
PHYSICAL REVIEW B 89, 195310 (2014)

Nuclear spin dynamics in double quantum dots: Multistability, dynamical polarization,
criticality, and entanglement

M. J. A. Schuetz,1 E. M. Kessler,2,3 L. M. K. Vandersypen,4 J. I. Cirac,1 and G. Giedke1

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
2Physics Department, Harvard University, Cambridge, Massachusetts 02318, USA

3ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02318, USA
4Kavli Institute of NanoScience, TU Delft, P.O. Box 5046, 2600 GA Delft, The Netherlands

(Received 27 March 2014; revised manuscript received 9 May 2014; published 27 May 2014)

We theoretically study the nuclear spin dynamics driven by electron transport and hyperfine interaction in
an electrically defined double quantum dot in the Pauli-blockade regime. We derive a master-equation-based
framework and show that the coupled electron-nuclear system displays an instability towards the buildup of
large nuclear spin polarization gradients in the two quantum dots. In the presence of such inhomogeneous
magnetic fields, a quantum interference effect in the collective hyperfine coupling results in sizable nuclear spin
entanglement between the two quantum dots in the steady state of the evolution. We investigate this effect using
analytical and numerical techniques, and demonstrate its robustness under various types of imperfections.
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I. INTRODUCTION

The prospect of building devices capable of quantum
information processing (QIP) has fueled an impressive race
to implement well-controlled two-level quantum systems
(qubits) in a variety of physical settings [1]. For any such
system, generating and maintaining entanglement—one of the
most important primitives of QIP—is a hallmark achievement.
It serves as a benchmark of experimental capabilities and
enables essential information processing tasks such as the
implementation of quantum gates and the transmission of
quantum information [2].

In the solid state, electron spins confined in electrically
defined semiconductor quantum dots have emerged as a
promising platform for QIP [3–6]: Essential ingredients such
as initialization, single-shot readout, universal quantum gates,
and, quite recently, entanglement have been demonstrated
experimentally [7–12]. In this context, nuclear spins in the
surrounding semiconductor host environment have attracted
considerable theoretical [13–19] and experimental [20–25]
attention, as they have been identified as the main source of
electron spin decoherence due to the relatively strong hyperfine
(HF) interaction between the electronic spin and N ∼ 106

nuclei [5]. However, it has also been noted that the nuclear
spin bath itself, with nuclear spin coherence times ranging
from hundreds of microseconds to a millisecond [5,26], could
be turned into an asset, for example, as a resource for
quantum memories or quantum computation [27–31]. Since
these applications require yet unachieved control of the nuclear
spins, novel ways of understanding and manipulating the
dynamics of the nuclei are called for. The ability to control
and manipulate the nuclei will open up new possibilities
for nuclear-spin-based information storage and processing,
but also directly improve electron spin decoherence time
scales [32–34].

Dissipation has recently been identified as a novel approach
to control a quantum system, create entangled states, or
perform quantum computing tasks [35–39]. This is done by
properly engineering the continuous interaction of the system

with its environment. In this way, dissipation—previously
often viewed as a vice from a QIP perspective—can turn
into a virtue and become the driving force behind the
emergence of coherent quantum phenomena. The idea of
actively using dissipation rather than relying on coherent
evolution extends the traditional DiVincenzo criteria [40]
to settings in which no unitary gates are available; also, it
comes with potentially significant practical advantages, as
dissipative methods are inherently robust against weak random
perturbations, allowing, in principle, to stabilize entanglement
for arbitrary times. Recently, these concepts have been put
into practice experimentally in different QIP architectures,
namely atomic ensembles [41], trapped ions [42,43], and
superconducting qubits [44].

Here, we apply these ideas to a quantum dot system and
investigate a scheme for the deterministic generation of steady-
state entanglement between the two spatially separated nuclear
spin ensembles in an electrically defined double quantum
dot (DQD), operated in the Pauli-blockade regime [3,25].
Expanding upon our proposal presented in Ref. [45], we
develop in detail the underlying theoretical framework, and
discuss in greater depth the coherent phenomena emerging
from the hyperfine-coupled electron and nuclear dynamics in
a DQD in the spin blockade regime. The analysis is based
on the fact that the electron spins evolve rapidly on typical
time scales of the nuclear spin dynamics. This allows us
to derive a coarse-grained quantum master equation for the
nuclear spins only, disclosing the nuclei as the quantum system
coupled to an electronic environment with an exceptional
degree of tunability; see Fig. 1 for a schematic illustration.
This approach provides valuable insights by building up
a straightforward analogy between mesoscopic solid-state
physics and a generic setting in quantum optics (compare,
for example, Ref. [41]): The nuclear spin ensemble can be
identified with an atomic ensemble, with individual nuclear
spins corresponding to the internal levels of a single atom and
electrons playing the role of photons [46].

Our theoretical analysis goes beyond this simple analogy
by incorporating nonlinear, feedback-driven effects resulting
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FIG. 1. (Color online) Schematic illustration of the DQD system
under study. Two nuclear spin ensembles are hyperfine-coupled to
the electronic subsytem; due to various fast coherent (double-arrow)
and incoherent processes (arrows) the latter settles to a quasisteady
state on a time scale shorter than the nuclear dynamics.

from a backaction of the effective magnetic field generated
by the nuclei (Overhauser shift) on the electron energy
levels. In accordance with previous theoretical [32,33,47–52]
and experimental [9,24,53–56] observations, this feedback
mechanism is shown to lead to a rich set of phenomena such
as multistability, criticality, and dynamic nuclear polarization
(DNP). In our model, we study the nuclear dynamics in a
systematic expansion of the master equation governing the
evolution of the combined electron-nuclear system, which
allows us efficiently trace out the electronic degrees of
freedom yielding a compact dynamical equation for the
nuclear system alone. This mathematical description can be
understood in terms of the so-called slaving principle: The
electronic subsystem settles to a quasisteady state on a time
scale much faster than the nuclear dynamics, and creates an
effective environment with tunable properties for the nuclear
spins. Consequently, we analyze the nuclear dynamics subject
to this artificial environment. Feedback effects kick in as the
generated nuclear spin polarization acts back on the electronic
subsystem via the Overhauser shift changing the electronic
quasisteady state. We derive explicit expressions for the
nuclear steady state which allows us to fully assess the nuclear
properties in dependence on the external control parameters.
In particular, we find that, depending on the parameter regime,
the polarization of the nuclear ensemble can show two distinct
behaviors: The nuclear spins either saturate in a dark state
without any nuclear polarization or, upon surpassing a certain
threshold gradient, turn self-polarizing and build up sizable
Overhauser field differences. Notably, the high-polarization
stationary states feature steady-state entanglement between
the two nuclear spin ensembles, even though the electronic
quasisteady state is separable, underlining the very robustness
of our scheme against electronic noise.

To analyze the nuclear spin dynamics in detail, we em-
ploy different analytical approaches, namely a semiclassical
calculation and a fully quantum mechanical treatment. This
is based on a hierarchy of time scales: While the nuclear
polarization process occurs on a typical time scale of τpol �
1 s, the time scale for building up quantum correlations
τgap is collectively [46] enhanced by a factor N ∼ 105–106;
i.e., τgap ≈ (3–30) μs. Since nuclear spins dephase due to

internal dipole-dipole interactions on a time scale of τdec ≈
(0.1–1) ms [5,26,57], our system exhibits the following
separation of typical time scales: τpol � τdec � τgap. While
the first inequality allows us to study the (slow) dynamics of
the macroscopic semiclassical part of the nuclear fields in a
mean-field treatment (which essentially disregards quantum
correlations) on long time scales, based on the second
inequality we investigate the generation of (comparatively
small) quantum correlations on a much faster time scale where
we neglect decohering processes due to internal dynamics
among the nuclei. Lastly, numerical results complement our
analytical findings and we discuss in detail detrimental effects
typically encountered in experiments.

This paper is organized as follows. Section II introduces
the master-equation-based theoretical framework. Based on a
simplified model, in Sec. III we study the coupled electron-
nuclear dynamics. Using adiabatic elimination techniques, we
can identify two different regimes as possible fixed points of
the nuclear evolution which differ remarkably in their nuclear
polarization and entanglement properties. Subsequently, in
Sec. IV the underlying multistability of the nuclear system
is revealed within a semiclassical model. Based on a self-
consistent Holstein-Primakoff approximation, in Sec. V we
study in great detail the nuclear dynamics in the vicinity of
a high-polarization fixed point. This analysis puts forward
the main result of our work, the steady-state generation of
entanglement between the two nuclear spin ensembles in
a DQD. Within the framework of the Holstein-Primakoff
analysis, Sec. VI highlights the presence of a dissipative phase
transition in the nuclear spin dynamics. Generalizations of our
findings to inhomogeneous hyperfine coupling and other weak
undesired effects are covered in Sec. VII. Finally, in Sec. VIII
we draw conclusions and give an outlook on possible future
directions of research.

II. THE SYSTEM

This section presents a detailed description of the system
under study, a gate-defined double quantum dot (DQD) in
the Pauli-blockade regime. To model the dynamics of this
system, we employ a master equation formalism [46]. This
allows us to study the irreversible dynamics of the DQD
coupled to source and drain electron reservoirs. By tracing
out the unobserved degrees of freedom of the leads, we show
that—under appropriate conditions to be specified below—the
dynamical evolution of the reduced density matrix of the
system ρ can formally be written as

ρ̇ = −i [Hel,ρ] + Vρ + L�ρ︸ ︷︷ ︸
1©

+ L±ρ + Ldephρ︸ ︷︷ ︸
2©

. (1)

Here, Hel describes the electronic degrees of freedom of the
DQD in the relevant two-electron regime, V refers to the
coherent hyperfine coupling between electronic and nuclear
spins, and L� is a Liouvillian of Lindblad form describing
electron transport in the spin-blockade regime. The last two
terms labeled by 2© account for different physical mechanisms
such as cotunneling, spin exchange with the leads, or spin-
orbital coupling in terms of effective dissipative terms in the
electronic subspace.
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A. Microscopic model

We consider an electrically defined DQD in the Pauli-
blockade regime [3,25]. Microscopically, our analysis is
based on a two-site Anderson Hamiltonian: Due to strong
confinement, both the left and right dot are assumed to support
a single orbital level εi (i = L,R) only which can be Zeeman
split in the presence of a magnetic field and occupied by up to
two electrons forming a localized spin singlet. For now, excited
states, forming on-site triplets that could lift spin blockade,
are disregarded, since they are energetically well separated by
the singlet-triplet splitting �st � 400 μeV [3]. Cotunneling
effects due to energetically higher lying localized triplet states
will be addressed separately below.

