be cooled to an effective temperature below 50 mK (if no
extra heat loads such as coaxial cables are present).

High-Frequency Signals

High-frequency signals can be applied to gate electrodes via two coaxial cables.
They consist of three parts, connected via standard 2.4 mm Hewlett Packard
connectors (specified up to 50 GHz). From room temperature to 1 Kelvin,
a 0.085 inch semi-rigid Be-Cu (inner and outer conductor) coaxial cable is
used. From 1 Kelvin to the mixing chamber, we use 0.085 inch semi-rigid
superconducting Nb. From the mixing chamber to the sample holder, flexible
tin plated Cu coaxial cables are present. The coaxes are thermally anchored at
4 K, 1 K, ∼800 mK, ∼100 mK and base temperature, by clamping each cable
firmly between two copper parts. To thermalize also the inner conductor of
the coax, we use Hewlett Packard 8490D attenuators (typically −20 dB) at
1 K. These attenuators cannot be used at the mixing chamber, as they tend
to become superconducting below about 100 mK. We have also tried using
Inmet 50EH attenuators at the mixing chamber, but these showed the same
problem.

To generate the high-frequency signals, we use a microwave source (Hewlett
Packard 83650A) that goes up to 50 GHz (or 75 GHz, in combination with a
“frequency doubler”); a pulse generator (Hewlett Packard 8133A), which gen-
erates simple 10 ns to 1 µs pulses with a rise time of 60 ps; and an arbitrary
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waveform generator (Sony Tektronix AWS520), which can generate more com-
plicated pulses with a rise time of 1.5 ns. With the cables described above, the
fastest pulse flank we can transmit to the sample is about 200 ps. Microwave
signals are transmitted with about 10 dB loss at 50 GHz.

Special care needs to be given to the connection from the coaxial cable to
the chip, in order to minimize reflections. The sample holder we use, has an
SMA connector that can be connected to the 2.4 mm coaxial cable. At the
other end, the pin of the SMA connector sticks through a small hole in the
chip carrier. This allows it to be soldered to a metal pad on the chip carrier,
from which we can then bond to the chip. This sample holder is used to apply
pulses or microwave signals to a gate electrode.

1.8 Sample Stability

A severe experimental difficulty that is not related to the measurement setup,
but to the sample itself, is the problem of “charge switching”. It shows up in
measurements as fluctuations in the position of a Coulomb peak, or as sudden
jumps in the QPC-current that are not related to charging or discharging of a
nearby quantum dot. Generally, these switches are attributed to (deep) traps
in the donor layer that capture or release an electron close to the quantum
dot [37]. This well-known but poorly understood phenomenon is a manifesta-
tion of 1/f noise in semiconductors, which causes the electrostatic potential
landscape in the 2DEG to fluctuate.

The strength of the fluctuations can differ enormously. In some samples,
switching occurs on a time scale of seconds, making only the most trivial
measurements possible, whereas in other samples, no switches are visible on
a time scale of hours. It is not clear what exactly determines the stability. It
certainly depends on the heterostructure, as some wafers are clearly better
than others. A number of growth parameters could be important, such as the
Al concentration in the AlGaAs, the doping density and method (modulation
doping or delta doping), the thickness of the spacer layer between the n-
AlGaAs and GaAs, the depth of the 2DEG below the surface, a possible
surface layer, and many more. We have recently started a collaboration with
the group of Professor Wegscheider in Regensburg to grow and characterize
heterostructures in which some of these parameters are systematically varied.
In this way we hope to find out what makes certain heterostructures stable.

Even for the same heterostructure, some samples are more quiet than
others. The reasons for this are not clear. There are reports that stability is
improved if the sample is cooled down slowly, while applying a positive voltage
(about +280 mV) on all gates that are going to be used in the experiment.
This procedure effectively “freezes in” a negative charge around the gates,
such that less negative gate voltages are sufficient to define the quantum dot
at low temperatures. Most samples described in this work have been cooled
down from room temperature to 4 K slowly (in one to two days) with all gates
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grounded. We find that in general samples get more quiet during the first
week of applying the gate voltages. Finally, sample stability also involves an
element of luck: Fig. 13 shows two Coulomb diamonds that were measured im-
mediately after each other under identical conditions. Measurement Fig. 13a
is reasonably quiet, but in Fig. 13b the effects of an individual two-level fluc-
tuator are visible. This particular fluctuator remained active for a week, until
the sample was warmed up.
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Fig. 13. Charge switching in a large-bias measurement in the few-electron regime,
for B = 12 T. (a) Differential conductance, dI/dVSD (in grayscale), as a function
of bias voltage and gate voltage. This measurement is considered reasonably stable.
(b) Identical measurement, taken immediately after (a). A single two-level fluctuator
has become active, causing the effective gate voltage to fluctuate between two values
at any position in the figure, and leading to an apparent splitting of all the lines.
This is considered a measurement of poor stability

Switching has made all experiments we performed more difficult, and has
made some experiments that we wanted to perform impossible. Better control
over heterostructure stability is therefore essential for the increasingly difficult
steps towards creating a quantum dot spin qubit.

2 Few-Electron Quantum Dot Circuit
with Integrated Charge Read-Out

In this section, we report on the realization of few-electron double quantum
dots defined in a two-dimensional electron gas by means of surface gates on
top of a GaAs/AlGaAs heterostructure. The double quantum dots are flanked
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by two quantum point contacts, serving as charge detectors. These enable de-
termination of the precise number of conduction electrons on each dot. This
number can be reduced to zero while still allowing transport measurements
through the double dot. Even in the few-electron case, the tunnel coupling
between the two dots can be controlled over a wide range, from the weak-
coupling to the strong-coupling regime. In addition, we use microwave radia-
tion to pump an electron from one dot to the other by absorption of a single
photon. The experiments demonstrate that this quantum dot circuit can serve
as a good starting point for a scalable spin-qubit system.

2.1 Few-Electron Quantum Dots

The experimental development of a quantum computer is presently at the
stage of realizing few-qubit circuits. In the solid state, particular success
has been achieved with superconducting devices, in which two macroscopic
quantum states are used as a qubit two-level system (see [38] and references
therein). The opposite alternative would be the use of two-level systems de-
fined by microscopic variables, for instance the spin (or charge) state of single
electrons confined in semiconductor quantum dots [27]. For the control of
one-electron quantum states by electrical voltages, the first requirement is to
realize an appropriate quantum dot circuit containing just a single conduction
electron.

Single-electron quantum dots have been created in self-assembled struc-
tures [39] and also in small vertical pillars defined by etching [40]. (Recently,
also semiconductor nanowires and carbon nanotubes have been used for this
purpose.) The disadvantage of these types of quantum dots is that they are
hard to integrate into circuits with a controllable coupling between the ele-
ments, although integration of vertical quantum dot structures is currently
being pursued [41, 42]. Alternatively, we can use a system of lateral quan-
tum dots defined in a two-dimensional electron gas (2DEG) by surface gates
on top of a semiconductor heterostructure [27]. Here, integration of multiple
dots is straightforward, by simply increasing the number of gate electrodes.
In addition, the tunnel coupling between the dots can be tuned in situ, since
it is controlled by the gate voltages. The challenge is to reduce the number
of electrons to one per quantum dot. This has long been impossible, since
reducing the electron number tends to be accompanied by a decrease in the
tunnel coupling, resulting in a current too small to be measured [43].

In this section, we demonstrate double quantum dot devices containing a
voltage-controllable number of electrons, down to a single electron. We have
integrated these devices with charge detectors that can read out the charge
state of the double quantum dot with a sensitivity better than a single electron
charge. The importance of the present circuit is that it can serve as a fully
tunable two-qubit system, following the proposal by Loss and DiVincenzo [2],
which describes an optimal combination of the single-electron charge degree
of freedom (for convenient manipulation using electrical voltages) and the
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spin degree of freedom (which promises a long coherence time, essential for
encoding quantum information).

2.2 Samples

We have fabricated and measured several few-electron double quantum dots,
of three different designs (Fig. 14). The first two types have only been used
once as few-electron single dots. In both cases, one of the gate electrodes was
not functioning, which prevented us from testing if these devices also function
as few-electron double dots. The third type of device (Fig. 14c) did function
as a double dot, and was used for all subsequent few-electron experiments.

To verify that the first device (Fig. 14a) can operate as a few-electron
single quantum dot, we performed a large-bias measurement of the differential
conductance through the dot. Going towards more negative gate voltage, a
series of “Coulomb diamonds” is revealed (Fig. 15a), in which the number of
electrons on the dot, N , is constant. This is followed by a region in which
the “diamond” does not close, even up to a source-drain voltage of 10 mV, i.e.
several times larger than the typical charging energy for a small dot (∼2 meV).
Therefore, in this region N = 0.

The tunnel coupling between the dot and the source and drain reservoirs
could be changed by simply readjusting the gate voltages. For strong coupling,
a zero-bias peak – hallmark of the Kondo effect – became visible throughout
the one-electron diamond (Fig. 15b). From the width of the zero-bias peak
(Fig. 15c) we found a Kondo temperature of about 0.4 K. The appearance
of a one-electron Kondo effect (unpublished) implies that this quantum dot
design allows the tunnel coupling to be tuned over a wide range, even in the
few-electron regime. In addition, it is striking evidence that we can confine a
single spin in a lateral quantum dot.

In the second quantum dot design (Fig. 14b), the narrow “plunger” gates
approach the dot more from the sides, rather than from below. In this way,
they are further away from the central tunnel barrier, reducing the effect they
have on the tunnel rate. Also, the gate coming from the top of the picture
was made thinner, in order to make the tunnel barriers more easily control-
lable [43]. Thirdly, the characteristic gates ending in circles (see Fig. 14a) were
left out. This device was quite easily tunable.

In the rest of this section, we use the third design (Fig. 14c). Two nomi-
nally identical devices are studied, both as shown in Fig. 16a. They consist of a
double quantum dot flanked by two quantum point contacts (QPCs), defined
in a 2DEG that is present below the surface of a GaAs/AlGaAs heterostruc-
ture. The layout of the double quantum dot is an extension of previously
reported single dot devices [43]. The double dot is defined by applying neg-
ative voltages to the 6 central gates. Gate T in combination with the left
(right) gate, L (R), controls the tunnel barrier from the left (right) dot to
drain 1 (source 2). Gate T in combination with the middle gate, M , controls
the tunnel barrier between the two dots. The narrow “plunger” gates, PL and
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Fig. 14. Few-electron quantum dot devices. (a) Scanning electron microscope im-
age of the first sample, showing the metal gate electrodes (light) on top of a
GaAs/AlGaAs heterostructure (dark) that contains a 2DEG 90nm below the surface
(with electron density 2.9× 1011 cm−2). This device was used only as a few-electron
single dot. Due to the similarity of the image to characters from the Japanese “Gun-
dam” animation, this has become known as the Gundam design. The two gates
coming from the top and ending in small circles (the “eyes”) were meant to make
the dot confinement potential steeper, by applying a positive voltage to them (up
to ∼0.5 V). The gates were not very effective, and were left out in later designs.
(The device was fabricated by Wilfred van der Wiel at NTT Basic Research Lab-
oratories.) (b) Scanning electron microscope image of the second device, made on
a similar heterostructure. It was used only as a few-electron single dot, and was
more easily tunable than the first one. (The device was fabricated by Wilfred van
der Wiel and Ronald Hanson at NTT Basic Research Laboratories.) (c) Atomic
force microscope image of the third device, made on a similar heterostructure. This
design, with two extra side gates to form two quantum point contacts, was operated
many times as a single dot, and twice as a few-electron double dot. It was used for
all subsequent measurements. A zoom-in of the gate structure is shown in Fig. 16a.
(The device was fabricated by Ronald Hanson and Laurens Willems van Beveren at
NTT Basic Research Laboratories)
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Fig. 15. Kondo effect in a one-electron lateral quantum dot of the type shown
in Fig. 14a. (a) Differential conductance (in grayscale) versus source-drain voltage,
VSD, and plunger gate voltage, Vg. In the white diamond and the white region to
the right (indicated by N = 1 and N = 0, respectively), no current flows due to
Coulomb blockade. The N = 0 region opens up to more than 10 mV, indicating
that the dot is really empty here. (b) Close-up of the N = 1 diamond for stronger
coupling to the reservoirs. A sharp Kondo resonance is visible at zero source-drain
voltage. Although charge switching is very severe in this sample, the position of the
Kondo resonance is very stable, as it is pinned to the Fermi energy of the reservoirs.
(c) Kondo zero-bias peak in differential conductance, taken at the position indicated
by the dotted line in (b)

PR, are used to change the electrostatic potential of the left and right dot,
respectively. The left plunger gate is connected to a coaxial cable, so that
we can apply high-frequency signals. In the present experiments we do not
apply dc voltages to PL. In order to control the number of electrons on the
double dot, we use gate L for the left dot and PR or R for the right dot. All
measurements are performed with the sample cooled to a base temperature
of about 10 mK inside a dilution refrigerator.

