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Measurement Efficiency and n-Shot Readout of Spin Qubits
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We consider electron spin qubits in quantum dots and define a measurement efficiency e to
characterize reliable measurements via n-shot readouts. We propose various implementations based
on a double dot and a quantum point contact (QPC) and show that the associated efficiencies e vary
between 50% and 100%, allowing single-shot readout in the latter case. We model the readout
microscopically and derive its time dynamics in terms of a generalized master equation, calculate
the QPC current, and show that it allows spin readout under realistic conditions.
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The readout of a qubit state is of central importance for
quantum information processing [1]. In special cases, the
qubit state can be determined in a single measurement,
referred to as single-shot readout. In general, however, the
preparation and measurement need to be performed not
only once but n times, where n depends on the qubit, the
efficiency e of the measurement device, and on the tol-
erated inaccuracy (infidelity) �. In the first part of this
Letter, we analyze such n-shot readouts for general qubit
implementations and derive a lower bound on n in terms
of e and �. We then turn to spin-based qubits and GaAs
quantum dots [2,3] and analyze their n-shot readout based
on a spin-charge conversion and charge measurement via
quantum point contacts.
n-shot readout and measurement efficiency e.—How

many times n do the preparation of a qubit in the same
initial state and subsequent measurement need to be
performed until the state of the qubit is known with
some given infidelity � (n-shot readout)? We model the
measurement process with a set of positive operator-
valued measure (POVM) operators [1,4], EA0 � p0j0i�
h0j � �1� p1	j1ih1j and EA1 � �1� p0	j0ih0j � p1j1ih1j,
where p0 and p1 are probabilities. These operators de-
scribe measurements with outcomes A0 and A1, respec-
tively. This POVM model can be pictured as follows.
First, the qubit is coupled to some other device (e.g., to
a reference dot, see below). Then this coupled system is
measured and thereby projected onto some internal state.
That state is accessed via an external ‘‘pointer’’ observ-
able Â [4] (e.g., a particular charge distribution, a time-
averaged current, or noise). We assume that only two
measurement outcomes are possible, either A0 or A1,
which are classically distinguishable [5]. For initial qubit
state j0i the expectation value is hÂi0 � p0A0 � �1�
p0	A1, while for initial state j1i it is hÂi1 � �1� p1	A0 �
p1A1. Let us take an initial qubit state j0i and consider a
single measurement. With probability p0, the measure-
ment outcome is A0 which one would interpret as ‘‘qubit
was in state j0i.’’ However, with probability 1� p0, the
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outcome is A1 and one might incorrectly conclude that
‘‘qubit was in state j1i.’’ Conversely, the initial state j1i
leads with probability p1 to A1 and with 1� p1 to A0. We
now determine n for a given �, for a qubit either in state
j0i or j1i (no superposition allowed [6]). For an accurate
readout we need, roughly speaking, that hÂi0 and hÂi1 are
separated by more than the sum of the corresponding
standard errors. More precisely [7], we consider a pa-
rameter test of a binomial distribution of the measure-
ment outcomes, one of which is A0 with probability p.
The null hypothesis is that the qubit is in state j0i, thus
p � p0. The alternative is a qubit in state j1i, thus p �
1� p1. For sufficiently large n, namely np0;1�1� p0;1	>
9, one can approximate the binomial with a normal
distribution [8]. The qubit state can then be determined
with significance level (‘‘infidelity’’) � for
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with the quantile (critical value) z1�� of the standard
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	�. We interpret e as measurement efficiency.

Indeed, it is a single parameter e 2 �0; 1� which tells us if
n-shot readout is possible. For p0 � p1 � 1, the efficiency
is maximal, e � 100%, and single-shot readout is pos-
sible (n � 1). Conversely, for p1 � 1� p0 (e.g., p0 �
p1 �

1
2 ), the state of the qubit cannot be determined,

not even for an arbitrarily large n, and the efficiency is
e � 0%. For the intermediate regime, 0%< e< 100%,
the state of the qubit is known after several measure-
ments, with n satisfying Eq. (1) [9].