Formally, the Hamiltonian for the global system H can be
decomposed as

H = HDQD + HB + HT , (2)

where HB refers to two independent reservoirs of noninter-
acting electrons, the left (L) and right (R) lead, respectively,

HB =
∑
i,k,σ

εikc
†
ikσ cikσ , (3)

with i = L,R, σ = ↑,↓, and HT models the coupling of the
DQD to the leads in terms of the tunnel Hamiltonian

HT =
∑
i,k,σ

Tid
†
iσ cikσ + H.c. (4)

The tunnel matrix element Ti , specifying the transfer coupling
between the leads and the system, is assumed to be independent
of momentum k and spin σ of the electron. The fermionic
operator c

†
ikσ (cikσ ) creates (annihilates) an electron in lead

i = L,R with wave vector k and spin σ = ↑,↓. Similarly, d
†
iσ

creates an electron with spin σ inside the dot in the orbital
i = L,R. Accordingly, the localized electron spin operators
are

�Si = 1

2

∑
σ,σ ′

d
†
iσ �σσσ ′diσ ′ , (5)

where �σ refers to the vector of Pauli matrices. Lastly,

HDQD = HS + Ht + VHF (6)

describes the coherent electron-nuclear dynamics inside the
DQD. In the following, HS , Ht , and VHF are presented. First,
HS accounts for the bare electronic energy levels in the DQD
and Coulomb interaction terms

HS =
∑
iσ

εiσ niσ +
∑

i

Uini↑ni↓ + ULRnLnR, (7)

where Ui and ULR refer to the on-site and interdot Coulomb re-
pulsion; niσ = d

†
iσ diσ and ni = ni↑ + ni↓ are the spin-resolved

and total electron number operators, respectively. Typical
values are Ui ≈ 1–4 meV and ULR ≈ 200 μeV [3,25,58].
Coherent, spin-preserving interdot tunneling is described by

Ht = t
∑

σ

d
†
Lσ dRσ + H.c. (8)

Spin-blockade regime. By appropriately tuning the chemi-
cal potentials of the leads μi , one can ensure that at maximum

two conduction electrons reside in the DQD [3,38]. Moreover,
for εRσ < μR the right dot always stays occupied. In what
follows, we consider a transport setting where an applied
bias between the two dots approximately compensates the
Coulomb energy of two electrons occupying the right dot;
that is, εL ≈ εR + UR − ULR . Then, a source drain bias across
the DQD device induces electron transport via the cycle
(0,1) → (1,1) → (0,2). Here, (m,n) refers to a configuration
with m (n) electrons in the left (right) dot, respectively. In
our Anderson model, the only energetically accessible (0,2)
state is the localized singlet, referred to as |S02〉 = d

†
R↑d

†
R↓ |0〉.

As a result of the Pauli principle, the interdot charge transition
(1,1) → (0,2) is allowed only for the (1,1) spin singlet |S11〉 =
(|⇑⇓〉 − |⇓⇑〉) /

√
2, while the spin triplets |T±〉 and |T0〉 =

(|⇑⇓〉 + |⇓⇑〉) /
√

2 are Pauli blocked. Here, |T+〉 = |⇑⇑〉,
|T−〉 = |⇓⇓〉, and |σσ ′〉 = d

†
Lσ d

†
Rσ ′ |0〉. For further details on

how to realize this regime we refer to Appendix A.
Hyperfine interaction. The electronic spins �Si confined in

either of the two dots (i = L,R) interact with two different sets
of nuclear spins {σα

i,j } in the semiconductor host environment
via hyperfine (HF) interaction. It is dominated by the isotropic
Fermi contact term [13] given by

HHF = ahf

2

∑
i=L,R

(S+
i A−

i + S−
i A+

i ) + ahf

∑
i=L,R

Sz
i A

z
i . (9)

Here, Sα
i and Aα

i = ∑
j ai,j σ

α
i,j for α = ±,z denote electron

and collective nuclear spin operators. The coupling coefficients
ai,j are proportional to the weight of the electron wave
function at the j th lattice site and define the individual
unitless HF coupling constant between the electron spin
in dot i and the j th nucleus. They are normalized such
that

∑Ni

j=1 ai,j = N , where N = (N1 + N2) /2 ∼ 106; ahf is
related to the total HF coupling strength AHF ≈ 100 μeV via
ahf = AHF/N and ghf = AHF/

√
N ≈ 0.1 μeV quantifies the

typical HF interaction strength. The individual nuclear spin
operators σα

i,j are assumed to be spin- 1
2 for simplicity. We

neglect the nuclear Zeeman and dipole-dipole terms which
will be slow compared to the system’s dynamics [13]; these
simplifications will be addressed in more detail in Sec. VII.

The effect of the hyperfine interaction can be split up into
a perpendicular component

Hff = ahf

2

∑
i=L,R

(S+
i A−

i + S−
i A+

i ), (10)

which exchanges excitations between the electronic and
nuclear spins, and a parallel component, referred to as the
Overhauser (OH) field,

HOH = ahf

∑
i=L,R

Sz
i A

z
i . (11)

The latter can be recast into the following form:

HOH = Hsc + Hzz, (12)

where

Hsc = ω̄OH
(
Sz

L + Sz
R

) + �OH
(
Sz

R − Sz
L

)
(13)

describes a (time-dependent) semiclassical OH field which
comprises a homogeneous ω̄OH and inhomogeneous �OH
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component, respectively,

ω̄OH = ahf

2

(〈
Az

L

〉
t
+ 〈

Az
R

〉
t

)
, (14)

�OH = ahf

2

(〈
Az

R

〉
t
− 〈

Az
L

〉
t

)
, (15)

and

Hzz = ahf

∑
i=L,R

Sz
i δA

z
i , (16)

with δAz
i = Az

i − 〈Az
i 〉t , refers to residual quantum fluctu-

ations due to deviations of the Overhauser field from its
expectation value [46]. The semiclassical part Hsc only acts
on the electronic degrees of freedom and can therefore be
absorbed into HS . Then, the coupling between electronic and
nuclear degrees of freedom is governed by the operator

VHF = Hff + Hzz. (17)

B. Master equation

To model the dynamical evolution of the DQD system, we
use a master equation approach. Starting from the full von
Neumann equation for the global density matrix �

�̇ = −i[H,�], (18)

we employ a Born-Markov treatment, trace out the reservoir
degrees of freedom, apply the so-called approximation of
independent rates of variation [59], and assume fast recharging
of the DQD, which allows us to eliminate the single-electron
levels [60,61]; for details, see Appendix B. Then, we arrive at
the following master equation for the system’s density matrix
ρ = TrB[�]:

ρ̇ = −i [Hel,ρ] + L�ρ + Vρ, (19)

where TrB [. . . ] denotes the trace over the bath degrees of
freedom in the leads. In the following, the Hamiltonian Hel

and the superoperators L� , V will be discussed in detail [cf.
Eqs. (20), (22), and (24), respectively].

Electronic Hamiltonian. In Eq. (19), Hel describes the
electronic degrees of freedom of the DQD within the relevant
two-electron subspace. It can be written as (� = 1)

Hel = ω0
(
Sz

L + Sz
R

) + �
(
Sz

R − Sz
L

) − ε |S02〉 〈S02|
+ t (|⇑⇓〉 〈S02| − |⇓⇑〉 〈S02| + H.c.) , (20)

where the nuclear-polarization-dependent “mean-field” quan-
tities ω̄OH and �OH have been absorbed into the definitions
of ω0 and � as ω0 = ωext + ω̄OH and � = �ext + �OH,
respectively. In previous theoretical work, this feedback of
the Overhauser shift on the electronic energy levels has been
identified as a means for controlling the nuclear spins via
instabilities towards self-polarization; compare for example
Ref. [33]. Apart from the OH contributions, ωext and �ext

denote the Zeeman splitting due to the homogeneous and
inhomogeneous component of a potential external magnetic
field, respectively. Furthermore, ε refers to the relative interdot
energy detuning between the left and right dot. The interdot
tunneling with coupling strength t occurs exclusively in the
singlet subspace due to Pauli spin blockade. It is instructive to

detuning [μeV]

sp
ec

tr
um

of
H

e
l
[μ

eV
]

|T±

|S02

|λ1

|λ2

|λ3

FIG. 2. (Color online) Spectrum of Hel in the relevant two-
electron regime for � = 40 μeV and t = 30 μeV, shown here as
a function of the interdot detuning parameter ε. The three hybridized
electronic eigenstates |λk〉 within the Sz

tot = 0 subspace are displayed
in red, while the bare electronic states are shown in blue (dash-dotted
lines). The homogeneous Zeeman splitting ω0 has been set to zero, so
that the Pauli-blocked triplets |T±〉 are degenerate. In this setting, the
levels |λ1,3〉 are far detuned from |T±〉. Therefore, the spin blockade is
lifted predominantly via the nonlocal electronic level |λ2〉. The black
dashed ellipse refers to a potential operational area of our scheme.

diagonalize the effective five-dimensional electronic Hamilto-
nian Hel. The eigenstates of Hel within the Sz

tot = Sz
L + Sz

R = 0
subspace can be expressed as

|λk〉 = μk |⇑⇓〉 + νk |⇓⇑〉 + κk |S02〉 , (21)

for k = 1,2,3 with corresponding eigenenergies εk; compare
Fig. 2 [62]. Note that, throughout this work, the hybridized
level |λ2〉 plays a crucial role for the dynamics of the DQD
system: Since the levels |λ1,3〉 are energetically separated from
all other electronic levels (for t � ω0,ghf), |λ2〉 represents the
dominant channel for lifting of the Pauli blockade; compare
Fig. 2.

Electron transport. After tracing out the reservoir degrees
of freedom, electron transport induces dissipation in the
electronic subspace: The Liouvillian

L�ρ =
∑

k,ν=±
�kD [|Tν〉 〈λk|] ρ, (22)

with the short-hand notation for the Lindblad form D [c] ρ =
cρc† − 1

2 {c†c,ρ}, effectively models electron transport through
the DQD; here, we have applied a rotating-wave approximation
by neglecting terms rotating at a frequency of εk − εl for k �=
l (see Appendix B for details). Accordingly, the hybridized
electronic levels |λk〉 (k = 1,2,3) acquire a finite lifetime [50]
and decay with a rate

�k = |〈λk|S02〉|2 � = κ2
k �, (23)

determined by their overlap with the localized singlet |S02〉,
back into the Pauli-blocked triplet subspace {|T±〉}. Here, � =
�R/2, where �R is the sequential tunneling rate to the right
lead.
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Hyperfine interaction. After splitting off the semiclassical
quantities ω̄OH and �OH, the superoperator

Vρ = −i [VHF,ρ] (24)

captures the remaining effects due to the HF coupling between
electronic and nuclear spins. Within the eigenbasis of Hel, the
hyperfine flip-flop dynamics Hff , accounting for the exchange
of excitations between the electronic and nuclear subsystem,
takes on the form

Hff = ahf

2

∑
k

[|λk〉 〈T+| ⊗ Lk + |λk〉 〈T−| ⊗ Lk + H.c.] ,

(25)
where the nonlocal nuclear jump operators

Lk = νkA
+
L + μkA

+
R, (26)

Lk = μkA
−
L + νkA

−
R (27)

are associated with lifting the spin blockade from |T+〉
and |T−〉 via |λk〉, respectively. These operators characterize
the effective coupling between the nuclear system and its
electronic environment; they can be controlled externally via
gate voltages as the parameters t and ε define the amplitudes
μk and νk . Since generically μk �= νk , the nonuniform electron
spin density of the hybridized eigenstates |λk〉 introduces an
asymmetry to flip a nuclear spin on the first or second dot [50].