We first study sample 1. The individual dots are characterized using stan-
dard Coulomb blockade experiments [27], i.e. by measuring IDOT . We find
that the energy cost for adding a second electron to a one-electron dot is
3.7 meV. The one-electron excitation energy (i.e. the difference between the
ground state and the first orbital excited state) is 1.8 meV at zero magnetic
field. For a two-electron dot the energy difference between the spin singlet
ground state and the spin triplet excited state is 1.0 meV at zero magnetic
field. Increasing the field (perpendicular to the 2DEG) leads to a transition
from a singlet to a triplet ground state at about 1.7 Tesla.
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2.3 Quantum Point Contact as Charge Detector

As an alternative to measuring the current through the quantum dot, we
can also measure the charge on the dot using one of the QPCs [44, 45]. To
demonstrate this functionality, we first define only the left dot (by grounding
gates R and PR), and use the left QPC as a charge detector. The QPC is
formed by applying negative voltages to Q − L and L. This creates a narrow
constriction in the 2DEG, with a conductance, G, that is quantized when
sweeping the gate voltage VQ−L. The last plateau (at G = 2e2/h) and the
transition to complete pinch-off (i.e. G = 0) are shown in Fig. 16b. We tune
the QPC to the steepest point (G ≈ e2/h), where the QPC-conductance has
a maximum sensitivity to changes in the electrostatic environment, including
changes in the charge of the nearby quantum dot.

To change the number of electrons in the left dot, we make gate volt-
age VM more negative (see Fig. 16c). This reduces the QPC current, due to
the capacitive coupling from gate M to the QPC constriction. In addition, the
changing gate voltage periodically pushes an electron out of the dot. The as-
sociated sudden change in charge lifts the electrostatic potential at the QPC
constriction, resulting in a step-like feature in IQPC (see the expansion in
Fig. 16c, where the linear background is subtracted). This step indicates a
change in the electron number. So, even without passing current through the
dot, IQPC provides information about the charge on the dot.

To enhance the charge sensitivity we apply a small modulation (0.3 mV
at 17.7 Hz) to VM and use lock-in detection to measure dIQPC/dVM [45].
The steps in IQPC now appear as dips in dIQPC/dVM . Figure 16d shows
the resulting dips, as well as the corresponding Coulomb peaks measured in
the current through the dot. The coincidence of the Coulomb peaks and dips
demonstrates that the QPC indeed functions as a charge detector. From the
height of the step in Fig. 16c (∼50 pA, typically 1–2% of the total current)
compared to the noise (∼5 pA for a measurement time of 100 ms), we estimate
the sensitivity of the charge detector to be about 0.1e, with e being the single
electron charge. The unique advantage of QPC charge detection is that it
provides a signal even when the tunnel barriers of the dot are so opaque that
IDOT is too small to be measured [44, 45]. This allows us to study quantum
dots even when they are virtually isolated from the reservoirs.

2.4 Double Dot Charge Stability Diagram

The QPC can also detect changes in the charge configuration of the double dot.
To demonstrate this, we use the QPC on the right to measure dIQPC/dVL

versus VL and VPR (Fig. 17a), where VL controls (mainly) the number of
electrons on the left dot, and VPR (mainly) that on the right. Dark lines in
the figure signify a dip in dIQPC/dVL, corresponding to a change in the total
number of electrons on the double dot. Together these lines form the so-called
“honeycomb diagram” [46, 47]. The almost-horizontal lines correspond to a
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Fig. 16. Operating the QPC as a charge detector of a single dot. (a) Scanning
electron microscope image of the device, showing metallic surface gates (light gray)
on top of a GaAs/AlGaAs heterostructure (dark gray). The device contains a 2DEG
90nm below the surface, with an electron density of 2.9 × 1011 cm−2. White dotted
circles indicate the two quantum dots, white arrows show the possible current paths.
A bias voltage, VDOT , can be applied between source 2 and drain 1, leading to
current through the dot(s), IDOT . A bias voltage, VSD1 (VSD2), between source 1
(source 2) and drain 1 (drain 2), yields a current, IQPC through the left (right)
QPC. (b) Conductance, G, of the left QPC versus gate voltage, VQ−L, showing
the last quantized plateau (at G = 2e2/h) and the transition to complete pinch-off
(G = 0). The QPC is set to the point of highest charge sensitivity, at G ≈ e2/h
(indicated by the dashed cross). (c) Current through the left QPC, IQPC , versus
left-dot gate voltage, VM , with VSD1 = 250 µV and VSD2 = VDOT = 0. Steps
indicated by arrows correspond to changes in the number of electrons on the left dot.
Encircled inset: the last step (∼50 pA high), with the linear background subtracted.
(d) Upper panel: Coulomb peaks measured in transport current through the left dot,
with VDOT = 100 µV and VSD1 = VSD2 = 0. Lower panel: changes in the number
of electrons on the left dot measured with the left QPC, with VSD1 = 250 µV and
VSD2 = VDOT = 0)
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Fig. 17. Using the QPC to measure the charge configuration of a double quan-
tum dot in the few-electron regime. (a) dIQPC/dVL (in grayscale) versus VL and
VPR, with VSD2 = 100 µV and VSD1 = VDOT = 0. A small modulation (0.3 mV
at 17.77 Hz) is applied to VL, and the resulting modulation in IQPC is measured
with a lock-in amplifier to give dIQPC/dVL directly. The label “00” indicates the
region where the double dot is completely empty. In the bottom left corner the dark
lines are poorly visible. Here the tunnel rates to the reservoirs are quite large, lead-
ing to smearing of the steps in the QPC current, and therefore to smaller dips in
dIQPC/dVL. (b) Zoom-in of Fig. 17a, showing the “honeycomb” diagram for the first
few electrons in the double dot. The black labels indicate the charge configuration,
with “21” meaning 2 electrons in the left dot and 1 on the right

change in the number of electrons on the left dot, whereas almost-vertical lines
indicate a change in the electron number on the right. In the upper left region
the “horizontal” lines are not present, even though the QPC can still detect
changes in the charge, as demonstrated by the presence of the “vertical” lines.
We conclude that in this region the left dot contains zero electrons. Similarly, a
disappearance of the “vertical” lines occurs in the lower right region, showing
that here the right dot is empty. In the upper right region, the absence of
lines shows that here the double dot is completely empty.

We are now able to identify the exact charge configuration of the double
dot in every honeycomb cell, by simply counting the number of “horizontal”
and “vertical” lines that separate it from the 00 region. In Fig. 17b the first
few honeycomb cells are labelled according to their charge configuration, with
e.g. the label “21” meaning 2 electrons in the left dot and 1 on the right.
Besides the dark lines, also short bright lines are visible, signifying a peak
in dIQPC/dVL. These bright lines correspond to an electron being transferred
from one dot to the other, with the total electron number remaining the same.
(The fact that some charge transitions result in a dip in dIQPC/dVL and others
in a peak, derives from the fact that we use the QPC on the right and apply
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the modulation to the gate on the left. When an electron is pushed out of the
double dot by making VL more negative, the QPC opens up and dIQPC/dVL

displays a dip. When VL pushes an electron from the left to the right dot,
the QPC is closed slightly, resulting in a peak.) The visibility of all lines in
the honeycomb pattern demonstrates that the QPC is sufficiently sensitive to
detect even inter-dot transitions.

2.5 Tunable Tunnel Barriers in the Few-Electron Regime

In measurements of transport through lateral double quantum dots, the few-
electron regime has never been reached [47]. The problem is that the gates
that are used to deplete the dots also strongly influence the tunnel barriers.
Reducing the electron number would therefore always lead to the Coulomb
peaks becoming unmeasurably small, but not necessarily due to an empty dou-
ble dot. The QPC detectors now permit us to compare charge and transport
measurements.

Figure 18a shows the current through the double dot in the same region as
shown in Fig. 17b. In the bottom left region the gates are not very negative,
hence the tunnel barriers are quite open. Here the resonant current at the
charge transition points is quite high (∼100 pA, dark gray), and lines due
to cotunnelling are also visible [47]. Towards the top right corner the gate
voltages become more negative, thereby closing off the barriers and reducing
the current peaks (lighter gray). The last “triple points” [47] that are visible
(<1 pA) are shown in the dashed square. Using the dotted lines, extracted
from the measured charge transition lines in Fig. 17b, we label the various
regions in the figure according to the charge configuration of the double dot.
Apart from a small shift, the dotted lines correspond nicely to the regions
where a transport current is visible. This allows us to be confident that the
triple points in the dashed square are really the last ones before the double
quantum dot is empty. We are thus able to measure transport through a
one-electron double quantum dot.

Even in the few-electron regime, the double dot remains fully tunable.
By changing the voltage applied to gate T , we can make the tunnel barriers
more transparent, leading to a larger current through the device. We use this
procedure to increase the current at the last set of triple points. For the gate
voltages used in Fig. 18b, the resonant current is very small (<1 pA), and the
triple points are only faintly visible. By making VT less negative, the resonant
current peaks grow to about 5 pA (Fig. 18c). The two triple points are clearly
resolved and the cotunnelling current is not visible. By changing VT even more,
the current at the last triple points can be increased to ∼70 pA (Fig. 18d). For
these settings, the triple points have turned into lines, due to the increased
cotunnelling current. This sequence demonstrates that we can tune the few-
electron double dot from being nearly isolated from the reservoirs, to being
very transparent.
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Fig. 18. Current through the double quantum dot in the few-electron regime.
(a) IDOT (in logarithmic grayscale) versus VL and VPR in the same region as shown
in Fig. 17b, with VDOT = 100 µV and VSD1 = VSD2 = 0. Dotted lines are extracted
from Fig. 17b. Dark gray indicates a current flowing, with the darkest regions (in
the bottom left corner) corresponding to ∼100 pA. In the light gray regions current
is zero due to Coulomb blockade. Inside the dashed square, the last triple points
are faintly visible (∼1 pA). (A smoothly varying background current due to a small
leakage current from a gate to the 2DEG has been subtracted from all traces.)
(b) Close-up of the region inside the dashed square in (a), showing the last two
triple points before the double dot is completely empty. The current at these triple
points is very small (<1 pA) since the tunnel barriers are very opaque. (c) Same
two triple points for different values of the voltage applied to the gates defining the
tunnel barriers. For these settings, the two individual triple points are well resolved,
with a height of about 5 pA. The cotunnelling current is not visible. (d) Same two
triple points, but now with the gate voltages such that the tunnel barriers are very
transparent. The current at the triple points is about 70 pA, and the cotunnelling
current is clearly visible

We can also control the inter-dot coupling, by changing the voltage applied
to gate M . This is demonstrated with a QPC charge measurement (performed
on sample 2). We apply a square wave modulation of 3 mV at 235 Hz to the
rightmost plunger gate, PR, and measure dIQPC/dVPR using a lock-in am-
plifier. Figure 19a shows the familiar honeycomb diagram in the few-electron
regime. All lines indicating charge transitions are very straight, implying that
for the gate settings used, the tunnnel-coupling between the two dots is negli-
gible compared to the capacitive coupling. This is the so-called weak-coupling
regime. (We note that the regular shape of the honeycomb pattern demon-
strates that the double dot as a whole is still quite well-coupled to the leads,
so that the total number of electrons can always find its lowest-energy value,
unlike in [48].) By making VM less negative, the tunnel barrier between the
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Fig. 19. Controlling the inter-dot coupling (in sample 2) with VM . These charge
stability diagrams of the double quantum dot are measured using the QPC on the
left. A small modulation (3 mV at 235 Hz) is applied to gate PR, and dIQPC/dVPR

is measured with a lock-in amplifier and plotted in grayscale versus VL and VR. A
magnetic field of 6 Tesla is applied in the plane of the 2DEG. (a) Weak-coupling
regime. VM is such that all dark lines indicating charge transitions are straight.
The tunnel-coupling between the two dots is therefore negligible compared to the
capacitive coupling. (b) Intermediate-coupling regime. VM is 0.07 V less negative
than in (a), such that lines in the bottom left corner are slightly curved. This signifies
that here the inter-dot tunnel-coupling is comparable to the capacitive coupling.
(c) Strong-coupling regime. VM is 0.1 V less negative than in (b), such that all
lines are very curved. This implies that the tunnel-coupling is dominating over the
capacitive coupling and the double dot behaves as a single dot
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two dots is made more transparent, and the intermediate-coupling regime is
reached (Fig. 19b). Most lines are still straight, except in the bottom left
corner, where they are slightly curved. This signifies that here the inter-dot
tunnel-coupling is comparable to the capacitive coupling. If we make VM even
less negative, we reach the strong-coupling regime (Fig. 19c). In this case, all
lines are very curved, implying that the tunnel-coupling is dominating over
the capacitive coupling. In this regime the double dot behaves like a single
dot.

