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We report that the electron spin-relaxation time T1 in a GaAs quantum dot with a spin-1=2 ground state
has a 180° periodicity in the orientation of the in-plane magnetic field. This periodicity has been predicted
for circular dots as being due to the interplay of Rashba and Dresselhaus spin orbit contributions. Different
from this prediction, we find that the extrema in the T1 do not occur when the magnetic field is along the
[110] and ½11̄0� crystallographic directions. This deviation is attributed to an elliptical dot confining
potential. The T1 varies by more than 1 order of magnitude when rotating a 3 T field, reaching about 80 ms
for the optimal angle. We infer from the data that in our device the signs of the Rashba and Dresselhaus
constants are opposite.
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The high control reached in the manipulation of a single
electron spin in a semiconductor environment [1] is
encouraging for future application of this natural two-level
system for quantum computation technology. In GaAs,
InAs, and other III-V quantum dots it has been shown that
this manipulation can be realized using exclusively elec-
trical fields [2,3]. Coupling of the electric field to the spins
is mediated by the spin-orbit (SO) interaction naturally
provided by the semiconductor host environment. The
semiconductor environment also implies that the electron
is intimately in contact with phonons, charge fluctuations,
and nuclear spins, and these interactions are responsible for
the relaxation and dephasing process of the electron spin.
During the last ten years, a significant experimental

[4–10] and theoretical [11–15] effort has been devoted to
understanding the effect of electron spin relaxation in
lateral quantum dots (QDs). At magnetic fields of the
order of Tesla, spin relaxation in GaAs dots was found to be
dominated by the SO interaction in combination with
piezoelectric phonons. Two contributions to the SO inter-
action usually dominate. The local electric field due to a
crystal with bulk inversion asymmetry generates a
Dresselhaus (D) SO contribution [16] which, for electrons
confined in the plane (xy, with x and y along the [100] and
[010] crystallographic directions, respectively) of the
quantum well, can be written asHD¼ βð−σxPxþσyPyÞ=ℏ,
with ℏ the Planck constant, β the Dresselhaus SO coupling
strength, P the electron kinematic momentum, and σ
the vector of Pauli matrices. In addition, the electric
field associated with the asymmetric confining potential
along the heterostructure growth direction (z along [001])
gives rise to the Rashba (R) SO contribution [17],
HR ¼ αðσyPx − σxPyÞ=ℏ, with α the Rashba SO coupling
strength. The effect of the SO interaction can be viewed

as an effective magnetic field BSO acting on the con-
duction electron spin, with an amplitude and direction
that depend on the electron momentum [see Fig. 1(b)].
The interplay of R and D coupling gives rise to an
anisotropy in the direction and magnitude of BSO in the
plane of the quantum well. As a result, spin relaxation in
a quantum dot is anisotropic in the direction of the in-
plane magnetic field [13,14].
The anisotropy of electron spin relaxation originating

from SO interaction has not been studied experimentally so
far, even though it is highly relevant. Indeed, depending on
the circumstances, it may be desirable to get long relaxation
times or to make the relaxation process as fast as possible,
for example, in order to rapidly initialize the spin [18]. The
SO anisotropy similarly affects the strength of the effective

FIG. 1 (color). (a) Scanning electron micrograph of a device
similar to the one measured. The black arrows indicate the
crystallographic axes. The dotted red circle represents schemati-
cally the single QD position. (b) The spin-orbit field BSO acting
on a conduction electron is shown by red and blue arrows (for a
constant magnitude of P), arising from the Rashba and Dressel-
haus contributions (chosen to be different in modulus and α < 0,
β > 0) and defined, respectively, as BR

SO ¼ ðα=gμBÞð−Py; PxÞ
andBD

SO ¼ ðβ=gμBÞð−Px; PyÞ, with g the electron g factor and μB
the Bohr magneton.
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driving field for single-qubit rotations based on electric
dipole spin resonance [19]. With a proper understanding,
one can design future devices that optimally reconcile
various requirements.
Here we present a measurement of T1 as a function of the

orientation of an in-plane magnetic field. We find a striking
anisotropy with a 180° periodicity, confirming the theo-
retical predictions experimentally. Comparison with the
predictions indicates that also the dot shape anisotropy
plays an important role. We discuss in detail what infor-
mation is needed to determine the ratio of the Rashba
and Dresselhaus coupling strengths in this case. We also
provide guidance for sample design and magnetic field
orientation in future experiments.
The experiment has been realized in a single depletion