Electronic spin-blockade lifting. Apart from the hyperfine
mechanism described above, the Pauli blockade may also
be lifted by other, purely electronic processes such as (i)
cotunneling, (ii) spin exchange with the leads, or (iii) spin-orbit
coupling [90]. Although they do not exchange excitations
with the nuclear spin bath, these processes have previously
been shown to be essential to describe the nuclear spin
dynamics in the Pauli-blockade regime [33,50,63]. In our
analysis, it is crucial to include them as they affect the
average electronic quasisteady state seen by the nuclei, while
the exact, microscopic nature of the electronic decoherence
processes does not play an important role for our proposal.
Therefore, for concreteness, here we only describe exemplarily
virtual tunneling processes via the doubly occupied triplet
state labeled as |T+ (0,2)〉, while spin exchange with the leads
or spin-orbital effects are discussed in detail in Appendix D.
Cotunneling via |T− (0,2)〉 or |T0 (0,2)〉 can be analyzed along
the same lines. As schematically depicted in Fig. 3, the triplet
|T+〉 with (1,1) charge configuration is coherently coupled to
|T+ (0,2)〉 by the interdot tunnel coupling t . This transition
is strongly detuned by the singlet-triplet splitting �st. Once
the energetically high-lying level |T+ (0,2)〉 is populated, it
quickly decays with rate � either back to |T+〉 giving rise
to a pure dephasing process within the low-energy subspace
or to {|T−〉 , |λk〉} via some fast intermediate steps, mediated
by fast discharging and recharging of the DQD with the rate
� [64]. In our theoretical model (see below), the former is
captured by the pure dephasing rate �deph, while the latter
can be absorbed into the dissipative mixing rate �±; compare
Fig. 5 for a schematic illustration of �± and �deph, respectively.
Since the singlet-triplet splitting is the largest energy scale
in this process (t,� � �st), the effective rate for this virtual

(1, 1)

|T−
|T+

|S02

t
Γ

|T+TT (0, 2)

t
ΓΓΓΔstst

Γct

Γct

FIG. 3. (Color online) Scheme for the phenomenological cotun-
neling analysis. The spin-blocked triplet |T+〉 is tunnel-coupled to
the (virtually occupied) triplet |T+ (0,2)〉, localized on the right dot.
Due to Pauli exclusion, this level is energetically well separated by the
singlet-triplet splitting �st � 400 μeV. It has a finite lifetime �−1 and
may decay back (via a singly occupied level on the right dot) to |T+〉 or
via a series of fast coherent and incoherent intermediate processes end
up in any level within the (1,1) charge sector (shaded box), since |S02〉
decays with a rate � to all four (1,1) states. The overall effectiveness
of the process is set by the effective rate �ct ≈ (t/�st)

2 �, depicted
by dashed arrows.

cotunneling mechanism can be estimated as

�ct ≈ (t/�st)
2 �. (28)

Equation (28) describes a virtually assisted process by which
t couples |T+〉 to a virtual level, which can then escape via
sequential tunneling ∼ �; thus, it can be made relatively fast
compared to typical nuclear time scales by working in a regime
of efficient electron exchange with the leads ∼ � [65]. For ex-
ample, taking t ≈ 30 μeV, �st ≈ 400 μeV, and � ≈ 50 μeV,
we estimate �ct ≈ 0.3 μeV, which is fast compared to typical
nuclear time scales. Note that for more conventional, slower
electronic parameters (t ≈ 5 μeV, � ≈ 0.5 μeV), indirect
tunneling becomes negligibly small, �ct ≈ 5 × 10−5 μeV ≈
5 × 104 s−1, in agreement with values given in Ref. [50]. Our
analysis, however, is restricted to the regime where indirect
tunneling is fast compared to the nuclear dynamics; this
regime of motional averaging has previously been shown
to be beneficial for, e.g., nuclear spin squeezing [32,33].
Alternatively, spin-blockade may be lifted via spin exchange
with the leads. The corresponding rate �se scales as �se ∼ �2,
as compared to �ct ∼ t2�. Moreover, �se depends strongly
on the detuning of the (1,1) levels from the Fermi levels of
the leads. If this detuning is ∼500 μeV and for � ≈ 100 μeV,
we estimate �se ≈ 0.25 μeV, which is commensurate with the
desired motional averaging regime, whereas, for less efficient
transport (� ≈ 1 μeV) and stronger detuning ∼1 meV, one
obtains a negligibly small rate, �se ≈ 6 × 10−6 μeV ≈ 6 ×
103 s−1. Again, this is in line with Ref. [50]. As discussed in
more detail in Appendix D, these spin-exchange processes
as well as spin-orbital effects can be treated on a similar
footing as the interdot cotunneling processes discussed here.
Therefore, to describe the net effect of various nonhyperfine
mechanisms and to complete our theoretical description of
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FIG. 4. Schematic overview of the most important parameters in our model, grouped into electronic, hyperfine, and HF-mediated nuclear
quantities. Within the electronic quantities, we can differentiate between coherent and incoherent processes (compare dashed boxes). Typical
numbers are given in μeV, while the numbers in parentheses (·) refer to the corresponding equations in the text.

electron transport in the spin-blockade regime, we add the
following phenomenological Lindblad terms to our model:

Ldephρ = �deph

2
D [|T+〉 〈T+| − |T−〉 〈T−|] ρ, (29)

L±ρ = �±
∑
ν=±

D [|Tν̄〉 〈Tν |] ρ

+�±
∑
k,ν

D [|Tν〉 〈λk|] ρ + D [|λk〉 〈Tν |] ρ. (30)

Summary. Before concluding the description of the system
under study, let us quickly reiterate the ingredients of the mas-
ter equation as stated in Eq. (1): It accounts for (i) the unitary
dynamics within the DQD governed by −i [Hel + VHF,ρ],
(ii) electron-transport-mediated dissipation via L� , and (iii)
dissipative mixing and dephasing processes described by L±
and Ldeph, respectively. Finally, the most important parameters
of our model are summarized in Fig. 4.

III. EFFECTIVE NUCLEAR DYNAMICS

In this section we develop the general theoretical framework
of our analysis which is built upon the fact that, generically, the
nuclear spins evolve slowly on typical electronic time scales.
Due to this separation of electronic and nuclear time scales,
the system is subject to the slaving principle [66] implying
that the electronic subsystem settles to a quasisteady state on
a time scale much shorter than the nuclear dynamics. This
allows us to adiabatically eliminate the electronic coordinates
yielding an effective master equation on a coarse-grained time
scale. Furthermore, the electronic quasisteady state is shown
to depend on the state of the nuclei resulting in feedback
mechanisms between the electronic and nuclear degrees of
freedom. Specifically, here we analyze the dynamics of the
nuclei coupled to the electronic three-level subspace spanned
by the levels |T±〉 and |λ2〉. This simplification is justified for
t � ω0,ghf , since in this parameter regime the electronic levels
|λ1,3〉 are strongly detuned from the manifold {|T±〉 , |λ2〉};
compare Fig. 2. Effects due to the presence of |λ1,3〉 will be

discussed separately in Secs. V and VI. Here, due to their
fast decay with a rate �1,3, they have already been eliminated
adiabatically from the dynamics, leading to a dissipative
mixing between the blocked triplet states |T±〉 with rate �±;
alternatively, this mixing could come from spin-orbit coupling
(see Appendix D for details). Moreover, for simplicity, we
assume ω0 = 0 and neglect nuclear fluctuations arising from
Hzz. This approximation is in line with the semiclassical
approach used below in order to study the nuclear polarization
dynamics; for details we refer to Appendix F. In summary, all
relevant coherent and incoherent processes within the effective
three-level system {|T±〉 , |λ2〉} are schematically depicted in
Fig. 5.

Intuitive picture. The main results of this section can be
understood from the fact that the level |λ2〉 decays according
to its overlap with the localized singlet, that is, with a rate

�2 = |〈λ2|S02〉|2 �
�→0−→ 0, (31)

which in the low-gradient regime � ≈ 0 tends to zero, since
then |λ2〉 approaches the triplet |T0〉 which is dark with
respect to tunneling and therefore does not allow for electron
transport; see Fig. 5. In other words, in the limit � → 0, the
electronic level |λ2〉 → |T0〉 gets stabilized by Pauli blockade.
In this regime, we expect the nuclear spins to undergo some
form of random diffusion process since the dynamics lack
any directionality: the operators L2 (L2) and their respective
adjoints L

†
2(L†

2) act with equal strength on the nuclear system.
In contrast, in the high-gradient regime, |λ2〉 exhibits a
significant singlet character and therefore gets depleted very
quickly. Thus, |λ2〉 can be eliminated adiabatically from the
dynamics, the electronic subsystem settles to a maximally
mixed state in the Pauli-blocked |T±〉 subspace, and the nuclear
dynamics acquire a certain directionality in that now the
nuclear spins experience dominantly the action of the nonlocal
operators L2 andL2, respectively. As will be shown below, this
directionality features both the buildup of an Overhauser field
gradient and entanglement generation between the two nuclear
spin ensembles.
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FIG. 5. (Color online) Left plot: Schematic illustration of coherent and incoherent processes within the effective three-level system
{|T±〉 , |λ2〉}: The level |λ2〉 is detuned from |T±〉 by ε2 and decays according to its overlap with the localized singlet with the rate �2 = κ2

2 �.
Moreover, it is coherently coupled to the triplets |T+〉 and |T−〉 via the nonlocal nuclear operators L2 and L2, respectively. Purely electronic
spin-blockade lifting mechanisms such as cotunneling or spin-orbital effects result in effective dephasing and dissipative mixing rates, labeled
as �deph and �±, respectively. The latter do not affect the nuclei directly, but lead to an unbiased population transfer within the electronic
three-level system. In particular, mixing between |T±〉 can arise from virtual occupation of |λ1,3〉 or spin-orbit coupling. Right plot: Effective
decay rates �k = κ2

k �, shown here for ε = t = 30 μeV. For small gradients, |λ2〉 ≈ |T0〉 and therefore it does not decay due to Pauli blockade.

A. Adiabatic elimination of electronic degrees of freedom

Having separated the macroscopic semiclassical part of
the nuclear Overhauser fields, the problem at hand features
a hierarchy in the typical energy scales since the typical HF
interaction strength is slow compared to all relevant electronic
time scales. This allows for a perturbative approach to second
order inV to derive an effective master equation for the nuclear
subsystem [46,72]. To stress the perturbative treatment, the full
quantum master equation can formally be decomposed as

ρ̇ = [L0 + V] ρ, (32)

where the superoperator L0 acts on the electron degrees of
freedom only and the HF interaction represents a perturbation.
Thus, in zeroth order the electronic and nuclear dynamics
are decoupled. In what follows, we will determine the
effective nuclear evolution in the submanifold of the electronic
quasisteady states ofL0. The electronic LiouvillianL0 features
a unique steady state [38]; that is, L0ρ

el
ss = 0 for

ρel
ss = p (|T+〉 〈T+| + |T−〉 〈T−|) + (1 − 2p) |λ2〉 〈λ2| , (33)

where

p = �± + �2

3�± + 2�2
, (34)

completely defines the electronic quasisteady state. It captures
the competition between undirected population transfer within
the the manifold {|T±〉 , |λ2〉} due to �± and a unidirectional,
electron-transport-mediated decay of |λ2〉. Moreover, it de-
scribes feedback between the electronic and nuclear degrees
of freedom as the rate �2 depends on the gradient � which
incorporates the nuclear-polarization-dependent Overhauser
gradient �OH. We can immediately identify two important
limits which will be analyzed in greater detail below: For
�± � �2 we get p = 1/3, whereas �± � �2 results in p =
1/2, that is, a maximally mixed state in the |T±〉 subspace,
since a fast decay rate �2 leads to a complete depletion of |λ2〉.