2.6 Photon-Assisted Tunnelling

The use of gated quantum dots for quantum state manipulation in time re-
quires the ability to modify the potential at high frequencies. We investi-
gate the high-frequency behavior in the region around the last triple points
(Fig. 20a), with a 50 GHz microwave-signal applied to gate PL. At the dotted
line the 01 and 10 charge states are degenerate in energy, so one electron can
tunnel back and forth between the two dots. Away from this line there is an
energy difference and only one charge state is stable. However, if the energy
difference matches the photon energy, the transition to the other dot is possi-
ble by absorption of a single photon. Such photon-assisted tunnelling events
give rise to the two lines indicated by the arrows. At the lower (higher) line
electrons are pumped from the the left (right) dot to the other one, giving rise
to a negative (positive) photon-assisted current. We find that the distance (in
terms of gate voltage) between the two photon-assisted tunnelling lines, ∆VL,
scales linearly with frequency (Fig. 20b), as expected in the weak-coupling
regime [47]. From the absence of bending of the line in Fig. 20b down to a
frequency of 6 GHz, it follows that the inter-dot tunnel coupling is smaller
than about 12 µeV.

The realization of a controllable few-electron quantum dot circuit repre-
sents a significant step towards controlling the coherent properties of single
electron spins in quantum dots [2, 49]. Integration with the QPCs permits
charge read-out of closed quantum dots. We note that charge read-out only
affects the spin state indirectly, via the spin-orbit interaction. The back-action
on the spin should therefore be small (until spin-to-charge conversion is initi-
ated), and can be further suppressed by switching on the charge detector only
during the read-out stage. Experiments described in the following sections fo-
cus on increasing the speed of the charge measurement, such that single-shot
read-out of a single electron spin can be accomplished [49, 50].

3 Excited-State Spectroscopy on a Nearly Closed
Quantum Dot via Charge Detection

In this section, we demonstrate a method for measuring the discrete energy
spectrum of a quantum dot connected very weakly to a single lead. A train of



Semiconductor Few-Electron Quantum Dots as Spin Qubits 59

10

01 00

11

-1.078

-1.080

-1.082

-1.084

-0.54 -0.55 -0.56

a

50403020100

1

2

3

4

5

0

∆V
L

(m
V

)

Frequency (GHz)

b

V
L

(V
)

VPR (V)

Fig. 20. Photon-assisted tunnelling in a one-electron double quantum dot. (a) Cur-
rent through the double dot at the last set of triple points, with zero bias voltage
(VDOT = VSD1 = VSD2 = 0). A microwave signal of 50 GHz is applied to PL. The
microwaves pump a current, IDOT , by absorption of single photons [47]. This photon-
assisted current shows up as two lines, indicated by the two arrows. The white line
(bottom) corresponds to electrons being pumped from the left to the right reservoir,
the dark line (top) corresponds to pumping in the reverse direction. In the middle,
around the dotted line separating the 01 from the 10 configuration, a finite current
is induced by an unwanted voltage drop over the double dot, due to asymmetric
coupling of the ac-signal to the two leads. (b) Separation between the two photon-
assisted tunnelling lines versus microwave frequency. The dependence is linear down
to the lowest frequency of about 6 GHz, from which it follows that the inter-dot tun-
nel coupling (half the energy difference between bonding and anti-bonding state) is
smaller than ∼12 µeV

voltage pulses applied to a metal gate induces tunnelling of electrons between
the quantum dot and a reservoir. The effective tunnel rate depends on the
number and nature of the energy levels in the dot made accessible by the
pulse. Measurement of the charge dynamics thus reveals the energy spectrum
of the dot, as demonstrated for a dot in the few-electron regime.

3.1 Introduction

Few-electron quantum dots are considered as qubits for quantum circuits,
where the quantum bit is stored in the spin or orbital state of an electron in a
single or double dot. The elements in such a device must have functionalities
such as initialization, one- and two-qubit operations and read-out [2]. For all
these functions it is necessary to have precise knowledge of the qubit energy
levels. Standard spectroscopy experiments involve electron transport through
the quantum dot while varying both a gate voltage and the source-drain
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voltage [27]. This requires that the quantum dot be connected to two leads
with a tunnel coupling large enough to obtain a measurable current [43].

Coupling to the leads unavoidably introduces decoherence of the qubit:
even if the number of electrons on the dot is fixed due to Coulomb blockade,
an electron can tunnel out of the dot and be replaced by another electron
through a second-order tunnelling process, causing the quantum information
to be irretrievably lost. Therefore, to optimally store qubits in quantum dots,
higher-order tunnelling has to be suppressed, i.e. the coupling to the leads
must be made as small as possible. Furthermore, real-time observation of
electron tunnelling, important for single-shot read-out of spin qubits via spin-
to-charge conversion, also requires a small coupling of the dot to the leads. In
this regime, current through the dot would be very hard or even impossible
to measure. Therefore an alternative spectroscopic technique is needed, which
does not rely on electron transport through the quantum dot.

Here we present spectroscopy measurements using charge detection. Our
method resembles experiments on superconducting Cooper-pair boxes and
semiconductor disks which have only one tunnel junction so that no net cur-
rent can flow. Information on the energy spectrum can then be obtained by
measuring the energy for adding an electron or Cooper-pair to the box, using
a single-electron transistor (SET) operated as a charge detector [51, 52, 53].
We are interested in the excitation spectrum for a given number of electrons
on the box, rather than the addition spectra. We use a quantum point con-
tact (QPC) as an electrometer [44] and excitation pulses with repetition rates
comparable to the tunnel rates to the lead, to measure the discrete energy
spectrum of a nearly isolated one- and two-electron quantum dot.

3.2 Tuning the Tunnel Barriers

The quantum dot and QPC are defined in the two-dimensional electron gas
(2DEG) in a GaAs/Al0.27Ga0.73As heterostructure by dc voltages on gates
T,M,R and Q (Fig. 21a). The dot’s plunger gate, P , is connected to a coaxial
cable, to which we can apply voltage pulses (rise time 1.5 ns). The QPC charge
detector is operated at a conductance of about e2/h with source-drain voltage
VSD = 0.2 mV. All data are taken with a magnetic field B// = 10 T applied in
the plane of the 2DEG, at an effective electron temperature of about 300 mK.

We first describe the procedure for setting the gate voltages such that
tunnelling in and out of the dot take place through one barrier only (i.e. the
other is completely closed), and the remaining tunnel rate be well controlled.
For gate voltages far away from a charge transition in the quantum dot, a
pulse applied to gate P (Fig. 21b) modulates the QPC current via the cross-
capacitance only (solid trace in Fig. 21c). Near a charge transition, the dot
can become occupied with an extra electron during the high stage of the pulse
(Fig. 21d). The extra electron on the dot reduces the current through the QPC.
The QPC response to the pulse is thus smaller when tunnelling takes place
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Fig. 21. QPC response to a pulse train applied to the plunger gate. (a) Scanning
electron micrograph of a quantum dot and quantum point contact, showing only
the gates used in the present experiment (the complete device is described in [55])
and Sect. 2. (b) Pulse train applied to gate P . (c) Schematic response in QPC
current, ∆IQPC , when the charge on the dot is unchanged by the pulse (solid line)
or increased by one electron charge during the “high” stage of the pulse (dashed).
(d) Schematic electrochemical potential diagrams during the high (left) and low
(right) pulse stage, when the ground state is pulsed across the Fermi level in the
reservoir, EF

(dotted trace in Fig. 21c). We denote the amplitude of the difference between
solid and dotted traces as the “electron response”.

Now, even when tunnelling is allowed energetically, the electron response
is only non-zero when an electron has sufficient time to actually tunnel into
the dot during the pulse time, τ . By measuring the electron response as a
function of τ , we can extract the tunnel rate, Γ , as demonstrated in Fig. 22a.
We apply a pulse train to gate P with equal up and down times, so the
repetition rate is f = 1/(2τ) (Fig. 21b). The QPC response is measured using
lock-in detection at frequency f [45], and is plotted versus the dc voltage on
gate M . For long pulses (lowest curves) the traces show a dip, which is due to
the electron response when crossing the zero-to-one electron transition. Here,
f � Γ and tunnelling occurs quickly on the scale of the pulse duration. For
shorter pulses the dip gradually disappears. We find analytically1 that the dip
height is proportional to 1 − π2/(Γ 2τ2 + π2), so the dip height should equal
half its maximum value when Γτ = π. From the data (inset to Fig. 22a), we
find that this happens for τ ≈ 120 µs, giving Γ ≈ (40 µs)−1. Using this value

1 This expression is obtained by multiplying the probability that the dot is empty,
P (t), with a sine-wave of frequency f (as is done in the lock-in amplifier), and
averaging the resulting signal over one period. P (t) is given by exp(−Γt)(1 −
exp(−Γτ))/(1−exp(−2Γτ)) during the high stage of the pulse, and by 1−P (t−τ)
during the low stage.
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Fig. 22. Lock-in detection of electron tunnelling. (a) Lock-in signal at f = 1/(2τ)
versus VM for different pulse times, τ , with VP = 1 mV. The dip due to the electron
response disappears for shorter pulses. (Individual traces have been lined up hori-
zontally to compensate for a fluctuating offset charge, and have been given a vertical
offset for clarity.) (Inset) Height of the dip versus τ , as a percentage of the maximum
height (obtained at long τ). Circles: experimental data. Dashed lines indicate the
pulse time (τ ≈ 120 µs) for which the dip size is half its maximum value. Solid line:
calculated dip height using Γ = (40 µs)−1. (b) Lock-in signal in grayscale versus
VM and VR for VP = 1mV and f = 4.17 kHz. Dark lines correspond to dips as in
(a), indicating that the electron number changes by one. White labels indicate the
absolute number of electrons on the dot. (c) Same plot as in (b), but with larger
pulse repetition frequency (f = 41.7 kHz). (d) Same plot as in (b), but with smaller
pulse repetition frequency (f = 41.7 Hz)

for Γ in the analytical expression given above, we obtain the solid line in the
inset to Fig. 22a, which nicely matches the measured data points.

We explore several charge transitions in Fig. 22b, which shows the lock-in
signal in grayscale for τ = 120 µs, i.e. f = 4.17 kHz. The slanted dark lines
correspond to dips as in Fig. 22a. From the absence of further charge tran-
sitions past the topmost dark line, we obtain the absolute electron number
starting from zero. In the top left region of Fig. 22b, the right tunnel barrier
(between gates R and T ) is much more opaque than the left tunnel barrier
(between M and T ). Here, charge exchange occurs only with the left reservoir
(indicated as “reservoir” in Fig. 21a). Conversely, in the lower right region



Semiconductor Few-Electron Quantum Dots as Spin Qubits 63

charge is exchanged only with the drain reservoir. In the middle region, indi-
cated for the two-to-three electron transition by an ellipse, both barriers are
too opaque and no charge can flow into or out of the dot during the 120 µs
pulse; consequently the electron response becomes zero and thus the dark line
disappears. For shorter pulses, i.e. larger pulse repetition frequency, the region
where the dark line disappears becomes wider (ellipse in Fig. 22c). For longer
pulses the dark line reappears (Fig. 22d). By varying the voltages on gates M
and R, we can thus precisely set the tunnel rate to the left or right reservoir
for each charge transition.

3.3 Excited-State Spectroscopy for N = 1

For spectroscopy measurements on a one-electron dot, we set the gate voltages
near the zero-to-one electron transition at the point indicated as � in Fig. 22b.
At this point, the dot is operated as a charge box, with all tunnel events
occurring through just a single barrier. The pulse repetition rate is set to
385 Hz, so that the dip height is half its maximum value. The electron response
is then very sensitive to changes in the tunnel rate, which occur when an
excited state becomes accessible for tunnelling.

Figure 23a shows the electron response for a pulse amplitude larger than
was used for the data in Fig. 22. The dip now exhibits a shoulder on the
right side (indicated by “b”), which we can understand as follows. Starting
from the right (N = 0), the dip develops as soon as the ground state (GS)
is pulsed across the Fermi level EF and an electron can tunnel into the dot
(Fig. 23b). As VM is made less negative, we reach the point where both the
GS and an excited state (ES) are pulsed across EF (Fig. 23c). The effective
rate for tunnelling on the box is now the sum of the rate for tunnelling in
the GS and for tunnelling in the ES, and as a result the dip becomes deeper
(the electron response increases). When VM is made even less negative, the
one-electron GS lies below EF during both stages of the pulse, so there is
always one electron on the dot. The electron response is now zero and the dip
ends.