Visibility v.—When coherent oscillations between j0i
and j1i are considered, the amplitude of the oscillating
signal is jhÂi1 � hÂi0j, i.e., smaller than the value jA1 �
A0j by a factor of v � jp0 � p1 � 1j. Thus, we can take v
as a measure of the visibility of the coherent oscillations.
2004 The American Physical Society 106804-1



FIG. 1 (color online). Electron spin readout setup consisting
of a double dot. The right ‘‘reference’’ dot is coupled capaci-
tively to a QPC shown on the right. (a) Readout using different
Zeeman splittings. For " , the electron tunnels between the two
dots. For # , tunneling is suppressed by the detuning and the
stationary state has a large contribution of the left dot since it
has lower energy. This allows single-shot readout, i.e., e �
100%. (b) Spin-dependent tunneling amplitudes, t#d < t"d, also
enable efficient readout. (c) Readout with the singlet state.
Tunneling of spin " to the reference dot is blocked due to the
Pauli principle. (d) Schematic current vs time during a single
measurement. Here, �dd is the time scale for tunneling and we
assume �tot > td, i.e., that the tunneling events can be resolved
in the current.
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With v and the shift of the oscillations, s � 1
2 �p1 � p0	 �

1
2 �hÂi0 � hÂi1 � A0 � A1	=�A1 � A0	, we can get e. Next,

we see that e � 0, v � 0, and p1 � 1� p0 are equivalent
statements. We find the general relation v2 � e � v,
where the left inequality becomes exact for p0 � p1 and
the right for p0 2 f0; 1g and/or p1 2 f0; 1g; otherwise the
inequalities are strict if e; v > 0. In particular, for p0 and
p1 close to 12with p0 � p1, we see that the efficiency e can
be much smaller than the visibility v.

Single spin readout.—We now discuss several concrete
readout setups and their measurement efficiency. We con-
sider a promising qubit, an electron spin confined in a
quantum dot [2,3]. For reading out such a spin qubit, the
time scale is limited by the spin-flip time T1, which has a
lower bound of � 100�s [10,11] (while T2 is not of
relevance here). One setup proposed in Ref. [2] is readout
via a neighboring paramagnetic dot, where the qubit spin
nucleates formation of a ferromagnetic domain. This
leads to p0 � p1 �

3
4 and thus e � 25%. Another idea is

to transfer the qubit information from spin to charge
[2,3,12–14]. For this, we propose to couple the qubit dot
to a second (‘‘reference’’) dot [15] and discuss several
possibilities how that coupling can be made spin depen-
dent; see Fig. 1. The resulting charge distribution on the
double dot will then depend on the qubit state and can be
detected with an electrometer, such as a quantum point
contact (QPC) [16–18] (see Fig. 1) or a single-electron
transistor (SET) [19]. Single charges were detected on a
time scale of 1�s [19], which is much smaller than T1.

Readout with different Zeeman splittings.—First, we
propose a setup where efficiencies up to 100% can be
reached; see Fig. 1(a). We take a double dot with different
Zeeman splittings, �L;R

z � E#
L;R � E"

L;R, in each dot [20]
and consider a single electron on the double dot. For
initial qubit state j"i, the electron can tunnel from state
jL"i�̂ "�L�R to state jR"i�̂�L "�R and vice versa, and
analogously for qubit state j#i. We consider time scales
shorter than T1, thus the states with different spins are not
coupled. Next, we define the detunings "";# � E";#

L � E";#
R ,

which are different for the up and down states, "# � "" �
�L
z ��

R
z � 0. The stationary state of the double dot

depends on "";# and so does the QPC current �I";# [we
show this below, see Eq. (5) and �Iincoh]. Therefore, initial
states j"i and j#i can be identified through distinguishable
stationary currents [5,21], �I" � �I#, thus e � 100% and
single-shot readout is possible.

Spin-dependent tunneling provides another readout
scheme, see Fig. 1(b), which we describe with spin-
dependent tunneling amplitudes t";#d . For t#d � t"d, only
spin " tunnels onto the reference dot while tunneling of
spin # is suppressed.We assume the same Zeeman splitting
in both dots and resonance " � 0. It turns out [Eq. (5)]
that �I";# depends on t";#d and thus the state of the qubit can
be measured. However, the decay to the stationary state is
quite slow in case the qubit is j #i, due to the suppressed
106804-2
tunneling amplitude t#d . Since the difference in charge
distribution between qubit j"i and j#i is larger at short
time scales, it can thus be advantageous to measure the
time-dependent current (discussed toward the end).

Readout with Pauli principle.—We now consider the
case where the reference dot contains initially an electron
in spin up ground state; see Fig. 1(c). We assume gate
voltages such that there are either two electrons on the
right dot or one electron on each dot. Thus, we consider
the five dimensional Hilbert space jSRi�̂�L "#�R, j"#i�̂
"�L #�R, j#"i�̂ #�L "�R, jT�i�̂ "�L "�R, jT�i�̂ #�L #�R,