Since ρel
ss is unique, the projector P on the subspace of zero

eigenvalues of L0, i.e., the zeroth-order steady states, is given

by

Pρ = Trel [ρ] ⊗ ρel
ss = σ ⊗ ρel

ss. (35)

By definition, we have PL0 = L0P = 0 and P2 = P . The
complement of P is Q = 1 − P . Projection of the master
equation on the P subspace gives in second-order perturbation
theory

d

dt
Pρ = [

PVP − PVQL−1
0 QVP

]
ρ, (36)

from which we can deduce the required equation of motion
σ̇ = Leff [σ ] for the reduced density operator of the nuclear
subsystem σ = Trel [Pρ] as

σ̇ = Trel
[
PVPρ − PVQL−1

0 QVPρ
]
. (37)

The subsequent, full calculation follows the general framework
developed in Ref. [67] and is presented in detail in Appen-
dices E and H. We then arrive at the following effective master
equation for nuclear spins:

σ̇ = γ {p[D[L2]σ + D[L2]σ ]

+ (1 − 2p)[D[L†
2] + D[L†

2]σ ]}
+ iδ{p([L†

2L2,σ ] + [L†
2L2,σ ])

− (1 − 2p)([L2L
†
2,σ ] + [L2L

†
2,σ ])}. (38)

Here, we have introduced the effective quantities

γ = a2
hf�̃

2
[
�̃2 + ε2

2

] , (39)

δ = a2
hfε2

4
[
�̃2 + ε2

2

] , (40)

and

�̃ = �2 + 2�± + �deph

4
. (41)

The master equation in Eq. (38) is our first main result. It is of
Lindblad form and incorporates electron-transport-mediated
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jump terms as well as Stark shifts. The two main features
of Eq. (38) are as follows: (i) The dissipative nuclear jump
terms are governed by the nonlocal jump operators L2 and
L2, respectively. (ii) The effective dissipative rates ∼ pγ

incorporate intrinsic electron-nuclear feedback effects as they
depend on the macroscopic state of the nuclei via the parameter
p and the decay rate �2. Because of this feedback mechanism,
we can distinguish two very different fixed points for the
coupled electron-nuclear evolution. This is discussed below.

B. Low-gradient regime: Random nuclear diffusion

As argued qualitatively above, in the low-gradient regime
where |λ2〉 ≈ |T0〉, the nuclear master equation given in
Eq. (38) lacks any directionality. Accordingly, the resulting
dynamics may be viewed as a random nuclear diffusion
process. Indeed, in the limit �2 → 0, it is easy to check
that p = 1/3 and σss ∝ 1 is a steady-state solution. Therefore,
both the electronic and the nuclear subsystem settle into the
fully mixed state with no preferred direction nor any peculiar
polarization characteristics.

This analytical argument is corroborated by exact numerical
simulations (i.e., without having eliminated the electronic
degrees of freedom) for the full five-level electronic system
coupled to ten (NL = NR = 5) nuclear spins. Here, we assume
homogeneous HF coupling (effects due to nonuniform HF
couplings are discussed in Sec. VII): Then, the total spins Ji

are conserved and it is convenient to describe the nuclear spin
system in terms of Dicke states |Ji,mi〉 with total spin quantum
number Ji and spin projection mi = −Ji, . . . ,Ji . Fixing the
(conserved) total spin quantum numbers Ji = Ni/2, we write
in short |JL,mL〉 ⊗ |JR,mR〉 = |mL,mR〉. In order to realisti-
cally mimic the perturbative treatment of the HF coupling in an
experimentally relevant situation where N ≈ 106, here the HF
coupling constant ghf = AHF/

√
N is scaled down to a constant

value of ghf = 0.1 μeV. Moreover, let us for the moment ne-
glect the nuclear fluctuations due to Hzz, in order to restrict the
following analysis to the semiclassical part of the nuclear dy-
namics; compare also previous theoretical studies [21,33,50].
In later sections, this part of the dynamics will be taken into
account again. In particular, we compute the steady state and
analyze its dependence on the gradient �: Experimentally, �

could be induced intrinsically via a nuclear Overhauser gradi-
ent �OH or extrinsically via a nano- or micromagnet [61,68].
The results are displayed in Fig. 6: Indeed, in the low-gradient
regime the nuclear subsystem settles into the fully mixed
state. However, outside of the low-gradient regime, the nuclear
subsystem is clearly driven away from the fully mixed state and
shows a tendency towards the buildup of a nuclear Overhauser
gradient. For � > 0, we find numerically an increasing
population (in descending order) of the levels | − JL,JR〉,
| − JL + 1,JR − 1〉, etc., whereas for � < 0 strong weights
are found at |JL, − JR〉 , |JL − 1, − JR + 1〉 , . . . , which ef-
fectively increases � such that the nuclear spins actually tend
to self-polarize. This trend towards self-polarization and the
peculiar structure of the nuclear steady state σss displayed
in Fig. 6 is in very good agreement with the ideal nuclear
two-mode squeezed-like steady state that we are to construct
analytically in the next subsection.
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FIG. 6. (Color online) Exact steady state as a function of the
inhomogeneous splitting �; results for 10 nuclear spins, five in each
quantum dot. We plot the diagonal elements of the nuclear steady-state
density matrix σss (i.e., the nuclear populations); its dimension is
(2JL + 1) (2JR + 1) = 36. For a small external gradient of the order
of natural fluctuations of the Overhauser field (red squares) the nuclear
system settles into the fully mixed state, as evidenced by the uniform
populations of the nuclear levels. However, as we increase the gradient
�, the nuclear steady state starts to display a structure different from
the fully mixed state, showing a dominant peak in the occupation
of the nuclear level with maximum gradient, that is, |−JL,JR〉 and
|JL, − JR〉 for � > 0 and � < 0, respectively. The upward triangles,
downward triangles, and circles refer to � = 5 μeV, � = −5 μeV,
and � = 10 μeV, respectively. Other numerical parameters are
� = 10 μeV, �± = 0.3 μeV, �deph = 3 μeV, ω0 = 0, t = 20 μeV,
and ε = 30 μeV.

C. High-gradient regime: Entanglement generation

In the high-gradient regime the electronic level |λ2〉 over-
laps significantly with the localized singlet |S02〉. For �2 � �±
it decays sufficiently fast such that it can be eliminated
adiabatically from the dynamics. As can be seen from Eqs. (33)
and (34), on typical nuclear time scales, the electronic
subsystem then quickly settles into the quasisteady state given
by ρel

ss = (|T+〉 〈T+| + |T−〉 〈T−|) /2 and the effective master
equation for the nuclear spin density matrix σ simplifies to

σ̇ = γ

2
[D [L2] σ + D [L2] σ ] + i

δ

2
([L†

2L2,σ ] + [L†
2L2,σ ]).

(42)

For later reference, the typical time scale of this dissipative
dynamics is set by the rate

γc = Nγ = g2
hf�̃

2
[
�̃2 + ε2

2

] , (43)

which is collectively enhanced by a factor of N ≈ 106 to
account for the norm of the collective nuclear spin operators
A±

i . This results in the typical HF-mediated interaction
strength of ghf = √

Nahf [46], and for typical parameter values
we estimate γc ≈ 10−4 μeV.

This evolution gives rise to the desired, entangling nuclear
squeezing dynamics: It is easy to check that all pure stationary
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solutions |ξss〉 of this Lindblad evolution can be found via the
dark-state condition L2 |ξss〉 = L2 |ξss〉 = 0. Next, we explic-
itly construct |ξss〉 in the limit of equal dot sizes (NL = NR)
and uniform HF coupling (ai,j = N/Ni), and generalize our
results later. In this regime, again it is convenient to describe
the nuclear system in terms of Dicke states |Ji,ki〉, where
ki = 0, . . . ,2Ji . For the symmetric scenario JL = JR = J , one
can readily verify that the dark-state condition is satisfied by
the (unnormalized) pure state

|ξss〉 =
2J∑
k=0

ξk |J,k〉L ⊗ |J,2J − k〉R . (44)

This nuclear state may be viewed as an extension of the two-
mode squeezed state familiar from quantum optics [41] to
finite dimensional Hilbert spaces. The parameter ξ = −ν2/μ2

quantifies the entanglement and polarization of the nuclear
system. Note that unlike in the bosonic case (discussed in detail
in Sec. V), the modulus of ξ is unconfined. Both |ξ | < 1 and
|ξ | > 1 are allowed and correspond to states of large positive
(negative) OH field gradients, respectively, and the system
is invariant under the corresponding symmetry transformation
(μ2 ↔ ν2, Az

L,R → −Az
L,R). As we discuss in detail in Sec. IV,

this symmetry gives rise to a bistability in the steady state, as
for every solution with positive OH field gradient (�OH > 0),
we find a second one with negative gradient (�OH < 0). As
a first indication for this bistability, also compare the green
and blue curve in Fig. 6: For � � 0, the dominant weight of
the nuclear steady state is found in the level |−JL,JR〉, that is,
the Dicke state with maximum positive Overhauser gradient,
whereas for � � 0, the weight of the nuclear stationary state
is peaked symmetrically at |JL, − JR〉, corresponding to the
Dicke state with maximum negative Overhauser gradient.

In the asymmetric scenario JL �= JR , one can readily show
that a pure dark-state solution does not exist. Thus, we resort
to exact numerical solutions for small system sizes Ji ≈ 3 to
compute the nuclear steady-state solution σss. To verify the
creation of steady-state entanglement between the two nuclear
spin ensembles, we take the EPR uncertainty as a figure of
merit. It is defined via

�EPR = var
(
I x
L + I x

R

) + var
(
I

y

L + I
y

R

)∣∣〈I z
L

〉∣∣ + ∣∣〈I z
R

〉∣∣ , (45)

and measures the degree of nonlocal correlations. For an ar-
bitrary state, �EPR < 1 implies the existence of such nonlocal
correlations, whereas �EPR � 1 for separable states [41]. The
results are displayed in Fig. 7. First of all, the numerical
solutions confirm the analytical result in the symmetric limit
where the asymmetry parameter �J = JR − JL is zero. In
the asymmetric setting, where JL �= JR , the steady state σss is
indeed found to be mixed; that is, Tr[σ 2

ss] < 1. However, both
the amount of generated entanglement as well as the purity of
σss tend to increase, as we increase the system size JL + JR

for a fixed value of �J . For fixed Ji , we have also numerically
verified that the steady-state solution is unique.

In practical experimental situations one deals with a
mixture of different Ji subspaces. The width of the nuclear
spin distribution is typically �J ∼ √

N , but may even be
narrowed further actively; see for example Refs. [21,33]. The
numerical results displayed above suggest that the amount of
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FIG. 7. (Color online) EPR uncertainty �EPR and purity of the
(exact) nuclear dark states fulfilling D [L2] σss + D [L2] σss = 0 for
small system sizes Ji [69]. We fix JL to JL = 1 (triangles), JL = 2
(circles), and JL = 3 (squares) and compute σss for different values of
�J ; JR runs from 0.5 up to 3.5. In the symmetric scenario �J = 0, σss

is pure and given by the two-mode squeezed-like state σss = |ξss〉 〈ξss|.
For �J �= 0, σss is mixed; however, the purity Tr[σ 2

ss] (inset) as well
as �EPR increase with the system size JL + JR . In all cases, σss was
found to be unique. Here, we have set |ξ | = 0.25.

entanglement and purity of the nuclear steady state increases
for smaller absolute values of the relative asymmetry �J /J =
(JR − JL) / (JL + JR). In Fig. 7, �EPR < 1 is still observed
even for |�J | /J = 2.5/3.5 ≈ 0.7. Thus, experimentally one
might still obtain entanglement in a mixture of different large
Ji subspaces for which the relative width is comparatively
small, �J /J ≈ √

N/N ≈ 10−3 � 1. Intuitively, the idea is
that for every pair {JL,JR} with JL ≈ JR the system is driven
towards a state similar to the ideal two-mode squeezed-like
state given in Eq. (44). This will also be discussed in more
detail in Sec. V.