The derivative of a set of curves as in Fig. 23a is plotted in Fig. 23d. Three
lines are observed. The right vertical, dark line corresponds to the right flank
of the dip in Fig. 23a, the onset of tunnelling to the GS. The slanted bright
line corresponds to the left flank of the dip in Fig. 23a (with opposite sign
in the derivative) and reflects the pulse amplitude. The second, weaker, but
clearly visible dark vertical line represents an ES. The distance between the
two vertical lines is proportional to the energy difference between GS and ES.

We identify the ground and first excited state observed in this spectroscopy
experiment as the spin-up and spin-down state of a single electron on the
quantum dot. For B// = 10 T, the Zeeman energy is about 0.21 meV [54],
while the excitation energy of the first orbital excited state is of order 1 meV.
The distance between the two vertical lines can, in principle, be converted to
energy and directly provide the spin excitation energy. However, it is difficult
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Fig. 23. Excited-state spectroscopy in a one-electron dot. (a) Lock-in signal at f =
385Hz versus VM , with VP = 6 mV. The dip is half the maximum value (obtained
at low f and small VP ) from which we conclude that Γ ≈ 2.4 kHz. (b) Schematic
electrochemical potential diagrams for the case that only the GS is pulsed across
EF . (c) Idem when both the GS and an ES are pulsed across EF . (d) Derivative of
the lock-in signal with respect to VM , plotted as a function of VM and VP (individual
traces have been lined up to compensate for a fluctuating offset charge). The curve in
(a) is taken at the dotted line. The Zeeman energy splitting between the one-electron
GS (spin-up) and first ES (spin-down) is indicated by ∆EZ

to determine independently the conversion factor between gate voltage and
energy in this regime of a nearly closed quantum dot. Instead we take the
measured Zeeman splitting from an earlier transport measurement [54] and
deduce the conversion factor from gate voltage to energy, α = 105 meV/V.
This value will be used below, to convert the two-electron data to energy.

3.4 Excited-State Spectroscopy for N = 2

Figure 24a shows pulse spectroscopy data for the one-to-two electron transi-
tion, taken with the gate settings indicated by � in Fig. 22b. The rightmost
vertical line corresponds to transitions between the one-electron GS (spin-
up) and the two-electron GS (spin singlet) only. As VP is increased above
5 mV, the two-electron ES (spin triplet) also becomes accessible, leading to
an enhanced tunnel rate2. This gives rise to the left vertical line, and the dis-
tance between the two vertical lines corresponds to the singlet-triplet energy
splitting ∆EST . Converted to energy, we obtain ∆EST = 0.49 meV.
2 The expected Zeeman splitting of the triplet state is not resolved here.
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Fig. 24. Excited state spectroscopy in a two-electron dot. (a) Similar to Fig. 23d,
but for the one-to-two electron transition. Again, f = 385Hz. We clearly observe
the singlet-triplet splitting ∆EST (individual traces in (a) and (b) have been lined
up). (b) Same experiment but with f = 1.538 kHz, which increases the contrast for
excited states. An extra slanted line appears (arrow), corresponding to the N = 1ES,
spin-down. (c) Schematic electrochemical potential diagram for the case that only
the spin-down electron can leave from the two-electron GS (spin singlet). This occurs
to the left of the bright line indicated by the arrow in (b). (d) Idem when either
the spin-up or the spin-down electron can leave from the spin singlet. This occurs
to the right of the arrow in (b), and leads to a larger effective tunnel rate

Excitations of the one-electron dot can be made visible at the one-to-
two electron transition as well, by changing the pulse frequency to 1.538 kHz
(Fig. 24b). This is too fast for electrons to tunnel if only the GS is accessible,
so the rightmost line almost vanishes. However, a second slanted line becomes
visible (indicated by the arrow in Fig. 24b), corresponding not to an increased
tunnel rate into the dot (due to an N = 2 ES), but to an increased tunnel
rate out of the dot (due to an N = 1 ES). Specifically, if the pulse amplitude
is sufficiently large, either the spin-up or the spin-down electron can tunnel
out of the two-electron dot. This is explained schematically in Fig. 24c and d.

Similar experiments at the transition between two and three electrons, and
for tunnel rates to the reservoir ranging from 12 Hz to 12 kHz, yield similar
excitation spectra.

The experiments described in this section demonstrate that an electrome-
ter such as a QPC can reveal not only the charge state of a quantum dot, but
also its tunnel coupling to the outside world and the energy level spectrum of
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its internal states. We can thus access all the relevant properties of a quantum
dot, even when it is almost completely isolated from the leads.

4 Real-Time Detection of Single Electron Tunnelling
using a Quantum Point Contact

In this section, we observe individual tunnel events of a single electron be-
tween a quantum dot and a reservoir, using a nearby quantum point contact
(QPC) as a charge meter. The QPC is capacitively coupled to the dot, and
the QPC conductance changes by about 1% if the number of electrons on the
dot changes by one. The QPC is voltage biased and the current is monitored
with an IV-convertor at room temperature. At present, we can resolve tunnel
events separated by only 8 µs, limited by noise from the IV-convertor. Shot
noise in the QPC sets a 10 ns lower bound on the accessible timescales.

4.1 Charge Detectors

Fast and sensitive detection of charge has greatly propelled the study of
single-electron phenomena. The most sensitive electrometer known today is
the single-electron transistor (SET) [56], incorporated into a radio-frequency
resonant circuit [57]. Such RF-SETs can be used for instance to detect charge
fluctuations on a quantum dot, capacitively coupled to the SET island [58, 59].
Already, real-time electron tunnelling between a dot and a reservoir has been
observed on a sub-µs timescale [58].

A much simpler electrometer is the quantum point contact (QPC). The
conductance, GQ, through the QPC channel is quantized, and at the tran-
sitions between quantized conductance plateaus, GQ is very sensitive to the
electrostatic environment, including the number of electrons, N , on a dot in
the vicinity [44]. This property has been exploited to measure fluctuations in
N in real-time, on a timescale from seconds [60] down to about 10 ms [61].

Here we demonstrate that a QPC can be used to detect single-electron
charge fluctuations in a quantum dot in less than 10 µs, and analyze the
fundamental and practical limitations on sensitivity and bandwidth.

4.2 Sample and Setup

The quantum dot and QPC are defined in the two-dimensional electron gas
(2DEG) formed at a GaAs/Al0.27Ga0.73As interface 90 nm below the surface,
by applying negative voltages to metal surface gates (Fig. 25a). The device is
attached to the mixing chamber of a dilution refrigerator with a base tempera-
ture of 20 mK, and the electron temperature is ∼ 300 mK in this measurement.
The dot is set near the N = 0 to N = 1 transition, with the gate voltages
tuned such that the dot is isolated from the QPC drain, and has a small
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Fig. 25. Characterization of the experimental setup. (a) Scanning electron micro-
graph of a device as used in the experiment (gates which are grounded are hidden).
Gates T, M and R define the quantum dot (dotted circle), and gates R and Q form
the QPC. Gate P is connected to a pulse source via a coaxial cable. See [55] for a
more detailed description. (b) Schematic of the experimental set-up, including the
most relevant noise sources. The QPC is represented by a resistor, RQ. (c) Noise
spectra measured when the IV-convertor is connected to the sample (top solid trace),
and, for reference, to an open-ended 1 m twisted pair of wires (lower solid trace).
The latter represents a 300 pF load, if we include the 200 pF measured amplifier
input capacitance. The diagram also shows the calculated noise level for the 300 pF
reference load (dotted-dashed) and the shot noise limit (dashed). The left and right
axes express the noise in terms of current through the QPC and electron charge on
the dot respectively

tunnel rate, Γ , to the reservoir. Furthermore, the QPC conductance is set at
GQ = 1/RQ ≈ (30 kΩ)−1, roughly halfway the transition between GQ = 2e2/h
and GQ = 0, where it is most sensitive to the electrostatic environment3.

A schematic of the electrical circuit is shown in Fig. 25b. The QPC source
and drain are connected to room temperature electronics by signal wires,
which run through Cu-powder filters at the mixing chamber to block high fre-
quency noise (>100 MHz) coming from room temperature. Each signal wire
is twisted with a ground wire from room temperature to the mixing cham-
ber. A voltage, Vi, is applied to the source via a home-built opto-coupled
isolation stage. The current through the QPC, I, is measured via an IV-
convertor connected to the drain, and an opto-coupled isolation amplifier, both
3 Despite a B = 10 T field in the plane of the 2DEG, no spin-split plateau is visible.
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home-built as well. The IV-convertor is based on a dual low-noise JFET (In-
terfet 3602). Finally, the signal is AC-coupled to an 8th-order elliptic low-pass
filter (SRS650), and the current fluctuations, ∆I, are digitized at 2.2 × 106

14-bit samples per second (ADwin Gold).
The measurement bandwidth is limited by the low-pass filter formed by

the capacitance of the line and Cu-powder filters, CL ≈ 1.5 nF, and the input
impedance of the IV-convertor, Ri = RFB/A. Thermal noise considerations
(below) impose RFB = 10MΩ. We choose the amplifier gain A = 10000, such
that 1/(2πRiCL) ≈ 100 kHz. The bandwidth of the amplifier inside the IV-
convertor is 500 kHz, and the output ISO-amp bandwidth is 300 kHz. How-
ever, we shall see that the true limitation to measurement speed is not the
bandwidth but the signal-to-noise ratio.

4.3 Sensitivity and Speed

The measured signal corresponding to a single electron charge on the dot
amounts to ∆I ≈ 0.3 nA with the QPC biased at Vi = 1 mV, a 1% change in
the overall current I (I ≈ 30 nA, consistent with the series resistance of RQ,
Ri = 1 kΩ and the resistance of the Ohmic contacts of about 2 kΩ). Naturally,
the signal strength is proportional to Vi, but we found that for Vi ≥ 1 mV, the
dot occupation was affected, possibly due to heating. We therefore proceed
with the analysis using I = 30 nA and ∆I = 0.3 nA.

The most relevant noise sources [62] are indicated in the schematic of
Fig. 25b. In Table 1, we give an expression and value for each noise contribu-
tion in terms of rms current at the IV-convertor input, so it can be compared
directly to the signal, ∆I. We also give the corresponding value for the rms
charge noise on the quantum dot. Shot noise, ISN , is intrinsic to the QPC
and therefore unavoidable. Both ISN and ∆I are zero at QPC transmission
T = 0 or T = 1, and maximal at T = 1/2; here we use T ≤ 1/2. The effect
of thermal noise, VT , can be kept small compared to other noise sources by

Table 1. Contributions to the noise current at the IV-convertor input. By dividing
the noise current by 300 pA (the signal corresponding to one electron charge leaving
the dot), we obtain the rms charge noise on the dot

RMS Noise Current
Noise RMS Charge Noise

Source Expression A/
√

Hz e/
√

Hz

ISN

√
T (1 − T )2eI 49 × 10−15 1.6 × 10−4

VT

√
4kBT/RFB 41 × 10−15 1.4 × 10−4

VA VA
1+j2πfRQCL

RQ

VA, low f VA/RFB 32 × 10−15 1.1 × 10−4

VA, high f VA2πfCL 7.5 × 10−18f 2.5 × 10−8f
IA IA – –
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choosing RFB sufficiently large; here RFB = 10 MΩ. The JFET input voltage
noise is measured to be VA = 0.8 nV/

√
Hz. As a result of VA, it is as if a noise

current flows from the IV-convertor input leg to ground, through the QPC in
parallel with the line capacitance. Due to the capacitance, CL, the rms noise
current resulting from VA increases with frequency; it equals ∆I at 120 kHz.
There is no specification available for the JFET input current noise, IA, but
usually IA is small in JFETs.

We summarize the expected noise spectrum in Fig. 25c, and compare this
with the measured noise spectrum in the same figure. For a 300 pF reference
load, the noise level measured below a few kHz is 52 fA/

√
Hz, close to the noise

current due to VT , as expected; at high frequencies, the measured noise level
is significantly higher than would be caused by VA in combination with the
300 pF load, and appears to be dominated by IA. With the sample connected,
we observe substantial 1/f2 noise (1/f in the noise amplitude), presumably
from spurious charge fluctuations near the QPC, as well as interference at
various frequencies. Near 100 kHz, the spectrum starts to roll off because of
the 100 kHz low-pass filter formed by CL = 1.5 nF and Ri = 1 kΩ (for the
reference load, CL is only 300 pF so the filter cut-off is at 500 kHz).

From the data, we see that the measured charge noise integrated from DC
is comparable to e at 80 kHz, and 2.5 times smaller than e around 40 kHz.
We set the cut-off frequency of the external low-pass filter at 40 kHz, so we
should see clear steps in time traces of the QPC current, corresponding to
single electrons tunnelling on or off the dot.