We define the ‘‘delocalized’’ singlet jSLRi � �j"#i �

j#"i	=
���
2

p
and the triplet jT0i � �j"#i � j#"i	=

���
2

p
. In the

absence of tunneling, the corresponding energies are
ESR � 2�R �U and ESLR � ET0;� � �L � �R with charg-
ing energy U and single particle energies �L;R. We can
neglect states with two electrons on the qubit dot and the
triplet states with two electrons on the reference dot, since
they have a much larger energy (their admixture due to
tunneling is small). We denote the state with an ‘‘extra’’
electron on the right dot as jRi � jSRi with correspond-
ing QPC current IR. For state jLi � jSLRi and for all
triplet states, jT0;�i, the current is IL. When tunneling is
switched on and the qubit is initially in state j"i, tun-
neling to the reference dot is blocked due to the Pauli
exclusion principle [22]. Thus, the double dot will re-
main in the (stationary) state jT�ihT�j and the current
in the QPC remains hIi � IL (a so-called nondemoli-
tion measurement). On the other hand, for an initial
qubit state j#i, the initial state of the double dot is
106804-2
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j#"i � �jT0i � jSLRi	=
���
2

p
. The contribution jSLRi of this

superposition is tunnel coupled to jSRi and will decay to
the stationary state, which we describe by the density
matrix ��, with corresponding QPC current �I (see below
for an explicit evaluation). In contrast, the triplet contri-
bution jT0i is not tunnel coupled to jSRi due to spin
conservation and does not decay. In total, the density
matrix of the double dot decays into the stationary value
1
2 �jT0ihT0j � ��	. For " � 0, the ensemble-averaged QPC
current for qubit j#i is hIi � 1

2 �IL �
�I	 � 1

4 �3IL � IR	 and
can thus be distinguished from IL for qubit j "i. However,
in a single run of such a measurement, an initial qubit j #i
decays either into jT0ihT0j or into ��, with 50% probability
each. Since jT0ihT0j and jT�ihT�j lead to the same QPC
current IL, these two states are not distinguishable within
this readout scheme and single-shot readout is not pos-
sible. The readout can now be described with the POVM
model given above, with j"i � j0i and j#i � j1i and A" �

IL; A# � �I; p" � 1; and p# �
1
2 . Thus, the measurement

efficiency is e � 50%, i.e., to achieve a fidelity of 1� � �
99%, we need n � 7 readouts [8].

An analogous readout is possible if the ground state of
the reference dot is a triplet, say jRT�i�̂�L ""�R. Using
the same argument as above, we find again e � 50% [23].

Readout model.—So far we have introduced various
spin readout schemes and the corresponding measure-
ment efficiencies. In order to evaluate the signal strength
A0 � A1 for these schemes, we now calculate the station-
ary charge distribution �� and QPC current �I for the case
when the electron can tunnel coherently between the two
dots (as a function of the detuning and the tunnel
coupling). We describe the readout setup with the
Hamiltonian H�Hd�Vd�HQPC�V. Here, HQPC con-
tains the energies of the (uncoupled) Fermi leads of the
QPC. Further, Hd describes the double dot in the absence
of tunneling, including orbital and electrostatic charging
energies, Hdjni � Enjni. It thus contains " � EL � ER,
the detuning of the tunneling resonance. The interdot
tunneling Hamiltonian is defined as Vd � td�jRi�
hLj � jLihRj	. (Note that for tunneling between jSLRi
and jSRi, td is

���
2

p
times the one-particle tunneling am-

plitude, since both states j"#i and j#"i are involved). V is a
tunneling Hamiltonian describing transport through the
QPC. The tunneling amplitudes, tQL and tQR , will be influ-
enced by electrostatic effects, in particular, by the charge
distribution on the double dot. Thus, we model the mea-
surement of the dot state via the QPC with V � �tQL jLi�
hLj � tQRjRihRj	

P
�cyincout � H:c:	 [24–26]. Here, cyin and

cyout create electrons in the incoming and the outgoing
leads of the QPC, where the sum is taken over all mo-
mentum and spin states.We derive the master equation for
the reduced density matrix � of the double dot, using
standard techniques and making a Born-Markov approxi-
mation in V [27].We allow for an arbitrary interdot tunnel
coupling, i.e., we keep Vd exactly, with energy splitting
106804-3
E �
������������������
4t2d � "2

q
in the eigenbasis of Hd � Vd. We obtain

the master equation

_� L � � _�R � 2tdIm��RL�; (3)

_�RL �

�
itd � td

�Q"

E2
�g! � 2g0	

	
��R � �L	 �

td�Q
��

� �!�Q � �i � i"	�RL; (4)

for �n � hnj�jni and �RL � hRj�jLi. In comparison to
previous work [24–26], we find an additional term,
�td�Q=��, which comes from treating Vd exactly. We
find that the current through the QPC is IL �

2"#2e��jtQL j
2 for state jLi and analogously IR for state

jRi, and we choose IL; IR � 0. Here, ��> 0 is the ap-
plied bias across the QPC and # is the DOS at the Fermi
energy of the leads connecting to the QPC. We define
g� � g���� E	, g! � g� � g�, and g0 � g���	

with g�x	 � x=���ex=kT � 1	. The values g�;!;0 vanish
for ��� E> kT. In this case, the decay rate due to the
current assumes the known value [24–26], �Q � �

�����
IL

p
������

IR
p

	2=2e. Generally, the factor ! � 1� �4t2dg! �
2"2g0	=E2 accounts for additional relaxation/dephasing
due to particle hole excitations, induced, e.g., by thermal
fluctuations of the QPC current. Finally, by introducing
the phenomenological rate �i we have allowed for some
intrinsic charge dephasing, which occurs on the time
scale of nanoseconds [28]. For an initial state in the sub-
space fjLi; jRig, we find the stationary solution of the
double dot, ��� 1

2�1�&"=��	jLihLj� 1
2�1�&"=��	�

jRihRj�&�td=��	�jRihLj�jLihRj	, where & � �Q=
��Q�1� g!	 � �i�. Positivity of �� is satisfied since & �

��=E. The time decay to �� is described by three rates,
given as the roots of P�y	 � y3�2�toty

2��E2��2tot	y�
4t2d��tot��Q�g!�2g0	"

2=E2� with �tot � !�Q � �i. The
stationary current through the QPC is given by �I �
��LIL � ��RIR � 2etd)��Q=��	Re��RL and thus becomes

�I �
IL � IR
2

� &
"
2��

�IR � IL	 � &)
2e�Qt

2
d

��2
; (5)

where ) � 1� ���g� � g�	=E [21]. See Ref. [23] for
the current in linear response. We note that & quantifies
the effect of the detuning " on the QPC current. To reach
maximal sensitivity, & � 1, we need IR & IL=10 for I �
1nA and �i � 10

9 s�1. Note that the second term in
Eq. (5) depends on ", a property which can be used for
readout, as discussed above. For example, for different
Zeeman splittings and "";# � ���=2, �i � 109 s�1, IL �
1 nA, and IR � 0, the current difference is �I# � �I" �
0:4 nA, which reduces to 0:05 nA for IR � 0:5 nA.
However, typical QPC currents currently reachable are
IL � 10 and IR � 9:9 nA [17,18], i.e., the relaxation of the
double dot due to the QPC is suppressed, &< 10�3, and
other relaxation channels become important.

Incoherent tunneling.—So far, we have discussed co-
herent tunneling. We can also take incoherent tunneling
106804-3
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into account, e.g., phonon assisted tunneling, by introduc-
ing relaxation rates in Eqs. (3) and (4). For example, for
detailed balance rates and neglecting coherent tunneling,
we find the stationary current �Iincoh �

1
2 �IL � IR	 �

1
2 �

�IR � IL	 tanh�"=2kT	 (which becomes IR for " > kT).
The QPC current again depends on " and can be used
for spin readout. The current can also be measured on
shorter time scales as we discuss now.

Readout with time-dependent currents is possible if
there is sufficient time to distinguish IL from IR between
two tunneling events to or from the reference dot, i.e., we
consider �tot > td. In this incoherent regime, the tunnel-
ing from qubit to reference dot occurs with a rate W" or
W#, depending on the qubit state, with, say, W# � W".
Such rates arise from spin-dependent tunneling, t";#d , or
from different Zeeman splittings and tuning to tunneling
resonance for, say, qubit j"i while qubit j#i is off resonant;
see Figs. 1(a) and 1(b). For readout, the electron is ini-
tially on the left dot and the QPC current is IL. Then, if
the electron tunnels onto the reference dot within time t
and thus changes the QPC current to IR, such a change
would be interpreted as qubit in state j"i, otherwise as
qubit j#i. For calculating the measurement efficiency e, we
note that p" � p0 � 1� e�tW" and p# � p1 � e�tW# (with
this type of readout, W#, corresponds to a loss of the
information, i.e., describes ‘‘mixing’’ [29]). We then
maximize e by choosing a suitable t and find efficiencies
e * 50% for W"=W# * 8:75 and e * 90% for W"=W# * 80.

A more involved readout is to measure the current
through the QPC at different times. The current as a
function of time switches between the values IL and IR,
i.e., shows telegraph noise, as sketched in Fig. 1(d). Since
the frequency of these switching events (roughly W" or
W#) depends on the spin, the QPC noise reveals the state of
the qubit. Finally, at times of the order of the spin relaxa-
tion time T1, the information about the qubit is lost.
At each spin flip, the switching frequency changes (W" $

W#), which thus provides a way to measure T1.
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