IV. DYNAMIC NUCLEAR POLARIZATION

In the previous section we have identified a low-gradient
regime, where the nuclear spins settle into a fully mixed state,
and a high-gradient regime, where the ideal nuclear steady
state was found to be a highly polarized, entangled two-mode
squeezed-like state. Now, we provide a thorough analysis
which reveals the multistability of the nuclear subsystem and
determines the connection between these two very different
regimes. It is shown that, beyond a critical polarization, the
nuclear spin system becomes self-polarizing and is driven
towards a highly polarized OH gradient.

To this end, we analyze the nuclear spin evolution within
a semiclassical approximation which neglects coherences
among different nuclei. This approach has been well studied
in the context of central spin systems (see for example
Ref. [57] and references therein) and is appropriate on
time scales longer than nuclear dephasing times [70]. This
approximation will be justified self-consistently. The analysis
is based on the effective QME given in Eq. (38). First,
assuming homogeneous HF coupling and equal dot sizes
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FIG. 8. (Color online) Schematic representation of the multista-
bility of the nuclear dynamics. For initial nuclear gradients smaller
than �crt

OH the nuclear system is attracted towards the trivial zero-
polarization solution (�ss

OH = 0). Upon surpassing �crt
OH, however,

the system enters into an electron-nuclear feedback loop and the
nuclear dynamics turn self-polarizing such that large OH gradients
can be reached in the steady state. This is schematically denoted by
± referring to the sign of �̇Iz which determines the stable fixed point
the nuclear system is attracted to in the steady state (see arrows).

(NL = NR = N ), we construct dynamical equations for the
expectation values of the collective nuclear spins 〈I z

i 〉t ,
i = L,R, where I ν

i = ∑
j σ ν

i,j for ν = ±,z. To close the
corresponding differential equations we use a semiclassical
factorization scheme resulting in two equations of motion
for the two nuclear dynamical variables 〈I z

L〉t and 〈I z
R〉t ,

respectively. This extends previous works on spin dynamics
in double quantum dots, where a single dynamical variable
for the nuclear polarization was used to explain the feedback
mechanism in this system; see for example Refs. [33,48]. The
corresponding nonlinear differential equations are then shown
to yield nonlinear equations for the equilibrium polarizations.
Generically, the nuclear polarization is found to be multistable
(compare also Refs. [50,51]) and, depending on the system’s
parameters, we find up to three stable steady-state solutions
for the OH gradient �ss

OH, two of which are highly polarized
in opposite directions and one is unpolarized; compare Fig. 8
for a schematic illustration.

At this point, some short remarks are in order: First, the
analytical results obtained within the semiclassical approach
are confirmed by exact numerical results for small sets of
nuclei; see Appendix G. Second, by virtue of the semiclassical
decoupling scheme used here, our results can be generalized to
the case of inhomogeneous HF coupling in a straightforward
way with the conclusions remaining essentially unchanged.
Third, for simplicity here we assume the symmetric scenario
of vanishing external fields ωext = �ext = 0; therefore, � =
�OH. However, as shown in Sec. VII and Appendix G one
may generalize our results to finite external fields: This opens
up another experimental knob to tune the desired steady-state
properties of the nuclei.

Intuitive picture. Before going through the calculation, let
us sketch an intuitive picture that can explain the instability
of the nuclear spins towards self-polarization and the cor-
responding buildup of a macroscopic nuclear OH gradient:
In the high-gradient regime, the nuclear spins predominantly
experience the action of the nonlocal jump operators L2 =
ν2A

+
L + μ2A

+
R and L2 = μ2A

−
L + ν2A

−
R , respectively, both of

them acting with the same rate γ on the nuclear spin ensembles.
For example, for � > 0 and ε > 0, where μ2 > ν2, the first
nuclear ensemble gets exposed more strongly to the action
of the collective lowering operator A−

L , whereas the second
ensemble preferentially experiences the action of the raising

operator A+
R ; therefore, the two nuclear ensembles are driven

towards polarizations of opposite sign. The second steady
solution featuring a large OH gradient with opposite sign is
found along the same lines for μ2 < ν2. Therefore, our scheme
provides a good dynamic nuclear polarization (DNP) protocol
for μ2 � ν2 (|ξ | � 1), or vice versa for μ2 � ν2 (|ξ | � 1).

Semiclassical analysis. Using the usual angular momentum
commutation relations [I z,I±] = ±I± and [I+,I−] = 2I z,
Eq. (38) readily yields two rate equations for the nuclear
polarizations 〈I z

i 〉t , i = L,R. We then employ a semiclassical
approach by neglecting correlations among different nuclear
spins, that is,

〈σ+
i σ−

j 〉 =
{

0, i �= j,〈
σ z

i

〉 + 1
2 , i = j,

(46)

which allows us to close the equations of motion for the nuclear
polarizations 〈I z

i 〉. This leads to the two following nonlinear
equations of motion,

d

dt

〈
I z
L

〉
t
= −γpol

[〈
I z
L

〉
t
+ N

2

χ

γpol

]
, (47)

d

dt

〈
I z
R

〉
t
= −γpol

[〈
I z
R

〉
t
− N

2

χ

γpol

]
, (48)

where we have introduced the effective HF-mediated depolar-
ization rate γpol and pumping rate χ as

γpol = γ
(
μ2

2 + ν2
2

)
(1 − p) , (49)

χ = γ
(
μ2

2 − ν2
2

)
(3p − 1) , (50)

with the rate γ given in Eq. (39). Clearly, Eqs. (47) and (48)
already suggest that the two nuclear ensembles are driven
towards opposite polarizations. The nonlinearity is due to the
fact that both χ and γpol depend on the gradient � which
itself depends on the nuclear polarizations 〈I z

i 〉t ; at this stage
of the analysis, however, � simply enters as a parameter
of the underlying effective Hamiltonian. Equivalently, the
macroscopic dynamical evolution of the nuclear system may be
expressed in terms of the total net polarization P (t) = 〈I z

L〉t +
〈I z

R〉t and the polarization gradient �Iz = 〈I z
R〉t − 〈I z

L〉t as

Ṗ (t) = −γpolP (t) , (51)

d

dt
�Iz = −γpol

[
�Iz − N

χ

γpol

]
. (52)

Fixed-point analysis. In what follows, we examine the fixed
points of the semiclassical equations derived above. First of
all, since γpol > 0 ∀P,�Iz , Eq. (51) simply predicts that in our
system no homogeneous nuclear net polarization P will be
produced. In contrast, any potential initial net polarization is
exponentially damped to zero in the long-time limit, since in
the steady state limt→∞ P (t) = 0. This finding is in agreement
with previous theoretical results showing that, due to angular
momentum conservation, a net nuclear polarization cannot be
pumped in a system where the HF-mediated relaxation rate
for the blocked triplet levels |T+〉 and |T−〉, respectively, is the
same; see, e.g., Ref. [33] and references therein.
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The dynamical equation for �Iz , however, is more involved:
The effective rates γpol = γpol (�) and χ = χ (�) in Eq. (52)
depend on the nuclear-polarization-dependent parameter �.
This nonlinearity opens up the possibility for multiple steady-
state solutions. From Eqs. (47) and (48) we can immediately
identify the fixed points 〈I z

i 〉ss of the nuclear polarization
dynamics as ± (N/2) χ/γpol. Consequently, the two nuclear
ensembles tend to be polarized along opposite directions; that
is, 〈I z

L〉ss = −〈I z
R〉ss. The corresponding steady-state nuclear

polarization gradient �ss
I z , scaled in terms of its maximum

value N , is given by

�ss
I z

N
= R (�) = �

3p − 1

1 − p
. (53)

Here, we have introduced the nonlinear function R (�) which
depends on the purely electronic quantity

� = � (�) = μ2
2 − ν2

2

μ2
2 + ν2

2

= 1 − ξ 2

1 + ξ 2
. (54)

According to Eq. (53), the function R (�) determines the
nuclear steady-state polarization. While the functional depen-
dence of � on the gradient � can give rise to two highly
polarized steady-state solutions with opposite nuclear spin
polarization, for |μ2| � |ν2| and |μ2| � |ν2|, respectively, the
second factor in Eq. (53) may prevent the system from reaching
these highly polarized fixed points. Based on Eq. (53), we can
identify the two important limits discussed previously: For
�2 � �±, the electronic subsystem settles into the steady-state
solution p = 1/3 and the nuclear system is unpolarized, as the
second factor in Eq. (53) vanishes. This is what we identified
above as the nuclear diffusion regime in which the nuclear
subsystem settles into the unpolarized fully mixed state. In
the opposite limit, where �2 � �±, the electronic subsystem
settles into p ≈ 1/2. In this limit, the second factor in Eq. (53)
becomes 1 and the functional dependence of � (�) dominates
the behavior ofR (�) such that large nuclear OH gradients can
be achieved in the steady state. The electron-nuclear feedback
loop can then be closed self-consistently via �ss

OH/�max
OH =

R(�ss
OH), where, in analogy to Eq. (53), �ss

OH has been scaled
in units of its maximum value �max

OH = AHF/2. Points fulfilling
this condition can be found at intersections of R (�) with
�ss

OH/�max
OH . This is elaborated below.

To gain further insights into the nuclear polarization
dynamics, we evaluate �̇Iz as given in Eq. (52). The results
are displayed in Fig. 9. Stable fixed points of the dynamics
are determined by �̇Iz = 0 and d�̇Iz/d� < 0 as opposed to
unstable fixed points where d�̇Iz/d� > 0. In this way it is
ensured that fluctuations of �Iz away from a stable fixed point
are corrected by a restoring intrinsic pump effect [21,51,71].
We can identify parameter regimes in which the nuclear
system features three stable fixed points. As schematically
depicted in Fig. 8, they are interspersed by two unstable
points referred to as �crt

OH. Therefore, in general, the nuclear
steady-state polarization is found to be tristable: Two of the
stable fixed points are high-polarization solutions of opposite
sign, supporting a macroscopic OH gradient, while one is the
trivial zero-polarization solution. The unstable points �crt

OH
represent critical values for the initial OH gradient marking
the boundaries of a critical region. If the initial gradient lies

gradient Δ [μ eV]

Δ̇
I

z[M
H

z]

10 15 20 25 30
0

1

2

3

4

5

10 15 20 25 30
0.5

0.6

0.7

0.8

0.9

tunneling t [μeV]

tunneling t [μeV]

Δ
c
rt

O
H

[μ
eV

]

po
la

ri
za

ti
on

p
n
u
c

Δ̇
I

z
[M

H
z]

gradient Δ [μeV]

(a)

(b)

(c)

FIG. 9. (Color online) Semiclassical solution to the nuclear po-
larization dynamics: tristability of the nuclear steady state. (a)
Instantaneous nuclear polarization rate �̇Iz for t = 20 μeV (dashed)
and t = 30 μeV (solid). Stable fixed points are found at �̇Iz = 0 and
d�̇Iz/d� < 0. The nuclear system is driven towards one of the highly
polarized fixed points (indicated by arrows), if the initial gradient �

exceeds a critical threshold |�crt
OH|, shown in (b) for �± = 0.1 μeV

(dashed) and �± = 0.05 μeV (solid). (c) By tuning t , one can achieve
|ξ | � 1 leading to a nuclear polarization of � 90%. Other numerical
parameters in μeV: � = 25, ε = 30, �± = 0.1 [except for the solid
line in (b) where �± = 0.05] and �deph = 0.1.

outside of this critical region, the OH gradient runs into
one of the highly polarized steady states. Otherwise, the
nuclear system gets stuck in the zero-polarization steady state.
Note that �crt

OH is tunable: To surpass the critical region one
needs �2 � �±; thus, the critical region can be destabilized
by making �± smaller [compare Fig. 9(b)] which is lower
bounded by �± � γc in order to justify the elimination of
the electronic degrees of freedom. For typical parameters
we thus estimate �crt

OH ≈ (3–5) μeV which sets the required
initial � in order to kick-start the nuclear self-polarization
process. Experimentally, this could be realized either via an
initial nuclear polarization of pnuc ≈ (5–10)% or an on-chip
nanomagnet [61,68].