4.4 Real-Time Single Electron Tunnelling

We test this experimentally, in the regime where the electrochemical potential
in the dot is nearly lined up with the electrochemical potential in the reservoir.
The electron can then spontaneously tunnel back and forth between the dot
and the reservoir, and the QPC current should exhibit a random telegraph
signal (RTS). This is indeed what we observe experimentally (Fig. 26). In
order to ascertain that the RTS really originates from electron tunnel events
between the dot and the reservoir, we verify that (1) the dot potential relative
to the Fermi level determines the fraction of the time an electron resides in the
dot (Fig. 26a) and (2) the dot-reservoir tunnel barrier sets the RTS frequency
(Fig. 26b). The shortest steps that clearly reach above the noise level are about
8 µs long. This is consistent with the 40 kHz filter frequency, which permits a
rise time of 8 µs.

Next, we induce tunnel events by pulsing the dot potential, so N pre-
dictably changes from 0 to 1 and back to 0. The response of the QPC current
to such a pulse contains two contributions (Fig. 27a). First, the shape of the
pulse is reflected in ∆I, as the pulse gate couples capacitively to the QPC.
Second, some time after the pulse is started, an electron tunnels into the dot
and ∆I goes down by about 300 pA. Similarly, ∆I goes up by 300 pA when
an electron leaves the dot, some time after the pulse ends. We observe that
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Fig. 27. QPC pulse response. (a) Measured changes in the QPC current, ∆I, when
a pulse is applied to gate P , near the degeneracy point between 0 and 1 electrons
on the dot (Vi = 1 mV). (b) Average of 286 traces as in (a). The top and bottom
panel are taken with a different setting of gate M . The damped oscillation following
the pulse edges is due to the 8th-order 40 kHz filter

the time before tunnelling takes place is randomly distributed, and obtain
a histogram of this time simply by averaging over many single-shot traces
(Fig. 27b). The measured distribution decays exponentially with the tunnel
time, characteristic of a Poisson process. The average time before tunnelling
corresponds to Γ−1, and can be tuned by adjusting the tunnel barrier.
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4.5 QPC Versus SET

Our measurements clearly demonstrate that a QPC can serve as a fast and
sensitive charge detector. Compared to an SET, a QPC offers several practi-
cal advantages. First, a QPC requires fabrication and tuning of just a single
additional gate when integrated with a quantum dot defined by metal gates,
whereas an SET requires two tunnel barriers, and a gate to set the island po-
tential. Second, QPCs are more robust and easy to use in the sense that spu-
rious, low-frequency fluctuations of the electrostatic potential hardly change
the QPC sensitivity to charges on the dot (the transition between quantized
conductance plateaus has an almost constant slope over a wide range of elec-
trostatic potential), but can easily spoil the SET sensitivity.

With an RF-SET, a sensitivity to charges on a quantum dot of ≈2 ×
10−4e/

√
Hz has been reached [58], and theoretically even a ten times better

sensitivity is possible [57]. Could a QPC reach similar sensitivities?
The noise level in the present measurement could be reduced by a factor

of two or three using a JFET input-stage which better balances input voltage
noise and input current noise. Further improvements can be obtained by low-
ering the capacitance of the filters in the line, or the line capacitance itself,
by placing the IV-convertor close to the sample, inside the refrigerator.

Much more significant reductions in the instrumentation noise could be
realized by embedding the QPC in a resonant electrical circuit and measuring
the damping of the resonator. We estimate that with an “RF-QPC” and a
low-temperature HEMT amplifier, a sensitivity of 2 × 10−4e/

√
Hz could be

achieved with the present sample. The noise from the amplifier circuitry is
then only 2.5 times larger than the shot noise level.

To what extent the signal can be increased is unclear, as we do not yet
understand the mechanism through which the dot occupancy is disturbed for
Vi > 1 mV4. Certainly, the capacitive coupling of the dot to the QPC channel
can easily be five times larger than it is now by optimizing the gate design [60].
Keeping Vi = 1 mV , the sensitivity would then be 4×10−5e/

√
Hz, and a single

electron charge on the dot could be measured within a few ns.
Finally, we point out that a QPC can reach the quantum limit of detec-

tion [63, 64], where the measurement induced decoherence takes the minimum
value permitted by quantum mechanics. Qualitatively, this is because (1) in-
formation on the charge state of the dot is transferred only to the QPC current
and not to degrees of freedom which are not observed, and (2) an external
perturbation in the QPC current does not couple back to the charge state of
the dot.
4 The statistics of the RTS were altered for Vi > 1 mV, irrespective of (1) whether

Vi was applied to the QPC source or drain, (2) the potential difference between
the reservoir and the QPC source/drain, and (3) the QPC transmission T .
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5 Single-Shot Read-Out of an Individual Electron Spin
in a Quantum Dot

Spin is a fundamental property of all elementary particles. Classically it can
be viewed as a tiny magnetic moment, but a measurement of an electron spin
along the direction of an external magnetic field can have only two outcomes:
parallel or anti-parallel to the field [65]. This discreteness reflects the quantum
mechanical nature of spin. Ensembles of many spins have found diverse appli-
cations ranging from magnetic resonance imaging [66] to magneto-electronic
devices [67], while individual spins are considered as carriers for quantum in-
formation. Read-out of single spin states has been achieved using optical tech-
niques [68], and is within reach of magnetic resonance force microscopy [69].
However, electrical read-out of single spins [2, 49, 70, 71, 72, 73, 74, 75] has so
far remained elusive. Here, we demonstrate electrical single-shot measurement
of the state of an individual electron spin in a semiconductor quantum dot
[40]. We use spin-to-charge conversion of a single electron confined in the dot,
and detect the single-electron charge using a quantum point contact; the spin
measurement visibility is ∼65%. Furthermore, we observe very long single-
spin energy relaxation times (up to ∼0.85 ms at a magnetic field of 8 Tesla),
which are encouraging for the use of electron spins as carriers of quantum
information.

5.1 Measuring Electron Spin in Quantum Dots

In quantum dot devices, single electron charges are easily measured. Spin
states in quantum dots, however, have only been studied by measuring the
average signal from a large ensemble of electron spins [54, 68, 77, 78, 79, 80].
In contrast, the experiment presented here aims at a single-shot measurement
of the spin orientation (parallel or antiparallel to the field, denoted as spin-↑
and spin-↓, respectively) of a particular electron; only one copy of the electron
is available, so no averaging is possible. The spin measurement relies on spin-
to-charge conversion [54, 79] followed by charge measurement in a single-shot
mode [58, 59]. Figure 28a schematically shows a single electron spin confined
in a quantum dot (circle). A magnetic field is applied to split the spin-↑ and
spin-↓ states by the Zeeman energy. The dot potential is then tuned such that
if the electron has spin-↓ it will leave, whereas it will stay on the dot if it
has spin-↑. The spin state has now been correlated with the charge state, and
measurement of the charge on the dot will reveal the original spin state.

5.2 Implementation

This concept is implemented using a structure [55] (Fig. 28b) consisting of
a quantum dot in close proximity to a quantum point contact (QPC). The
quantum dot is used as a box to trap a single electron, and the QPC is



Semiconductor Few-Electron Quantum Dots as Spin Qubits 73

DRAIN

R
E

S
E

R
V

O
IR

200 nm

T

SOURCE

b

QPCI

M P R

Q

B

Γ

a

Time

0
-e

Time

Qdot

0
-e

dot
Qdot

re
se

rv
oi

r

Fig. 28. Spin-to-charge conversion in a quantum dot coupled to a quantum point
contact. (a) Principle of spin-to-charge conversion. The charge on the quantum dot,
Qdot, remains constant if the electron spin is ↑, whereas a spin-↓ electron can escape,
thereby changing Qdot. (b) Scanning electron micrograph of the metallic gates on
the surface of a GaAs/Al0.27Ga0.73As heterostructure containing a two-dimensional
electron gas (2DEG) 90 nm below the surface. The electron density is 2.9 × 1015 m−2.
(Only the gates used in the present experiment are shown, the complete device is
described in [55].) Electrical contact is made to the QPC source and drain and to the
reservoir via Ohmic contacts. By measuring the current through the QPC channel,
IQPC , we can detect changes in Qdot that result from electrons tunnelling between
the dot and the reservoir (with a tunnel rate Γ ). With a source-drain bias voltage
of 1 mV, IQPC is about 30 nA, and an individual electron tunnelling on or off the
dot changes IQPC by ∼0.3 nA. The QPC-current is sent to a room temperature
current-to-voltage convertor, followed by a gain 1 isolation amplifier, an AC-coupled
40 kHz SRS650 low-pass filter, and is digitized at a rate of 2.2×106 samples/s. With
this arrangement, the step in IQPC resulting from an electron tunnelling is clearly
larger than the rms noise level, provided it lasts at least 8 µs. A magnetic field, B,
is applied in the plane of the 2DEG

operated as a charge detector in order to determine whether the dot contains
an electron or not. The quantum dot is formed in the two-dimensional electron
gas (2DEG) of a GaAs/AlGaAs heterostructure by applying negative voltages
to the metal surface gates M , R, and T . This depletes the 2DEG below the
gates and creates a potential minimum in the centre, that is, the dot (indicated
by a dotted white circle). We tune the gate voltages such that the dot contains
either zero or one electron (which we can control by the voltage applied to
gate P ). Furthermore, we make the tunnel barrier between gates R and T
sufficiently opaque that the dot is completely isolated from the drain contact
on the right. The barrier to the reservoir on the left is set [81] to a tunnel
rate Γ ≈ (0.05 ms)−1. When an electron tunnels on or off the dot, it changes
the electrostatic potential in its vicinity, including the region of the nearby
QPC (defined by R and Q). The QPC is set in the tunnelling regime, so that
the current, IQPC , is very sensitive to electrostatic changes [44]. Recording
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changes in IQPC thus permits us to measure on a timescale of about 8 µs
whether an electron resides on the dot or not (L.M.K.V. et al., see Sect. 4). In
this way the QPC is used as a charge detector with a resolution much better
than a single electron charge and a measurement timescale almost ten times
shorter than 1/Γ .

The device is placed inside a dilution refrigerator, and is subject to a
magnetic field of 10 T (unless noted otherwise) in the plane of the 2DEG.
The measured Zeeman splitting in the dot [54], ∆EZ ≈ 200 µeV, is larger
than the thermal energy (25 µeV) but smaller than the orbital energy level
spacing (1.1 meV) and the charging energy (2.5 meV).

5.3 Two-Level Pulse Technique

To test our single-spin measurement technique, we use an experimental pro-
cedure based on three stages: (1) empty the dot, (2) inject one electron with
unknown spin, and (3) measure its spin state. The different stages are con-
trolled by voltage pulses on gate P (Fig. 29a), which shift the dot’s energy
levels (Fig. 29c). Before the pulse the dot is empty, as both the spin-↑ and
spin-↓ levels are above the Fermi energy of the reservoir, EF . Then a volt-
age pulse pulls both levels below EF . It is now energetically allowed for an
electron to tunnel onto the dot, which will happen after a typical time ∼Γ−1.
The particular electron can have spin-↑ (shown in the lower diagram) or spin-↓
(upper diagram). (The tunnel rate for spin-↑ electrons is expected to be larger
than that for spin-↓ electrons [82], i.e. Γ↑ > Γ↓, but we do not assume this
a priori.) During this stage of the pulse, lasting twait, the electron is trapped
on the dot and Coulomb blockade prevents a second electron to be added.
After twait the pulse is reduced, in order to position the energy levels in the
read-out configuration. If the electron spin is ↑, its energy level is below EF ,
so the electron remains on the dot. If the spin is ↓, its energy level is above
EF , so the electron tunnels to the reservoir after a typical time ∼Γ−1

↓ . Now
Coulomb blockade is lifted and an electron with spin-↑ can tunnel onto the
dot. This occurs on a timescale ∼Γ−1

↑ (with Γ = Γ↑ + Γ↓). After tread, the
pulse ends and the dot is emptied again.