QD, see Fig. 1(a), created by applying a negative potential
to surface gates on top of a GaAs=Al0.33Ga0.67As hetero-
structure, grown along the [001] direction. The
GaAs=AlGaAs interface is 85 nm deep, with Si-delta
doping of about 1.3 × 1012 cm−2 atoms 40 nm away from
the 2DEG, and with carrier density and mobility of
1.2 × 1011 cm−2 and 3.6 × 105 cm2V−1 s−1, respectively
(measured at 4 K). The base temperature of the dilution
refrigerator was 25 mK and we estimated the electron
temperature to be 130 mK from transport measurements at
zero magnetic field. From pulse spectroscopy measure-
ments [20] we infer that the dot contains most likely three
electrons (see Supplemental Material [21], Sec. I). Two
electrons form a closed shell, with the third electron
effectively acting as a spin-1=2 system. The orientation
of the quantum dot gate pattern with respect to the main
crystallographic directions is shown in Fig. 1(a). We
applied a magnetic field in the 2DEG plane (at an angle
ϕ with respect to the [100] direction) of modulus 3 T, to
ensure that the spin Zeeman energy (Δz ≈ 76 μeV, con-
sidering a g factor of −0.44 [1]) is higher than the electron
temperature (kBTel ≈ 11 μeV), as required for energy
selective spin readout (see below) [5]. Real-time detection
of the dot occupation is realized by monitoring the current
through a quantum point contact (on the right side of the
structure), amplified by a room temperature I-V converter,
and low-pass filtered with a bandwidth of 30 kHz.
We measure the electron spin-relaxation time by apply-

ing a three- or four-stage pulse to gate RP [5] (see also
Supplemental Material [21], Sec. I). The main observation
is a striking variation in the relaxation time upon rotation of
the in-plane magnetic field (Fig. 2). Figure 3 shows the
measured relaxation time as a function of the magnetic field
orientation over the whole 360° range. The data show
clearly the predicted 180° periodicity and a remarkable
variation in T1 from 7 to 85 ms [Fig. 3(a)]. The maxima in
T1 are sharply peaked. When plotting the same data
inverted, as Γ ¼ 1=T1 [Fig. 3(b)], we see a sinusoidal
variation of the relaxation rate.

To understand this sinusoidal modulation, it is useful to
express the spin-relaxation rate in terms of a cross product
of the external field B ¼ Bðcos ξ cosϕ; cos ξ sinϕ; sin ξÞ,
and the in-plane vector [24]

n ¼ xðl−1D ;−l−1R ; 0Þ þ yðl−1R ;−l−1D ; 0Þ; ð1Þ

which refers to crystallographic directions x̂ ¼ ½100�, and
ŷ ¼ ½010� through the operator of electron coordinates
r ¼ ðx; yÞ. The SO lengths, lR;D ¼ ℏ2=ð2m⋆α; βÞ, with
m⋆ the effective electron mass, are defined as the distance
traveled by an electron over which its spin is rotated by π
due toBSO (typically 1–10 μm in GaAs). For a circular dot,
the relaxation rate is (see Supplemental Material [21],
Sec. II)

Γ∝ jB× ðl−1D ;−l−1R ;0Þj2þjB× ðl−1R ;−l−1D ;0Þj2; ð2Þ

since the dipole operators x and y contribute equally [14].
Parametrizing the SO lengths by l−1R ¼ l−1SO cos ϑ, and
l−1D ¼ l−1SO sinϑ, a straightforward evaluation of Eq. (2)
gives the known result [13,14]

Γ ∝ l−2SO½sin2ξþ cos2ξð1þ sin 2ϕ sin 2ϑÞ�; ð3Þ

which, for an in-plane magnetic field (ξ ¼ 0) reduces to

Γ ∝ l−2SOð1þ sin 2ϕ sin 2ϑÞ: ð4Þ
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FIG. 2 (color). Measured spin-down probability (averaged over
5000 cycles) as a function of the waiting time between injection
and readout (see Supplemental Material [21], Sec. I) for different
angles ϕ of the 3 T in-plane magnetic field. The solid lines are fits
to the data of the form P↓ ¼ a expð−t=T1Þ þ b. The fitted
T1’s are indicated for each curve (in ms). Small variations in
P↓ðt ¼ 0Þ can arise from variations in the readout configuration
in the course of the measurements. Measuring longer T1’s
requires longer waiting times, with increased pulse distortion
from the bias tee (see Supplemental Material [21], Sec. I), and
therefore larger error.
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For positive relative sign of the SO couplings, the rate
reaches a maximum (minimum) with the external field
along [110] (½11̄0�). If the relative sign is inverted, the
positions of the minimum and maximum swap. If R and D
have equal strength, the minimal rate is zero, while the
sinusoidal modulation is reduced the more R andD differ in
strength. Therefore, the relative strength of R and D,
including the relative sign, can be extracted from the
dependence of Γ on the magnetic field orientation.
Looking at the data in Fig. 3, the extrema of the rate are