Time scales. In order to reach a highly polarized steady
state, approximately ∼105 nuclear spin flips are required. We
estimate �̇Iz ≈ 0.1 MHz and, thus, the total time for the polar-
ization process is therefore approximately ∼105/0.1 MHz ≈
1 s. This order of magnitude estimate is in very good agreement
with typical time scales observed in nuclear polarization
experiments [26]. Moreover, γ −1

pol ≈ 1 s is compatible with our
semiclassical approach, since nuclear spins typically dephase
at a rate of ∼kHz [26,57]. Finally, in any experimental
situation, the nuclear spins are subject to relaxation and
diffusion processes which prohibit complete polarization of the
nuclear spins. Therefore, in order to capture other depolarizing
processes that go beyond our current analysis, one could add an
additional phenomenological nuclear depolarization rate γdp

by simply making the replacement γpol (�) → γpol (�) + γdp.
Since typically γ −1

dp ≈ 15 s [51], however, these additional

195310-11



SCHUETZ, KESSLER, VANDERSYPEN, CIRAC, AND GIEDKE PHYSICAL REVIEW B 89, 195310 (2014)

processes are slow in comparison to the intrinsic rate γpol and
should not lead to any qualitative changes of our results.

V. STEADY-STATE ENTANGLEMENT GENERATION

In Sec. III we have identified a high-gradient
regime which—after adiabatically eliminating all electronic
coordinates—supports a rather simple description of the
nuclear dynamics on a coarse-grained time scale. Now, we
extend our previous analysis and provide a detailed analysis
of the nuclear dynamics in the high-gradient regime. In
particular, this includes perturbative effects due to the presence
of the so far neglected levels |λ1,3〉. To this end, we apply
a self-consistent Holstein-Primakoff approximation, which
reexpresses nuclear fluctuations around the semiclassical state
in terms of bosonic modes. This enables us to approximately
solve the nuclear dynamics analytically, to directly relate
the ideal nuclear steady state to a two-mode squeezed state
familiar from quantum optics, and to efficiently compute
several entanglement measures.

A. Extended nuclear master equation
in the high-gradient regime

In the high-gradient regime the electronic system settles to
a quasisteady state ρel

ss = ρel
target = (|T+〉 〈T+| + |T−〉 〈T−|) /2

[compare Eqs. (33) and (34)] on a time scale short compared
to the nuclear dynamics; deviations due to (small) populations
of the hybridized levels are discussed in Appendix J. We then
follow the general adiabatic elimination procedure discussed in
Sec. III to obtain an effective master equation for the nuclear
spins in the submanifold of the electronic quasisteady state
ρel

target. The full calculation is presented in detail in Appendix H.
In summary, the generalized effective master equation reads

σ̇ =
∑

k

[
γ +

k

2
D [Lk] σ + γ −

k

2
D [Lk] σ

]
+ i [HStark,σ ]

+ γzz

∑
i,j

[
δAz

i σ δAz
j − 1

2

{
δAz

j δA
z
i ,σ

}]
. (55)

Here, we have introduced the effective HF-mediated decay
rates

γ +
k = a2

hf�̃k

2
[
�2

k + �̃2
k

] , (56)

γ −
k = a2

hf�̃k

2
[
δ2
k + �̃2

k

] , (57)

where �̃k = �k + 3�± + �deph/4 and the detuning parameters

�k = εk − ω0, (58)

δk = εk + ω0 (59)

specify the splitting between the electronic eigenstate |λk〉 and
the Pauli-blocked triplet states |T+〉 and |T−〉, respectively. The
effective nuclear Hamiltonian

HStark =
∑

k

�+
k

2
L
†
kLk + �−

k

2
L†

kLk (60)

is given in terms of the second-order Stark shifts

�+
k = a2

hf�k

4
[
�2

k + �̃2
k

] , (61)

�−
k = a2

hfδk

4
[
δ2
k + �̃2

k

] . (62)

Lastly, in Eq. (55) we have set γzz = a2
hf/(5�±). For ω0 = 0,

we have γ +
k = γ −

k and �+
k = �−

k . When disregarding effects
due to Hzz and neglecting the levels |λ1,3〉, i.e., only keeping
k = 2 in Eq. (55), indeed, we recover the result of Sec. III; see
Eq. (42). As shown in Appendix I, the nuclear HF-mediated
jump terms in Eq. (55) can be brought into diagonal form which
features a clear hierarchy due to the predominant coupling to
|λ2〉. To stress this hierarchy in the effective nuclear dynamics
σ̇ = Leffσ , we write

σ̇ = Lidσ + Lnidσ, (63)

where the first term captures the dominant coupling to the
electronic level |λ2〉 only and is given as

Lidσ = γ +
2

2
D [L2] σ + γ −

2

2
D [L2] σ

+ i
�+

2

2
[L†

2L2,σ ] + i
�−

2

2
[L†

2L2,σ ], (64)

whereas the remaining nonideal part Lnid captures all remain-
ing effects due to the coupling to the far-detuned levels |λ1,3〉
and the OH fluctuations described by Hzz.

B. Holstein-Primakoff approximation and bosonic formalism

To obtain further insights into the nuclear spin dynamics in
the high-gradient regime, we now restrict ourselves to uniform
hyperfine coupling (ai,j = N/Ni) and apply a Holstein-
Primakoff (HP) transformation to the collective nuclear
spin operators Iα

i = ∑
j σ α

i,j for α = ±,z; generalizations to
nonuniform coupling will be discussed separately below in
Sec. VII. This treatment of the nuclear spins has proven
valuable already in previous theoretical studies [72]. In the
present case, it allows for a detailed study of the nuclear
dynamics including perturbative effects arising from Lnid.

The (exact) Holstein-Primakoff (HP) transformation ex-
presses the truncation of the collective nuclear spin operators
to a total spin Ji subspace in terms of a bosonic mode [72]. Note
that for uniform HF coupling the total nuclear spin quantum
numbers Ji are conserved quantities. Here, we consider two
nuclear spin ensembles that are polarized in opposite directions
of the quantization axis ẑ. Then, the HP transformation can
explicitly be written as

I−
L =

√
2JL

√
1 − b

†
LbL

2JL

bL,

(65)
I z
L = b

†
LbL − JL

for the first ensemble, and similarly for the second ensemble

I+
R =

√
2JR

√
1 − b

†
RbR

2JR

bR,

(66)
I z
R = JR − b

†
RbR.
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Here, bi denotes the annihilation operator of the bosonic
mode i = L,R. Next, we expand the operators of Eqs. (65)
and (66) in orders of εi = 1/

√
Ji which can be identified as

a perturbative parameter [72]. This expansion can be justified
self-consistently provided that the occupation numbers of the
bosonic modes bi are small compared to 2Ji . Thus, here
we consider the subspace with large collective spin quantum
numbers; that is, Ji ∼ O (N/2). Accordingly, up to second
order in εL ≈ εR , the hyperfine Hamiltonian can be rewritten
as

HHF = Hsc + Hff + Hzz, (67)

where the semiclassical part Hsc reads

Hsc = aRJRSz
R − aLJLSz

L (68)

= ω̄OH
(
Sz

L + Sz
R

) + �OH
(
Sz

R − Sz
L

)
. (69)

Here, we have introduced the individual HF coupling constants
ai = AHF/Ni and

ω̄OH = �max
OH (pR − pL) /2, (70)

�̄OH = �max
OH (pL + pR) /2, (71)

with pi = Ji/J
max
i = 2Ji/Ni denoting the degree of polariza-

tion in dot i = L,R and �max
OH = AHF/2 ≈ 50 μeV. Within the

HP approximation, the hyperfine dynamics read

Hff = aL

2

√
2JLS+

L bL + aR

2

√
2JRS+

R b
†
R + H.c. (72)

and

Hzz = aLSz
Lb

†
LbL − aRSz

Rb
†
RbR. (73)

Note that due to the different polarizations in the two dots, the
collective nuclear operators I+

i map onto bosonic annihilation
(creation) operators in the left (right) dot, respectively. The
expansion given above implies a clear hierarchy in the
LiouvillianL0 + V allowing for a perturbative treatment of the
leading orders and adiabatic elimination of the electron degrees
of freedom whose evolution is governed by the fastest time
scale of the problem: while the semiclassical part Hsc/Ji ∼
O (1), the HF interaction terms scales as Hff/Ji ∼ O(ε) and
Hzz/Ji ∼ O(ε2); also compare Ref. [72]. To make connection
with the analysis of the previous subsection, we give the
following explicit mapping:

A+
L ≈ ηLb

†
L, δAz

L = ζLb
†
LbL,

(74)
A+

R ≈ ηRbR, δAz
R = −ζRb

†
RbR.

Here, the parameters ζi = N/Ni and ηi = ζi

√
2Ji capture

imperfections due to either different dot sizes (NL �= NR)
and/or different total spin manifolds (JL �= JR). Moreover,
within the HP treatment V can be split up into a first- (Lff)
and a second-order effect (Lzz); therefore, in second-order
perturbation theory, the effective nuclear dynamics simplify to
[compare Eq. (37)]

σ̇ = Trel
[
PLffPρ + PLzzPρ − PLffQL−1

0 QLffPρ
]
,

(75)

since higher-order effects due to Lzz can be neglected self-
consistently to second order.

Ideal nuclear target state. Within the HP approximation and
for the symmetric setting η1 = η2 = η, the dominant nuclear
jump operators L2 and L2, describing the lifting of the spin
blockade via the electronic level |λ2〉, can be expressed in
terms of nonlocal bosonic modes as

L2 = η

√
μ2

2 − ν2
2a, (76)

L2 = η

√
μ2

2 − ν2
2 ã, (77)

where a = νb
†
L + μbR and ã = μbL + νb

†
R . Here, μ =

μ2/

√
μ2

2 − ν2
2 and ν = ν2/

√
μ2

2 − ν2
2 , such that μ2 − ν2 =

1. Therefore, due to [a,a†] = 1 = [ã,ã†] and [a,ã†] = 0 =
[a,ã], the operators a and ã refer to two independent, properly
normalized nonlocal bosonic modes. In this picture, the
(unique) ideal nuclear steady state belonging to the dissipative
evolution Lidσ in Eq. (64) is well known to be a two-mode
squeezed state

|�TMS〉 = μ−1
∑

n

ξn |n〉L ⊗ |n〉R (78)

with ξ = −ν/μ [41]: |�TMS〉 is the common vacuum of the
nonlocal bosonic modes a and ã, a |�TMS〉 = ã |�TMS〉 = 0.
It features entanglement between the number of excitations n

in the first and second dot. Going back to collective nuclear
spins, this translates to perfect correlations between the degree
of polarization in the two nuclear ensembles. Note that |�TMS〉
represents the dark state |ξss〉 given in Eq. (44) in the zeroth-
order HP limit where the truncation of the collective spins to
Ji subspaces becomes irrelevant.