The expected QPC-response, ∆IQPC , to such a two-level pulse is the sum
of two contributions (Fig. 29b). First, due to a capacitive coupling between
pulse-gate and QPC, ∆IQPC will change proportionally to the pulse ampli-
tude. Thus, ∆IQPC versus time resembles a two-level pulse. Second, ∆IQPC

tracks the charge on the dot, i.e. it goes up whenever an electron tunnels
off the dot, and it goes down by the same amount when an electron tunnels
on the dot. Therefore, if the dot contains a spin-↓ electron at the start of the
read-out stage, ∆IQPC should go up and then down again. We thus expect
a characteristic step in ∆IQPC during tread for spin-↓ (dotted trace inside
gray circle). In contrast, ∆IQPC should be flat during tread for a spin-↑ elec-
tron. Measuring whether a step is present or absent during the read-out stage
constitutes our spin measurement.
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Fig. 29. Two-level pulse technique used to inject a single electron and measure its
spin orientation. (a) Shape of the voltage pulse applied to gate P . The pulse level
is 10 mV during twait and 5 mV during tread (which is 0.5 ms for all measurements).
(b) Schematic QPC pulse-response if the injected electron has spin-↑ (solid line) or
spin-↓ (dotted line; the difference with the solid line is only seen during the read-out
stage). Arrows indicate the moment an electron tunnels into or out of the quantum
dot. (c) Schematic energy diagrams for spin-↑ (E↑) and spin-↓ (E↓) during the
different stages of the pulse. Black vertical lines indicate the tunnel barriers. The
tunnel rate between the dot and the QPC-drain on the right is set to zero. The rate
between the dot and the reservoir on the left is tuned to a specific value, Γ . If the
spin is ↑ at the start of the read-out stage, no change in the charge on the dot occurs
during tread. In contrast, if the spin is ↓, the electron can escape and be replaced
by a spin-↑ electron. This charge transition is detected in the QPC-current (dotted
line inside gray circle in (b))

5.4 Tuning the Quantum Dot into the Read-Out Configuration

To perform spin read-out, VM has to be fine-tuned so that the position of the
energy levels with respect to EF is as shown in Fig. 29c. To find the correct
settings, we apply a two-level voltage pulse and measure the QPC-response
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Fig. 30. Tuning the quantum dot into the spin read-out configuration. We apply a
two-stage voltage pulse as in Fig. 29a (twait = 0.3 ms, tread = 0.5 ms), and measure
the QPC-response for increasingly negative values of VM . (a) QPC-response (in
colour-scale) versus VM . Four different regions in VM can be identified (separated by
white dotted lines), with qualitatively different QPC-responses. (b) Typical QPC-
response in each of the four regions. This behaviour can be understood from the
energy levels during all stages of the pulse. (c) Schematic energy diagrams showing
E↑ and E↓ with respect to EF before and after the pulse (upper pair), during twait

(lower pair) and during tread (middle pair), for four values of VM . For the actual spin
read-out experiment, VM is set to the optimum position (indicated by the arrow in a)

for increasingly negative values of VM (Fig. 30a). Four different regions in VM

can be identified (separated by white dotted lines), with qualitatively different
QPC-responses. The shape of the typical QPC-response in each of the four
regions (Fig. 30b) allows us to infer the position of E↑ and E↓ with respect
to EF during all stages of the pulse (Fig. 30c).

In the top region, the QPC-response just mimics the applied two-level
pulse, indicating that here the charge on the dot remains constant throughout
the pulse. This implies that E↑ remains below EF for all stages of the pulse,
thus the dot remains occupied with one electron. In the second region from
the top, tunnelling occurs, as seen from the extra steps in ∆IQPC . The dot is
empty before the pulse, then an electron is injected during twait, which escapes
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after the pulse. This corresponds to an energy level diagram similar to before,
but with E↑ and E↓ shifted up due to the more negative value of VM in this
region. In the third region from the top, an electron again tunnels on the dot
during twait, but now it can escape already during tread, irrespective of its
spin. Finally, in the bottom region no electron-tunnelling is seen, implying
that the dot remains empty throughout the pulse.

Since we know the shift in VM corresponding to shifting the energy levels by
∆EZ , we can set VM to the optimum position for the spin read-out experiment
(indicated by the arrow). For this setting, the energy levels are as shown in
Fig. 29c, i.e. EF is approximately in the middle between E↑ and E↓ during
the read-out stage.

5.5 Single-Shot Read-Out of One Electron Spin

Figure 31a shows typical experimental traces of the pulse-response recorded
after proper tuning of the DC gate voltages (see Fig. 30). We emphasize that
each trace involves injecting one particular electron on the dot and subse-
quently measuring its spin state. Each trace is therefore a single-shot mea-
surement. The traces we obtain fall into two different classes; most traces
qualitatively resemble the one in the top panel of Fig. 31a, some resemble
the one in the bottom panel. These two typical traces indeed correspond to
the signals expected for a spin-↑ and a spin-↓ electron (Fig. 29b), a strong
indication that the electron in the top panel of Fig. 31a was spin-↑ and in
the bottom panel spin-↓. The distinct signature of the two types of responses
in ∆IQPC permits a simple criterion for identifying the spin5: if ∆IQPC goes
above the threshold value (red line in Fig. 31a and chosen as explained be-
low), we declare the electron “spin-down”; otherwise we declare it “spin-up”.
Figure 31b shows the read-out section of twenty more “spin-down” traces, to
illustrate the stochastic nature of the tunnel events.

The random injection of spin-↑ and spin-↓ electrons prevents us from check-
ing the outcome of any individual measurement. Therefore, in order to further
establish the correspondence between the actual spin state and the outcome
5 The automated data analysis procedure first corrects for the offset of each trace.

This offset, resulting from low-frequency interference signals or charge switches,
is found by making a histogram of the QPC current during the read-out stage
of a particular trace. The histogram typically displays a peak due to fluctuations
around the average value corresponding to an occupied dot. The center of a
gaussian fit to the histogram gives the offset. Then each trace is checked to make
sure that an electron was injected during the injection stage, by evaluating if
the signal goes below the injection threshold (dotted horizontal line in Fig. 33a).
If not, the trace is disregarded. Finally, to determine if a trace corresponds to
“spin-up” or “spin-down”, we disregard all points that lie below the previous
point (since these could correspond to points on the falling pulse flank at the end
of the injection stage), and check if any of the remaining points are above the
threshold.
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Fig. 31. Single-shot read-out of one electron spin. (a) Time-resolved QPC mea-
surements. Top panel: an electron injected during twait is declared “spin-up” during
tread. Bottom panel: the electron is declared “spin-down”. (b) Examples of “spin-
down” traces (for twait = 0.1 ms). Only the read-out segment is shown, and traces
are offset for clarity. The time when ∆IQPC first crosses the threshold, tdetect, is
recorded to make the histogram in Fig. 34a. (c) Fraction of “spin-down” traces
versus twait, out of 625 traces for each waiting time. Open dot: spin-down fraction
using modified pulse shape (d). Solid line: exponential fit to the data. Inset: T1

versus B. (d) Typical QPC-signal for a “reversed” pulse, with the same amplitudes
as in Fig. 29a, but a reversed order of the two stages. The leftmost threshold (dotted
line) is used in Fig. 34b
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of our spin measurement, we change the probability to have a spin-↓ at the
beginning of the read-out stage, and compare this with the fraction of traces
in which the electron is declared “spin-down”. As twait is increased, the time
between injection and read-out, thold, will vary accordingly (thold ≈ twait).
The probability for the spin to be ↓ at the start of tread will thus decay
exponentially to zero, since electrons in the excited spin state will relax to
the ground state (kBT � ∆EZ). For a set of 15 values of twait we take 625
traces for each twait, and count the fraction of traces in which the electron
is declared “spin-down” (Fig. 31c). The fact that the expected exponential
decay is clearly reflected in the data confirms the validity of the spin read-out
procedure.

We extract a single-spin energy relaxation time, T1, from fitting the dat-
apoints in Fig. 31c (and two other similar measurements) to α + C exp(−
twait/T1), and obtain an average value of T1 ≈ (0.55 ± 0.07) ms at 10 Tesla.
This is an order of magnitude longer than the lower bound on T1 estab-
lished earlier [54], and clearly longer than the time needed for the spin mea-
surement (of order 1/Γ↓ ≈ 0.11 ms). A similar experiment at 8 Tesla gives
T1 ≈ (0.85± 0.11) ms and at 14 Tesla we find T1 ≈ (0.12± 0.03) ms (Fig. 32).
More experiments are needed in order to test the theoretical prediction that
relaxation at high magnetic fields is dominated by spin-orbit interactions
[22, 83, 84], with smaller contributions resulting from hyperfine interactions
with the nuclear spins [83, 85] (cotunnelling is insignificant given the very
small tunnel rates). We note that the obtained values for T1 refer to our en-
tire device under active operation: i.e. a single spin in a quantum dot subject
to continuous charge detection by a QPC.
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(0.12 ± 0.03) ms at 14 T



80 J.M. Elzerman et al.

Injection threshold (nA)
1.81.61.4

In
je

ct
ed

fr
ac

tio
n

1.0

0.5

0.0

100
129
161
195
273
1500

waiting time ( s):µ

b

∆ I
Q

P
C

(n
A

)

0

1

2

0.2 0.3 0.4
Time (ms)

a

twait

Fig. 33. Setting the injection threshold. (a) Example of QPC-signal for the shortest
waiting time used (0.1 ms). The dotted horizontal line indicates the injection thresh-
old. Injection is declared successful if the QPC-signal is below the injection threshold
for a part or all of the last 45 µs before the end of the injection stage (twait). Traces
in which injection was not successful, i.e. no electron was injected during twait, are
disregarded. (b) Fraction of traces in which injection was successful, out of a total
of 625 taken for each waiting time. The threshold chosen for analysing all data is
indicated by the vertical line

5.6 Measurement Fidelity

For applications in quantum information processing it is important to know
the accuracy, or fidelity, of the single-shot spin read-out. The measurement
fidelity is characterised by two parameters, α and β (inset to Fig. 34a), which
we now determine for the data taken at 10 T.

The parameter α corresponds to the probability that the QPC-current ex-
ceeds the threshold even though the electron was actually spin-↑, for instance
due to thermally activated tunnelling or electrical noise (similar to “dark
counts” in a photon detector). The combined probability for such processes
is given by the saturation value of the exponential fit in Fig. 31c, α, which
depends on the value of the threshold current. We analyse the data in Fig. 31c
using different thresholds, and plot α in Fig. 34b.

The parameter β corresponds to the probability that the QPC-current
stays below the threshold even though the electron was actually spin-↓ at the
start of the read-out stage. Unlike α, β cannot be extracted directly from the
exponential fit (note that the fit parameter C = p(1 − α − β) contains two
unknowns: p = Γ↓/(Γ↑+Γ↓) and β). We therefore estimate β by analysing the
two processes that contribute to it. First, a spin-↓ electron can relax to spin-
↑ before spin-to-charge conversion takes place. This occurs with probability
β1 = 1/(1 + T1Γ↓). From a histogram (Fig. 34a) of the actual detection time,
tdetect (see Fig. 31b), we find Γ−1

↓ ≈ 0.11 ms, yielding β1 ≈ 0.17. Second, if
the spin-↓ electron does tunnel off the dot but is replaced by a spin-↑ electron
within about 8 µs, the resulting QPC-step is too small to be detected. The
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Fig. 34. Measurement fidelity. (a) Histogram showing the distribution of detection
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−1 of 0.09 ms. Given that T1 = 0.55 ms, this yields
Γ−1
↓ ≈ 0.11 ms. Inset: fidelity parameters. A spin-↓ electron is declared “down” (d)

or “up” (u) with probability 1 − β or β, respectively. A spin-↑ electron is declared
“up” or “down” with probability 1−α or α, respectively. (b) Open squares represent
α, obtained from the saturation value of exponential fits as in Fig. 31c for differ-
ent values of the read-out threshold. A current of 0.54 nA (0.91 nA) corresponds to
the average value of ∆IQPC when the dot is occupied (empty) during tread. Open
diamonds: measured fraction of “reverse-pulse” traces in which ∆IQPC crosses the
injection threshold (dotted black line in Fig. 31d). This fraction approximates 1−β2,
where β2 is the probability of identifying a spin-↓ electron as “spin-up” due to the
finite bandwidth of the measurement setup. Filled circles: total fidelity for the spin-
↓ state, 1 − β, calculated using β1 = 0.17. The vertical dotted line indicates the
threshold for which the visibility 1 − α − β (separation between filled circles and
open squares) is maximal. This threshold value of 0.73 nA is used in the analysis of
Fig. 31

probability that a step is missed, β2, depends on the value of the threshold.
It can be determined by applying a modified (“reversed”) pulse (Fig. 31d).
For such a pulse, we know that in each trace an electron is injected in the
dot, so there should always be a step at the start of the pulse. The fraction
of traces in which this step is nevertheless missed, i.e. ∆IQPC stays below
the threshold (dotted black line in Fig. 31d), gives β2. We plot 1 − β2 in
Fig. 34b (open diamonds). The resulting total fidelity for spin-↓ is given by
1− β ≈ (1− β1)(1− β2) + (αβ1). The last term accounts for the case when a
spin-↓ electron is flipped to spin-↑, but there is nevertheless a step in ∆IQPC

due to the dark-count mechanism6. In Fig. 34b we also plot the extracted
value of 1 − β as a function of the threshold.
6 Let us assume there is a spin-↓ electron on the dot at the start of the read-out

stage. The probability that the ↓-electron tunnels out (i.e. that it does not relaxto
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We now choose the optimal value of the threshold as the one for which
the visibility 1 − α − β is maximal (dotted vertical line in Fig. 34b). For this
setting, α ≈ 0.07, β1 ≈ 0.17, β2 ≈ 0.15, so the measurement fidelity for the
spin-↑ and the spin-↓ state is ∼0.93 and ∼0.72 respectively. The measurement
visibility in a single-shot measurement is thus at present 65%.