shifted by ≈10° from the prediction of Eqs. (3) and (4).
Similar offsets were observed in the dependence of SO
induced avoided level crossings on the magnetic field
orientation in InAs dots [25,26], and were explained by
invoking anisotropic dot shapes [27]. The dot anisotropy
influences also the spin-relaxation rate, as seen experimen-
tally in Ref. [10] and anticipated theoretically in Ref. [12]
considering the Dresselhaus coupling only. In addition to
the observed shift, the dot in-plane elongation is indicated
also by our spectroscopy data (see Supplemental Material
[21], Sec. I): given the measured addition energy of about
3 meV, we would expect an orbital excitation energy
of about 1 meV [1], but in this sample, for the specific
electrostatic configuration used for this experiment, the first
orbital excitation energy is only 120 μeV. We will therefore
assume that the dot is strongly anisotropic (elongated), with
the confinement potential major axis rotated away from

[100] by an angle δ. Neither this angle, nor the degree of
anisotropy (nor any more details on the potential shape)
are known.
To derive an analogue of Eq. (2) for an anisotropic dot,

one should express Eq. (1) in coordinates x0, y0, rotated
from the crystallographic axes by the angle δ,

n ¼ nx0x0 þ ny0y0: ð5Þ

For an elongated dot, the excitations along the major
axis (x0) dominate the transition matrix element (see
Supplemental Material [21], Sec. II), and the rate is
[12,14,15]

Γ ∝ jB × nx0 j2: ð6Þ

After some trigonometric manipulations, we are able to
write the previous equation in the form

Γ ¼ b½sin2ξþ cos2ξsin2ðϕ − ϕminÞ�; ð7Þ

where b≡ κl−2SOð1þ sin 2δ sin 2ϑÞ, with κ a proportionality
constant that sets the overall scale.
This expression predicts a rate varying sinusoidally upon

in-plane rotation of the magnetic field, a feature in common
with Eq. (3). However, the details of the dependence are
very different. Here, unlike in Eq. (3), the optimal magnetic
field angle for which the rate is minimal does depend on the
ratio of Rashba and Dresselhaus coefficients (through ϑ),
and on the anisotropy axis of the dot (through δ):

tanϕmin ¼ −
cosðδ − ϑÞ
sinðδþ ϑÞ : ð8Þ

To illustrate further the dependence of the relaxation rate on
the orientation of the in-plane field and the dot major axis,
we plot the prediction of Eq. (7) in Figs. 4(a) and 4(b) for
different ratios of lR and lD. When lR ¼ −lD, the relaxation
rate is minimal for ϕ ¼ 45°, regardless of the dot orienta-
tion, and also for δ ¼ 45°, regardless of the in-plane
magnetic field orientation [Fig. 4(a)]. When lR ≠ lD, the
field orientation that minimizes the relaxation rate depends
on the dot major axis orientation [Fig. 4(b)], with a π
periodicity.
We fit the data of Fig. 3(b) to Eq. (7) with ϕmin, ξ,

and b as the fitting parameters. The fit is plotted in Fig. 3(b)
as the red line. It agrees excellently with the data
(fit goodness R2 ≈ 0.99) and gives ϕmin ¼ 35.1°� 1.1°,
ξ ≈ 17.4°� 1.1°, and b ¼ ð139.2� 3.5Þ s−1. The fitted 17°
misalignment of the magnetic field out of the plane is,
however, unrealistically large. We estimated it in our
experimental setup via Shubnikov–de Haas oscillations,
and can put an upper limit jξj < 5° (see Supplemental
Material [21], Sec. I). The unexpectedly high value of ξ
comes from the large value of the relaxation rate at its
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FIG. 3 (color). Angle dependence of the spin-relaxation time
(a) and rate (b), which are separately extracted from exponen-
tial fits with either the relaxation rate or time in the exponent.
The magnetic field is nearly in-plane, with jξj < 5°, while the
in-plane angle ϕ has a systematic error of �3°. The red line is
a fit to Eq. (7) with free parameters ðϕmin; ξ�; bÞ. The shaded
region between the two blue curves indicates the 95% con-
fidence interval. The dashed vertical lines show the positions of
the extrema of Γ predicted for a circular dot [at ϕ ¼ 45° and
135°; see Eq. (3)].
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minimum. We note, however, that this minimum value may
also be dominated by other relaxation mechanisms that do
not depend on ϕ, such as the interaction with nuclear spins
[12], or the contribution from the random part of the R SO
coupling [28] which arises due to fluctuations in the dopant
concentration in the δ-doping layer. Contributions of orbital
excitations along the minor axis also lead to a finite offset,
as is suggested by Eq. (2). Without knowing more about the
dot confinement shape, we did not find it reasonable to try
to separate these possible contributions by introducing
more fitting parameters. Instead, we relabel ξ → ξ�, rein-
terpreting it as an effective angle accounting for all these
possibilities together.
Using the value of ξ� obtained from the fit and Eqs. (7)