Bosonic steady-state solution. Within the HP approxima-
tion, the nuclear dynamics generated by the full effective
Liouvillian σ̇ = Leffσ are quadratic in the bosonic creation b

†
i

and annihilation operators bi . Therefore, the nuclear dynamics
are purely Gaussian and an exact solution is feasible. Based
on Eqs. (55) and (74), one readily derives a closed dynamical
equation for the second-order moments

d

dt
γγγ = Mγγγ + C, (79)

whereγγγ is a vector comprising the second-order moments, that
is,γγγ = (〈b†i bj 〉t ,〈b†i b†j 〉t , . . . )�, andCCC is a constant vector. The
solution to Eq. (79) is given by

γγγ (t) = eMtccc0 − M−1CCC, (80)

where ccc0 is an integration constant. Accordingly, provided that
the dynamics generated by M is contractive (see Sec. VI for
more details), the steady-state solution is found to be

γγγ ss = −M−1CCC. (81)

Based on γγγ ss, one can construct the steady-state co-
variance matrix (CM), defined as �CM

ij = 〈{Ri,Rj }〉 −
2〈Ri〉〈Rj 〉, where {Ri,i = 1, . . . ,4} = {XL,PL,XR,PR}; here,
Xi = (bi + b

†
i )/

√
2 and Pi = i(b†i − bi)/

√
2 refer to the

quadrature operators related to the bosonic modes bi . By
definition, Gaussian states are fully characterized by the first
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and second moments of the field operators Ri . Here, the
first-order moments can be shown to vanish. The entries of
the CM are real numbers: since they constitute the variances
and covariances of quantum operators, they can be detected
experimentally via nuclear spin variance and correlation
measurements [73].

We now turn to the central question of whether the
steady-state entanglement inherent to the ideal target state
|�TMS〉 is still present in the presence of the undesired
terms described by Lnid. In our setting, this is conveniently
done via the CM, which encodes all information about the
entanglement properties [74]: It allows us to compute certain
entanglement measures efficiently in order to make qualitative
and quantitative statements about the degree of entangle-
ment [74]. Here, we will consider the following quantities:
For symmetric states, the entanglement of formation EF

can be computed easily [75,76]. It measures the minimum
number of singlets required to prepare the state through local
operations and classical communication. For symmetric states,
this quantification of entanglement is fully equivalent to the
one provided by the logarithmic negativity EN ; the latter
is determined by the smallest symplectic eigenvalues of the
CM of the partially transposed density matrix [77]. Lastly,
in the HP picture the EPR uncertainty defined in Eq. (45)
translates to �EPR = [var(XL + XR) + var(PL − PR)]/2. For
the ideal target state |�TMS〉, we find �id

EPR = (μ − ν)2 =
(1 − |ξ |)/(1 + |ξ |) < 1. Finally, one can also compute
the fidelity F(σss,σtarget) which measures the overlap be-
tween the steady state generated by the full dynamics σ̇ =
Leffσ and the ideal target state σtarget = |�TMS〉〈�TMS| [74].

As illustrated in Fig. 10, the generation of steady-state
entanglement persists even in presence of the undesired noise
terms described byLnid, asymmetric dot sizes (NL �= NR), and
classical uncertainty in total spins Ji : The maximum amount
of entanglement that we find (in the symmetric scenario NL =
NR) is approximately EN ≈ 1.5, corresponding to an entan-
glement of formation EF ≈ (1–2)ebit and an EPR uncertainty
of �EPR ≈ 0.4. When tuning the interdot tunneling parameter
from t = 10 μeV to t = 35 μeV, the squeezing parameter
|ξ | = |ν2/μ2| increases from ∼0.2 to ∼0.6, respectively; this
is because (for fixed �,ε > 0) and increasing t , ε2 approaches
0 and the relative weight of ν2 as compared to μ2 increases.
Ideally, this implies stronger squeezing of the steady state of
Lid and therefore a greater amount of entanglement (compare
the solid line in Fig. 10), but, at the same time, it renders the
target state more susceptible to undesired noise terms. Stronger
squeezing leads to a larger occupation of the bosonic HP modes
(pictorially, the nuclear target state leaks farther into the Dicke
ladder) and eventually to a breakdown of the approximative
HP description. The associated critical behavior in the nuclear
spin dynamics can be understood in terms of a dynamical phase
transition [72], which will be analyzed in greater detail in the
next section.

VI. CRITICALITY

Based on the Holstein-Primakoff analysis outlined above,
we now show that the nuclear spin dynamics exhibit a
dynamical quantum phase transition which originates from the
competition between dissipative terms and unitary dynamics.
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FIG. 10. (Color online) Steady-state entanglement generation
between the two nuclear spin ensembles. EN > 0 indicates the
creation of entanglement. The black solid curve refers to the idealized,
symmetric setting where the undesired HF coupling to |λ1,3〉 has been
ignored and where JL = JR = pJmax; here, the nuclear polarization
p = 0.8 and NL = NR = 2Jmax = 106. The blue dashed line then
also takes into account coupling to |λ1,3〉, while the red (dash-dotted)
curve in addition accounts for an asymmetric dot size: NR = 0.8NL =
8 × 105. Additionally, classical uncertainty (red squares) in the total
spin Ji quantum numbers leads to a reduced amount of entanglement,
but does not disrupt it completely; here, we have set the range of the
(uniform) distribution to �Ji

= 50
√

Ni . Other numerical parameters:
ω0 = 0, � = 25 μeV, ε = 30 μeV, 3�± + �deph/4 = 0.5 μeV.

This rather generic phenomenon in open quantum systems
results in nonanalytic behavior in the spectrum of the nuclear
spin Liouvillian, as is well known from the paradigm example
of the Dicke model [72,78–80].

The nuclear dynamics in the vicinity of the stationary
state are described by the stability matrix M. Resulting from
a systematic expansion in the system size, the (complex)
eigenvalues of M correspond exactly to the low-excitation
spectrum of the full system Liouvillian given in Eq. (1) in
the thermodynamic limit (J → ∞). A nonanalytic change of
steady-state properties (indicating a steady-state phase transi-
tion) can only occur if the spectral gap of M closes [72,81].
The relevant gap in this context is determined by the eigenvalue
with the largest real part different from zero [from here on
referred to as the asymptotic decay rate (ADR)]. The ADR
determines the rate by which the steady state is approached in
the long-time limit.

As depicted in Fig. 11, the system reaches such a critical
point at tcrt ≈ 37 μeV where the ADR (red/blue dotted lines
closest to zero) becomes zero. At this point, the dynamics gen-
erated by M become noncontractive [compare Eq. (80)] and
the nuclear fluctuations diverge, violating the self-consistency
condition of low occupation numbers in the bosonic modes
bi and thus leading to a breakdown of the HP approximation.
Consequently, the dynamics cannot further be described by
the dynamical matrix M indicating a qualitative change in the
system properties and a steady-state phase transition.

To obtain further insights into the crossover of the maxi-
mum real part of the eigenvalues λM of the matrix M from
negative to positive values, we analyze the effect of the nuclear
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FIG. 11. (Color online) Spectrum ofM. Real (dashed) and imag-
inary parts (solid) for � = 25 μeV (blue) and � = 50 μeV (red). A
dynamical phase transition is found at the bifurcation separating an
underdamped from an overdamped region (see gray shading for the
spectrum displayed in red). The critical point tcrt ≈ 37 μeV is reached
where the smallest decay rate (ADR) becomes zero. Other numerical
parameters as those for the dashed curve in Fig. 10.

Stark shift terms [Eq. (60)] in more detail. In the HP regime,
up to irrelevant constant terms, the Stark shift Hamiltonian
HStark can be written as

HStark = εst
Lb

†
LbL + εst

Rb
†
RbR + εst

LR[bLbR + b
†
Lb

†
R]. (82)

The relevant parameters εst
ν introduced above are readily

obtained from Eqs. (60) and (74). In the symmetric setting
ηL = ηR , it is instructive to reexpress HStark in terms of
the squeezed, nonlocal bosonic modes a = νb

†
L + μbR and

ã = μbL + νb
†
R [see Eqs. (76) and (77)] whose common

vacuum is the ideal steady state of Lid. Up to an irrelevant
constant term, HStark takes on the form

HStark = �aa
†a + �ãã

†ã + gaã(aã + a†ã†). (83)

With respect to the entanglement dynamics, the first two
terms do not play a role as the ideal steady state |�TMS〉
is an eigenstate thereof. However, the last term is an active
squeezing term in the nonlocal bosonic modes: It does not
preserve the excitation number in the modes a,ã and may
therefore drive the nuclear system away from the vacuum by
pumping excitations into the system. Numerically, we find
that the relative strength of gaã increases compared to the
desired entangling dissipative terms when tuning the interdot
tunneling parameter t towards tcrt. We therefore are confronted
with two competing effects while tuning the interdot coupling
t . On the one hand, the dissipative dynamics tries to pump the
system into the vacuum of the modes a and ã [see Eqs. (76)
and (77)], which become increasingly squeezed as we increase
t . On the other hand, an increase in t leads to enhanced
coherent dynamics (originating from the nuclear Stark shift
HStark) which try to pump excitations in the system [Eq. (83)].
This competition between dissipative and coherent dynamics is
known to be at the origin of many dissipative phase transitions,
and has been extensively studied, e.g., in the context of the
Dicke phase transition [78,79].
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FIG. 12. (Color online) (a) Fidelity F of the nuclear steady state
with the two-mode squeezed target state. The blue-dashed line
accounts for the full nuclear Liouvillian Leff for the symmetric setting
(NL = NR), while the green solid line refers to the same setting in the
absence of any Stark-shift terms. Therefore, the decreasing fidelity
F (blue dashed line) and a diverging number of HP bosons shown
in (b) is due to undesired Stark shift terms included in Leff . Here,
ηL = ηR and therefore 〈b†

LbL〉 = 〈b†
RbR〉; asymmetric settings where

ηL �= ηR entail small asymmetries in the number of HP bosons. For
other numerical parameters compare the dashed curve in Fig. 10.

As shown in Fig. 12, the observed critical behavior in the
nuclear spin dynamics can indeed be traced back to the pres-
ence of the nuclear Stark shift terms HStark: here, when tuning
the system towards the critical point tcrt, the diverging number
of HP bosons is shown to be associated with the presence of
HStark. Moreover, for relatively low values of the squeezing
parameter |ξ |, we obtain a relatively high fidelity F with the
ideal two-mode squeezed state, close to 80%. For stronger
squeezing, however, the target state becomes more susceptible
to the undesired noise terms, first leading to a reduction of F
and eventually to a breakdown of the HP approximation.

Aside from this phase transition in the steady state, we
find nonanalyticities at nonzero values of the nuclear ADR,
indicating a change in the dynamical properties of the system
which cannot be detected in steady-state observables [72].
Rather, the system displays anomalous behavior approaching
the stationary state: As shown Fig. 11, we can distinguish
two dynamical phases [82–85], an underdamped and an
overdamped one. The splitting of the real parts ofM coincides
with vanishing imaginary parts. Thus, in the overdamped
regime, perturbing the system away from its steady state
leads to an exponential, nonoscillating return to the stationary
state. A similar underdamped region in direct vicinity of the
phase transition can be found in the dissipative Dicke phase
transition [78,79].