Significant improvements in the spin measurement visibility can be made
by lowering the electron temperature (smaller α) and especially by making the
charge measurement faster (smaller β). Already, the demonstration of single-
shot spin read-out and the observation of T1 of order 1 ms are encouraging
results for the use of electron spins as quantum bits.

6 Semiconductor Few-Electron Quantum Dots
as Spin Qubits

In the previous sections we have described experiments aimed at creating
a quantum dot spin qubit according to the proposal by Loss and DiVin-
cenzo [2] (see also paragraph 1.3). The key ingredients for these experiments –
performed over the last two years – are a fully tunable few-electron double
quantum dot and a quantum point contact (QPC) charge detector. We have
operated the QPC in three different ways:

1. By measuring its DC conductance, changes in the average charge on the
double dot are revealed, which can be used to identify the charge configu-
ration of the system.

2. By measuring the conductance in real-time (with a bandwidth of ∼100 kHz),
we can detect individual electrons tunnelling on or off the dot (in less than
10 µs).

3. By measuring the QPC response to a gate voltage pulse train (with the
proper frequency) using a lock-in amplifier, we can determine the tunnel
rate between the dot and a reservoir. In addition, by using a large pulse am-
plitude and measuring changes in the effective tunnel rate, we can identify
excited states of the dot.

Using these techniques, we have demonstrated that our GaAs/AlGaAs quan-
tum dot circuit is a promising candidate for a spin qubit. However, we do
not have a fully functional qubit yet, as coherent manipulation of a single-
or a two-spin system has so far remained elusive. In this section, we evaluate
the experimental status of the spin qubit project in terms of the DiVincenzo

spin-↑) is given by 1− β1. The probability that this tunnel event is detected (i.e.
is not too fast) is given by 1−β2. Therefore, the probability that a spin-↓ electron
tunnels out and is detected, is (1−β1)(1−β2). In addition, there is the possibility
that the ↓-electron relaxes, with probability β1, but a step in the QPC signal is
nevertheless detected, with probability α, due to the “dark count” mechanism.
Therefore, the total probability that a spin-↓ electron is declared “spin-down” is
given by (1 − β1)(1 − β2) + (αβ1) approximately.
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requirements [17]. Fabrication and characterization of a double quantum dot
containing two coupled spins has been achieved, as well as initialization and
single-shot read-out of the spin state. The single-spin relaxation time was
found to be very long, but the decoherence time is still unknown. We present
concrete ideas on how to proceed towards coherent spin operations. Single-spin
manipulation relies on a microfabricated wire located close to the quantum
dot, and two-spin interactions are controlled via the tunnel barrier connecting
the respective quantum dots. To demonstrate superposition and entanglement
of spin states, we plan to use a charge detection approach, without relying on
transport measurements.

6.1 Qubit

The first of the five DiVincenzo requirements is to have a scalable physical
system with well-characterized qubits. We have fabricated double quantum
dot devices in which a single electron can be confined in each of the two dots
(see Sect. 2). The spin states | ↑〉 and | ↓〉 of the electron, subject to a large
magnetic field B, correspond to the two states of the proposed qubit two-level
system. The Zeeman splitting, ∆EZ , between the two states can be tuned
with the magnetic field, according to ∆EZ = gµBB, with g ≈ −0.44 the
electron g-factor in GaAs [54], and µB the Bohr magneton.

These one-electron dots can be fully characterized using a QPC as a charge
detector, with the techniques developed in Sects. 2 and 3. First of all, we can
use the QPC to monitor the charge configuration of the double dot, in order
to reach the regime where both dots contain just a single electron. Then we
can evaluate and tune the tunnel rate from each dot to the reservoir using the
lock-in technique described above. The same technique can be employed to de-
termine the energy spectrum of each of the two dots, i.e. the Zeeman splitting
between the two qubit states, as well as the energy of orbital excited states.
Furthermore, the QPC can be used to monitor the inter-dot tunnel barrier,
both qualitatively (from the curvature of lines in the honeycomb diagram,
as shown in Fig. 2.6) and quantitatively (by performing photon-assisted tun-
nelling spectroscopy to measure the tunnel splitting between the one-electron
bonding and anti-bonding state, as in [86]). In principle, it is even possible
to use the lock-in technique to measure the exchange splitting J between the
delocalized two-electron singlet and triplet spin states. However, in practical
situations the splitting might be too small (<20 µeV) to be resolved using
tunnelling spectroscopy.

We can thus determine all relevant parameters of the two-spin system
without performing transport measurements. The essential advantage of the
QPC technique is that it works even for a dot that is very weakly coupled to
just a single reservoir, with a tunnel rate between zero and ∼100 kHz (limited
by the bandwidth of the current measurement setup). This gives us more
freedom to design simpler dots with fewer gates, which could therefore be
easier to operate.
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6.2 Read-Out

We have achieved single-shot read-out of the spin orientation of an individual
electron in a quantum dot (see Sect. 5). Our approach utilizes the Zeeman
splitting, induced by a large magnetic field parallel to the 2DEG, to create
spin-to-charge conversion (Fig. 35a). This is followed by real-time detection
of single-electron tunnelling events using the QPC. The total visibility of the
spin measurement is ∼65%, limited mostly by the ∼40 kHz bandwidth of our
current measurement setup, and also by thermal excitation of electrons out of
the quantum dot, due to the high effective electron temperature of ∼300 mK.

EF

a b

∆EZ

↑

↓
↑

↓
∆EZ

EF

Fig. 35. Schematic energy diagrams depicting spin-to-charge conversion based on
a difference in energy (a) between | ↑〉 and | ↓〉, or on a difference in tunnel rate (b)

We estimate that we can improve the visibility of the spin read-out tech-
nique to more than 90% by lowering the electron temperature below 100 mK,
and especially by using a faster way to measure the charge on the dot. This
could be possible with a “radio-frequency QPC” (RF-QPC), similar to the
well-known RF-SET [57]. In this approach, the QPC is embedded in an LC
circuit with a resonant frequency of ∼1 GHz. By measuring the reflection or
transmission of a resonant carrier wave, we estimate that it should be possible
to read out the charge state of the nearby quantum dot in ∼1 µs, an order of
magnitude faster than is currently attainable.

A disadvantage of the read-out technique based on the Zeeman splitting is
that it relies on accurate positioning of the dot-levels with respect to the Fermi
energy of the reservoir, EF (see Fig. 35a). This makes the spin read-out very
sensitive to charge switches, which can easily push the | ↑〉 level above EF ,
or pull | ↓〉 below EF , resulting in a measurement error. To counteract this
effect, a large enough Zeeman splitting is required (in Sect. 5 a magnetic field
of more than 8 Tesla was used, although with a more stable sample a lower
field might be sufficient). On the other hand, a smaller Zeeman splitting is
desirable because it implies a lower and therefore more convenient resonance
frequency for coherent spin manipulation. In addition, the spin relaxation time
is expected to be longer at smaller ∆EZ . Therefore, a different spin read-out
mechanism that is less sensitive to charge switches and can function at lower
fields would be very useful.
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A particularly convenient way to perform spin-to-charge conversion could
be provided by utilizing not a difference in energy between spin-up and spin-
down, but a difference in tunnel rate (Fig. 35b). To read out the spin orien-
tation of an electron on the dot, we simply raise both dot levels above EF , so
that the electron can leave the dot. If the tunnel rate for spin-up electrons,
Γ↑, is much larger than that for spin-down electrons, Γ↓, then at a suitably
chosen time the dot will have a large probability to be already empty if the
spin was up, but a large probability to be still occupied if the spin is down.
Measuring the charge on the dot within the spin relaxation time can then
reveal the spin state.

This scheme is very robust against charge switches, since no precise po-
sitioning of the dot levels with respect to the leads is required: both levels
simply have to be above EF . Also, switches have a small influence on the
tunnel rates themselves, as they tend to shift the whole potential landscape
up or down, which does not change the tunnel barrier for electrons in the
dot [87]. Of course, the visibility of this spin measurement scheme depends on
the difference in tunnel rate we can achieve.

A difference in tunnel rate for spin-up and spin-down electrons is provided
by the magnetic field. From large-bias transport measurements in a magnetic
field parallel to the 2DEG [82], we find that the spin-selectivity (Γ↑/Γ↓) grows
roughly linearly from ∼1.5 at 5 Tesla to ∼5 at 14 Tesla. This is in good
agreement with the spin-selectivity of about 3 that was found at 10 Tesla
using the single-shot spin measurement technique of Sect. 5.

We believe that this spin-dependence of the tunnel rates is due to exchange
interactions in the reservoirs. If ∆EZ is the same in the dot as in the reservoirs,
the tunnel barrier will be the same for | ↑〉 and | ↓〉 electrons, giving Γ↑ = Γ↓
(Fig. 36a). However, close to the dot there is a region with only | ↑〉 electrons,
where an electron that is excited from | ↑〉 to | ↓〉 must overcome not only
the single-particle Zeeman energy but also the many-body exchange energy
between the reservoir electrons [88]. We can describe this situation with an

a b

∆EZ

ECB

∆E +EZ X

ECB

EF EF

0↔↑

0↔↓
↑

↓

0↔↑

0↔↓
↑

↓

Fig. 36. Exchange interaction in the reservoirs leading to spin-selective tunnel rates.
(a) Schematic diagram of the conduction band edge ECB near the dot for electrons
with spin-up (solid line) and spin-down (dashed line). If ∆EZ in the reservoirs is
the same as in the dot, the tunnel rates do not depend on spin. (b) The exchange
energy EX in the reservoirs close to the dot induces spin-dependent tunnel rates
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effective g-factor geff , which can be larger than the bare g-factor (Fig. 36b). In
this case, | ↓〉 electrons experience a thicker tunnel barrier than | ↑〉 electrons,
resulting in a difference in tunnel rates [43].

In a magnetic field parallel to the 2DEG, the effect only leads to a modest
spin-selectivity that does not allow a single-shot measurement. However, a
much larger spin-selectivity is possible in a perpendicular magnetic field [88],
i.e. in the Quantum Hall regime. Magnetotransport measurements in 2DEGs
with odd filling factor have shown that the g-factor can be enhanced by as
much as a factor of ten, depending on the field strength. We anticipate that
a convenient perpendicular field of ∼4 T could already give enough spin-
selectivity to allow high-fidelity spin read-out. Therefore, spin read-out should
be feasible not only in a large parallel magnetic field, but also in a somewhat
smaller perpendicular field.

6.3 Initialization

Initialization of the spin to the pure state | ↑〉 – the desired initial state for
most quantum algorithms [1] – has been demonstrated in Sect. 5. There it was
shown that by waiting long enough, energy relaxation will cause the the spin
on the dot to relax to the | ↑〉 ground state (Fig. 37a). This is a very simple
and robust initialization approach, which can be used for any magnetic field
orientation (provided that gµBB > 5kBT ). However, as it takes about 5T1

to reach equilibrium, it is also a very slow procedure (≥10 ms), especially at
lower magnetic fields, where the spin relaxation time T1 might be very long.

A faster initialization method has been used in the “reverse pulse” tech-
nique in Sect. 5. By placing the dot in the read-out configuration (Fig. 37b),
a spin-up electron will stay on the dot, whereas a spin-down electron will be
replaced by a spin-up. After waiting a few times the sum of the typical tun-
nel times for spin-up and spin-down (∼1/Γ↑ + 1/Γ↓), the spin will be with
large probability in the | ↑〉 state. This initialization procedure can therefore
be quite fast (<1 ms), depending on the tunnel rates.

EF

∆EZ

↑

↓
↑

↓

↑

↓

c

↑

↓

da b c

Fig. 37. Schematic energy diagrams depicting initialization procedures in a large
parallel or perpendicular magnetic field. (a) Spin relaxation to pure state | ↑〉.
(b) The “read-out” configuration can result in | ↑〉 faster. (c) Random spin injection
gives a statistical mixture of | ↑〉 and | ↓〉. (d) In a large perpendicular field providing
a strong spin-selectivity, injection results mostly in | ↑〉
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We also have the possibility to initialize the dot to a mixed state, where
the spin is probabilistically in | ↑〉 or | ↓〉. In Sect. 5, mixed-state initialization
was demonstrated in a parallel field by first emptying the dot, followed by
placing both spin levels below EF during the “injection stage” (Fig. 37c).
The dot is then randomly filled with either a spin-up or a spin-down electron.
This is very useful, e.g. to test two-spin operations (see paragraph 6.6).

In a large perpendicular field providing a strong spin-selectivity, initializa-
tion to the | ↑〉 state is possible via spin relaxation (Fig. 37a) or via direct
injection (Fig. 37d). Initialization to a mixed state (or in fact to any state other
than | ↑〉) is very difficult due to the spin-selectivity. It probably requires the
ability to coherently rotate the spin from | ↑〉 to | ↓〉 (see paragraph 6.5).