and (8), we can also perform a fit of the same data set with ϑ
and κl−2SO as free parameters, as a function of δ. The fit
results are plotted in Figs. 4(c) and 4(d). From there we
conclude that without knowing the value of δ, we cannot
establish the relative strength of the R and D couplings, as
all values of δ are possible, in principle. However, we
can infer that, most probably, in our sample α and β
were of comparable magnitude and opposite sign
[120° ≤ (ϑ ¼ arctanðlR=lDÞ) ≤ 150°], as these choices
cover the larger portion of (a priori equally probable)
values of δ, in accordance of what is estimated in [29] for a
similar heterostructure. There are two points, δ ¼ 45° and
135°, where the rate κl−2SO diverges (see Supplemental
Material [21], Sec. III). This indicates that such values

of δ cannot be reconciled with our data. Indeed, as follows
from Eq. (8), for these values ϕmin does not depend on the
SO couplings and should be 45° or 135°, which is different
from what we measured. We furthermore note that if δ
were known, α=β could be extracted directly. In order
to also determine the absolute values of α and β, more
information is needed, such as the energy level spectrum
of the dot.
For future experiments, we give guidance for the optimal

orientation of the quantum dot gate pattern and magnetic
field relative to the crystal axes. First, since spin relaxation
and electric dipole spin resonance (EDSR) based spin
manipulation are governed by the same matrix elements
for spin transitions, it is possible to simultaneously opti-
mize for fast EDSR driven Rabi oscillations and for fast
relaxation (useful for qubit reset [18]). In contrast, slow
relaxation (useful for high-fidelity readout [5,30]) cannot
be optimized together with fast EDSR, as long as the
phonon coupling is isotropic, as then both the spin-
relaxation rate and the EDSR rate scale with the same
factor. In circular dots, this factor is given in Eq. (4). We see
that the R and D terms maximally enhance or cancel each
other when the external magnetic field is oriented along the
[110] and ½11̄0� crystallographic axes, as can be expected
also from Fig. 1(b). Complete cancellation of the two
contributions is possible only when jαj ¼ jβj. When R and
D have very different strengths, Γ does not vary with the
magnetic field orientation. For anisotropic dots, the factor is
given in Eq. (7). Here, Γ oscillates with the field orientation
and can reach zero (for ξ ¼ 0) regardless of the ratio of α
and β. Finally, for maximizing the EDSR amplitude, in
circular dots the external magnetic field has to point along
[110] (½11̄0�), if αβ > 0 (αβ < 0), and the driving electric
field should be parallel toB. In elongated dots the magnetic
field should be oriented along the in-plane angle
ϕ ¼ ϕmin þ π=2, and the driving electric field should be
along the dot soft axis. If the direction of the main dot
axis can be chosen, it should point along [110] (½11̄0�), if
αβ > 0 (αβ < 0).
In conclusion, we show that the in-plane orientation of

the magnetic field can strongly impact the spin-relaxation
time in quantum dots. We observe a variation in T1 by more
than 1 order of magnitude when rotating the field in the
2DEG plane. We can take advantage of this dependence
in future experiments to either maximize or minimize T1.
Furthermore, the dependence of T1 on magnetic field angle
provides a sensitive probe of the ratio of the R and D SO
contributions, which can be used even when SO induced
avoided level crossings are too small to be measured [31],
which is the case of GaAs. What is needed is either a
symmetric QD confining potential or, for an elliptical dot, a
good estimate of the magnitude and direction of the QD
anisotropy. Similar considerations are also valid for singlet-
triplet qubits [32] [33], where the easy axis is given by the
double dot dipole axis [31].
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FIG. 4 (color). Calculated values of Γ [Eq. (7)] as a function of
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result of the fit of the data of ΓðϕÞ from Fig. 3(b) to Eqs. (7) and
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