6.4 Coherence Times

The long-term potential of GaAs quantum dots as electron spin qubits clearly
depends crucially on the spin coherence times T1 and T2. In Sect. 5, we have
shown that the single-spin relaxation time, T1, can be very long – on the order
of 1 ms at 8 T. This implies that the spin is only very weakly disturbed by the
environment. The dominant relaxation mechanism at large magnetic field is
believed to be the coupling of the spin to phonons, mediated by the spin-orbit
interaction [22].

The fundamental quantity of interest for spin qubits is the decoherence
time of a single electron spin in a quantum dot, T2, which has never been mea-
sured. Experiments with electrons in 2DEGs have established an ensemble-
averaged decoherence time, T ∗

2 , of ∼100 ns [89]. Recently, a similar lower
bound on T2 has been claimed for a single trapped electron spin, based on the
linewidth of the observed electron spin resonance [90]. Theoretically, it has
been suggested that the real value of T2 can be much longer [22], and under
certain circumstances could even be given by T2 = 2T1, limited by the same
spin-orbit interactions that limit T1.

To build a scalable quantum computer, a sufficiently long T2 (correspond-
ing to more than 104 times the gate operation time) is essential in order to
reach the “accuracy threshold”. However, for experiments in the near future,
we only need to perform a few spin rotations within T2, which might already
be possible for much shorter T2, on the order of a µs. This should also be long
enough to perform two-spin operations, which are likely to be much faster. To
find the actual value of T2, the ability to perform coherent spin operations is
required. This is discussed in the next paragraphs.

6.5 Coherent Single-Spin Manipulation: ESR

We have not yet satisfied the key requirement for an actual spin qubit: coher-
ent manipulation of one- and two-spin states. To controllably create super-
positions of | ↑〉 and | ↓〉, we can use the well-known electron spin resonance
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(ESR) effect. A microwave magnetic field Bac oscillating in the plane per-
pendicular to B, at a frequency f = gµBB/h (in resonance with the spin
precession about B) causes the spin to make transitions between | ↑〉 and
| ↓〉. The choice of B strength is a trade-off between reliable initialization and
read-out (strong B is better) and experimental convenience (low f is easier).
We expect that a perpendicular field of 4 Tesla should be sufficient to provide
high-fidelity read-out and initialization, with f ≈ 25 GHz (for g = −0.44).
Alternatively, in a parallel field we may have to go up to 8 Tesla, correspond-
ing to f ≈ 45 GHz [54], for high-fidelity spin measurement. However, since
single-shot read-out is not strictly required, a somewhat lower field could also
be enough.

Properly timed bursts of microwave power tip the spin state over a con-
trolled angle, e.g. 90◦ or 180◦. In order to observe Rabi oscillations, the Rabi
period must be at most of the order of the single-spin decoherence time T2.
For a Rabi period of 150 ns, we need a microwave field strength Bac of ∼1 mT.
If T2 is much longer, there is more time to coherently rotate the spin, so a
smaller oscillating field is sufficient.

We intend to generate the oscillating magnetic field by sending an alter-
nating current through an on-chip wire running close by the dot (Fig. 38a). If
the wire is placed well within one wavelength (which is a few mm at 30 GHz
near the surface of a GaAs substrate) from the quantum dot, the dot is in
the near-field region and the electric and magnetic field distribution produced
by the AC current should be the same as for a DC current [91]. With a wire
200 nm from the dot, a current of ∼1 mA should generate a magnetic field
of about 1 mT and no electric field at the position of the dot. To minimize

a b

Iac

B

Bac

20 mµ500 nm

Fig. 38. On-chip wire to apply microwaves to a nearby quantum dot. The device
was made by Laurens Willems van Beveren and Jort Wever. (a) Scanning electron
microscope image of a device consisting of a double quantum dot in close proximity to
a gold wire. An AC current through the wire, Iac, generates an oscillating magnetic
field, Bac, perpendicular to the plane. If the AC frequency is resonant with the
Zeeman splitting due to a large static in-plane magnetic field, B, a spin on the dot
will rotate. (b) Large-scale view of the wire, designed to be a 50 Ω coplanar stripline
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reflection and radiation losses, the wire is designed to be a shorted coplanar
stripline (Fig. 38b) with a 50 Ω impedance.

To detect the electron spin resonance (ESR) and obtain a lower bound
on T2 from the linewidth of the resonance signal, various methods have
been proposed, either using transport measurements [92] or relying on charge
detection [93]. In both cases, the required spin-to-charge conversion is achieved
by positioning the dot levels around the Fermi energy of the reservoir
(Fig. 39a–b). The ESR-field induces spin flips, exciting | ↑〉 electrons to | ↓〉,
which can then tunnel out of the dot. This leads to an average current
(Fig. 39a) or to a change in the average occupation of the dot (Fig. 39b).
However, in this configuration the dot is particularly sensitive to spurious ef-
fects induced by the microwaves, such as | ↑〉 electrons being excited out of
the dot via thermal excitation or photon-assisted tunnelling. These processes
can completely obscure the spin resonance.

↑

↓

↑

↓ ↑

↓
c

↑

↓

da b c

~
k

T
B

Fig. 39. Detecting ESR. (a) To detect ESR in a transport measurement [92], the
dot is placed in Coulomb blockade, so that electron spins that are flipped by the ESR
field can contribute to a current. (b) A similar configuration is used to detect ESR
via changes in the occupation of the dot [90], measured using a charge detector. (c) If
the dot is deep in Coulomb blockade during the spin-flip stage, the electron is not
easily excited to the reservoir via thermal excitation or photon-assisted tunnelling.
(d) The microwaves are off during the spin read-out stage to enhance the measure-
ment fidelity

Such problems can be avoided by combining (pulsed) electron spin res-
onance with single-shot spin measurement. This allows us to separate the
spin manipulation stage (during which the microwaves are on) from the spin
read-out stage (without microwaves). In this way, excitation out of the dot
is prevented by Coulomb blockade (Fig. 39c), until spin read-out is initiated
(Fig. 39d). In contrast to the techniques described above – which require a
large spin flip rate to generate a measurable current or disturbance of the dot
occupation – this approach only requires the spin flip rate to be faster than
the decoherence rate. Therefore, a longer T2 allows us to use a smaller Bac,
corresponding to (quadratically) smaller microwave power. This should help
to suppress heating and photon-assisted tunnelling.

In principle, an ESR experiment can be performed in a parallel or a per-
pendicular magnetic field. The read-out in a perpendicular field is particularly
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suitable for ESR detection, as the dot levels are far above EF (so are not af-
fected by photon-assisted tunnelling or heating). If B is perpendicular to the
surface, Bac must run through the dot in a direction parallel to the surface,
so we must place the wire above the dot rather than to its side. The wire
could be located on top of an insulating dielectric layer that covers the gate
electrodes.

6.6 Coherent Spin Interactions:
√

swap

Two electron spins S1 and S2 in neighbouring quantum dots are coupled to
each other by the exchange interaction, which takes the form J(t)S1 · S2.
If the double dot is filled with two identical spins, the interaction does not
change their orientation. However, if the left electron spin starts out being | ↑〉
and the right one | ↓〉, then the states of the two spins will be swapped after
a certain time. An interaction active for half this time performs the

√
swap

gate, which has been shown to be universal for quantum computation when
combined with single qubit rotations [94]. In fact, the exchange interaction is
even universal by itself when the state of each qubit is encoded in the state
of three electron spins [17].

The strength J(t) of the exchange interaction depends on the overlap of
the two electron wavefunctions, which varies exponentially with the voltage
applied to the gate controlling the inter-dot tunnel barrier. By applying a
(positive) voltage pulse with a certain amplitude and duration, we can tem-
porarily turn on the exchange interaction, thereby performing a

√
swap gate.

We expect that J may correspond to a frequency of ∼10 GHz, so two-qubit
gates could be performed in ∼100 ps. A much larger value would not be con-
venient experimentally, as we would have to control the exact amplitude and
duration of the pulse very precisely. On the other hand, a very slow exchange
operation would be more sensitive to decoherence resulting from fluctuations
in the tunnel rate, due to charge noise. The value of J can in principle be de-
termined in a transport measurement [33], or alternatively by using the QPC
tunnel spectroscopy technique developed in Sect. 3. However, in practical sit-
uations J might be too small to be resolved.

To explore the operation of the swap gate, we only need reliable initial-
ization and read-out, without requiring ESR [2]. Imagine qubit 1 is prepared
in a pure state | ↑〉 and qubit 2 is prepared in a statistical mixture of | ↑〉 and
| ↓〉. Measurement of qubit 1 should then always give | ↑〉, while measurement
of qubit 2 should give probabilistically | ↑〉 or | ↓〉. After application of the
swap gate, in contrast, measurement of qubit 2 should always give | ↑〉, while
measurement of qubit 1 should give a probabilistic outcome. This and other
spin-interaction experiments are probably easiest in a parallel magnetic field,
where initialization to a statistical mixture is convenient. In addition, a large
perpendicular field shrinks the electron wavefunctions, lowering the tunnel
coupling and thus the exchange interaction between the two dots.
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6.7 Unresolved Issues

Several issues are not yet fully resolved, both experimentally and theoreti-
cally. One of these is the question of electron spin resonance in the reservoir.
There are indications that the g-factor in the dot is different from that in the
reservoir [95] (disregarding enhancement due to exchange interactions, which
are not relevant for a “global” excitation such as ESR). However, if the two g-
factors are equal, then any coherent operation of the spin on the dot will also
influence the spin population outside the dot. This has not been taken into
account in this section, but it could lead to complications for the proposed
ESR experiments.

Another question is related to the ∼106 nuclear spins in the quantum
dot that couple to the electron spin via the hyperfine coupling. Through the
Overhauser effect they produce an effective magnetic field, which can be very
large (∼5 T) for a fully polarized nuclear spin ensemble. Statistical fluctuations
in the Overhauser field could lead to changes in the phase of the electron spin.
It is not yet clear what the influence will be on spin manipulation experiments.
If it turns out to be a problem, we may have to polarize the nuclear system
completely in order to suppress the fluctuations.

A more practical consideration is the effect of charge switches in the het-
erostructure, which make any experiment more difficult. This is particularly
true for two-spin interaction experiments, as charge noise can affect the inter-
dot tunnel barrier and therefore the exchange interaction, resulting in deco-
herence. In collaboration with the group of Prof. Wegscheider in Regensburg,
we have started to investigate the possible origin of charge switching, in an
effort to produce more quiet heterostructures and devices.

Finally, so far we have used at most two quantum dots, not paying much
attention to the scalability of our spin qubit approach. For instance, the ESR-
field generated by the big wire runing next to the double dot will also influence
other spins in nearby dots. We may therfore have to develop techniques to
locally control the g-factor felt by the electron spin in a dot, in order to shift
particular dots in or out of resonance.

6.8 Conclusion and Outlook

In summary, we have demonstrated that single electrons trapped in GaAs
lateral quantum dots are promising candidates for implementing a spin qubit.
We have realized the “hardware” for such a system: a device consisting of
two coupled quantum dots that can be filled with one electron spin each,
flanked by two quantum point contacts. Using these QPCs as charge detectors,
we can determine all relevant parameters of the double dot. In addition, we
have developed a technique to measure the spin orientation of an individual
electron. Now we can proceed to combine all these ingredients with the ability
to generate strong microwave magnetic fields close to the dot, and gate voltage
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pulses to control the inter-dot coupling, in order to demonstrate superposition
and entanglement of spin states.

For such experiments, the QPC is an invaluable tool. It allows us to probe a
dot that is nearly isolated from the reservoirs, which is a regime not accessible
to conventional transport experiments. Most importantly, it enables us to
study a single spin or charge, rather than measuring average properties of a
large ensemble. The QPC charge and spin detector is therefore essential to
achieve the kind of single-particle control that is required for creating a qubit –
transport experiments are no longer necessary.

The techniques we have developed are not only suitable for quantum com-
putation. Now that the spin orientation of a single electroncan be measured,
we can think of using the spin as a local probe to explore the semiconductor
environment. For instance, measuring the spin relaxation time in various sit-
uations could reveal details of different mechanisms for spin-orbit coupling.
We could vary the orientation of the magnetic field with respect to the crystal
axes, or investigate the effect of static or time-varying electric fields. Once
we can measure the electron spin resonance frequency, this would allow us to
study the polarization of the nuclear spin ensemble via the Overhauser effect.
In all these cases, the fact that dot parameters such as the Zeeman splitting
or the tunnel coupling to reservoirs can be controlled in situ, makes a lat-
eral quantum dot filled with a single spin a system of great versatility and
fundamental importance.
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