VII. IMPLEMENTATION

This section is devoted to the experimental realization of our
proposal. First, we summarize the experimental requirements
of our scheme. Thereafter, we address several effects that are
typically encountered in realistic systems, but which have been
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neglected so far in our analysis. This includes nonuniform HF
coupling, larger individual nuclear spins (I > 1/2), external
magnetic fields, different nuclear species, internal nuclear
dynamics, and charge noise.

Experimental requirements. Our proposal relies on the
predominant spin-blockade lifting via the electronic level
|λ2〉 and the adiabatic elimination of the electronic degrees
of freedom: First, the condition t � ω0,ghf ascertains a
predominant lifting of the Pauli blockade via the hybridized,
nonlocal level |λ2〉. To reach the regime in which the electronic
subsystem settles into the desired quasisteady state ρel

ss =
(|T+〉 〈T+| + |T−〉 〈T−|) /2 on a time scale much shorter than
the nuclear dynamics, the condition �2 � �± � γc must be
fulfilled. Both t � ω0,ghf and �± � γc can be reached thanks
to the extreme, separate, in situ tunability of the relevant,
electronic parameters t,ε, and � [3]. Moreover, to kick-start
the nuclear self-polarization process towards a high-gradient
stable fixed point, where the condition �2 � �± is fulfilled, an
initial gradient of approximately ∼(3–5) μeV, corresponding
to a nuclear polarization of ∼(5–10)%, is required; as shown
in Sec. IV, this ensures κ2

2 � x±, where we estimate the
suppression factor x± = �±/� ≈ 10−3. The required gradient
could be provided via an on-probe nanomagnet [61,68]
or alternative dynamic polarization schemes [23,26,53,57];
experimentally, nuclear spin polarizations of up to 50% have
been reported for electrically defined quantum dots [55,61].

Inhomogeneous HF coupling. Within the HP analysis
presented in Sec. V, we have restricted ourselves to uniform
HF coupling. Physically, this approximation amounts to the
assumption that the electron density is flat in the dots and zero
outside [32]. In Ref. [86], it was shown that corrections to this
idealized scenario are of the order of 1 − p for a high nuclear
polarization p. Thus, the HP analysis for uniform HF coupling
is correct to zeroth order in the small parameter 1 − p. To make
connection with a more realistic setting, where—according
to the electronic s-type wave function—the HF coupling
constants ai,j typically follow a Gaussian distribution, one
may express them as ai,j = ā + δi,j . Then, the uniform
contribution ā enables an efficient description within fixed
Ji subspaces, whereas the nonuniform contribution leads
to a coupling between different Ji subspaces on a much
longer time scale. As shown in Ref. [70], the latter is
relevant in order to avoid low-polarization dark states and to
reach highly polarized nuclear states. Let us stress that (for
uniform HF coupling) we have found that the generation of
nuclear steady-state entanglement persists in the presence of
asymmetric (NL �= NR) dot sizes which represents another
source of inhomogeneity in our system.

In what follows, we show that our scheme works even
in the case of nonuniform coupling, provided that the two
dots are sufficiently similar. If the HF coupling constants
are completely inhomogeneous, that is, ai,j �= ai,k for all
j �= k, but the two dots are identical (a1,j = a2,j ≡ aj ∀j =
1,2, . . . ,NL ≡ NR ≡ N ), such that the nuclear spins can be
grouped into pairs according to their HF coupling constants,
the two dominant nuclear jump operators L2 andL2 simplify to

L2 =
∑

j

aj lj , L2 =
∑

j

aj lj , (84)

where the nuclear operators lj = ν2σ
+
Lj + μ2σ

+
Rj and lj =

μ2σ
−
Lj + ν2σ

−
Rj are nonlocal nuclear operators, comprising two

nuclear spins that belong to different nuclear ensembles, but
have the same HF coupling constant aj . For one such pair of
nuclear spins, the unique, common nuclear dark state fulfilling

lj |ξ 〉j = lj |ξ 〉j = 0, (85)

is easily verified to be

|ξ 〉j = Nξ (|↓j ,↑j 〉 + ξ |↑j ,↓j 〉), (86)

where Nξ = 1/
√

1 + ξ 2 for normalization. Therefore, in
the absence of degeneracies in the HF coupling constants
(ai,j �= ai,k ∀j �= k), the pure, entangled ideal nuclear dark
state fulfilling L2 |ξss〉 = L2 |ξss〉 = 0 can be constructed as a
tensor product of entangled pairs of nuclear spins,

|ξss〉 = ⊗N
j=1 |ξ 〉j . (87)

Again, the parameter ξ = −ν2/μ2 fully quantifies polarization
and entanglement properties of the nuclear stationary state;
compare Eq. (44): First, for small values of the parameter |ξ |
the ideal nuclear dark state |ξss〉 features an arbitrarily high
polarization gradient

�Iz = 〈
I z
R

〉
ss − 〈

I z
L

〉
ss = N

1 − ξ 2

1 + ξ 2
, (88)

whereas the homogeneous net polarization P =
〈I z

L〉ss + 〈I z
R〉ss vanishes. The stationary solution for the

nuclear gradient �Iz is bistable as it is positive (negative)
for |ξ | < 1(|ξ | > 1). Second, the amount of entanglement
inherent to the stationary solution |ξss〉 can be quantified via
the EPR uncertainty (�EPR < 1 indicates entanglement) and
is given by �EPR = (1 − |ξ |)2/|1 − ξ 2|.

Our analytical findings are verified by exact diagonalization
results for small sets of inhomogeneously coupled nuclei.
Here, we compute the exact (possibly mixed) solutions σss to
the dark-state equation D [L2] σss + D [L2] σss = 0; compare
Fig. 7 for the special case of uniform HF coupling. As shown in
Fig. 13, our numerical evidence indicates that small deviations
from the perfect symmetry (that is, for aLj ≈ aRj ) between
the QDs still yield a (mixed) unique entangled steady state
close to |ξss〉. In the ideal case aLj = aRj , we recover the
pure steady state given in Eq. (87). Moreover, we find that
the generation of steady-state entanglement even persists for
asymmetric dot sizes, i.e., for NL �= NR . Exact solutions for
NL = 2 �= 3 = NR are displayed in Fig. 13. Here, we still find
strong traces of the ideal dark state |ξss〉, provided that one can
approximately group the nuclear spins into pairs of similar HF
coupling strength. The interdot correlations 〈σ+

Ljσ
−
Rj 〉 are found

to be close to the ideal value of ξ/(1 + ξ 2) for nuclear spins
with a similar HF constant, but practically zero otherwise. In
line with this reasoning, the highest amount of entanglement
in Fig. 13 is observed in the case where one of the nuclear
spins belonging to the bigger second ensemble is practically
uncoupled. Lastly, we note that one can “continuously” go
from the case of nondegenerate HF coupling constants (the
case considered in detail here) to the limit of uniform HF
coupling [compare Eq. (44)] by grouping spins with the same
HF coupling constants to “shells,” which form collective
nuclear spins. For degenerate couplings, however, there are
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FIG. 13. (Color online) EPR uncertainty (a) and fidelity F with
the ideal nuclear target state |ξss〉 given in Eq. (87) (b) as a
function of the squeezing-like parameter |ξ | for NL = NR = 3
inhomogeneously coupled nuclei. The blue curve (squares) refers
to a symmetric setting where �aL = �aR = (1.11,1.67,0.22), whereas
the green (circles) and red (crosses) solutions incorporate asym-
metries: �aL = (1.18,1.61,0.21), �aR = (1.11,1.67,0.22) and �aL =
(1.0,1.5,0.5), �aR = (1.24,1.55,0.21), respectively. (c) Exact results
for the asymmetric scenario NL = 2 �= 3 = NR . Here, �aL = (1.0,1.5)
was held fixed while the green (circles), orange (crosses), and
dark blue (squares) curves refer to �aR = (0.98,1.47,0.05), �aR =
(0.93,1.39,0.18), and �aR = (0.76,1.14,0.60), respectively; as a
benchmark, the black dashed curve refers to the ideal results in
the symmetric setting. Due to the absence of degeneracies, the
steady-state solution σss is unique in all cases considered here.

additional conserved quantities, namely the respective total
spin quantum numbers, and therefore multiple stationary states
of the above form. As argued in Sec. III, a mixture of different
J subspaces should still be entangled provided that the range
of J subspaces involved in this mixture is small compared to
the average J value.

Larger nuclear spins. All natural isotopes of Ga and As
carry a nuclear spin I = 3/2 [13], whereas we have considered
I = 1/2 for the sake of simplicity. For our purposes, however,
this effect can easily be incorporated as an individual nuclear
spin with I = 3/2 maps onto 3 homogeneously coupled
nuclear spins with individual I = 1/2 which are already in
the fully symmetric Dicke subspace J = 3/2.

External magnetic fields. For simplicity, our previous
analysis has focused on a symmetric setting of vanishing
external fields, �ext = ωext = 0. Nonvanishing external fields,
however, may be used as further experimental knobs to tune
the desired nuclear steady-state properties: First, as mentioned
above, a non-zero external gradient �ext is beneficial for our
proposal as it can provide an efficient way to destabilize the
zero-polarization solution (�ss

OH = 0) by initiating the nuclear
self-polarization process. Second, nonvanishing ωext �= 0 gives
rise to another electron-nuclear feedback-driven experimental
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FIG. 14. (Color online) Buildup of a homogeneous nuclear Over-
hauser field component ω̄ss

OH which partially compensates an applied
external magnetic field, shown here for t = 10 μeV (red solid)
and t = 20 μeV (blue dashed). Other numerical parameters: � =
25 μeV, ε = 30 μeV, �± = �deph = 0.1 μeV.

knob for controlling the nuclear stationary state. In the frame-
work of Sec. IV, for ωext �= 0 the semiclassical dynamical
equations can be generalized to

d

dt

〈
I z
L

〉
t
= α+NL↓ − β−NL↑, (89)

d

dt

〈
I z
R

〉
t
= β+NR↓ − α−NR↑, (90)

where we have introduced the number of nuclear spin-up
and spin-down spins as Ni↑ = Ni/2 + 〈I z

i 〉 and Ni↓ = Ni/2 −
〈I z

i 〉, respectively, and the generalized polarization rates

α± = pγ ±ν2
2 + (1 − 2p) γ ∓μ2

2, (91)

β± = pγ ±μ2
2 + (1 − 2p) γ ∓ν2

2 . (92)

They depend on the generalized HF-mediated decay rate

γ ± = a2
hf�̃

2[(ε2 ∓ ω0)2 + �̃2]
, (93)

which accounts for different detunings for ω0 �= 0; compare
Eq. (39). As shown in Fig. 14, in the presence of an
external magnetic splitting ωext, the nuclear spins build up
a homogeneous Overhauser field ω̄OH in the steady state to
partially compensate the external component. The steady-state
solution then locally fulfills a detailed-balance principle,
namely α+NL↓ = β−NL↑ and β+NR↓ = α−NR↑, which is
determined by effective nuclear flip rates and the number of
spins available for a spin flip. Intuitively, this finding can be
understood as follows: For ωext �= 0, the degeneracy between
|T+〉 and |T−〉 is lifted with one of them being less detuned
from |λ2〉 than the other. This favors the buildup of a nuclear
net polarization P which, however, counteracts the splitting
ωext; for ωext = 0, this mechanism stabilizes ω̄OH = P = 0 in
the stationary state. This result has also been confirmed by
numerical results presented in Appendix G.

Species inhomogeneity. Nonzero external magnetic fields,
however, induce nuclear Zeeman splittings, with the
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nuclear magnetic moment being about three orders of mag-
nitude smaller than the Bohr magneton for typical quantum
dots [3,13]. Most QDs consist of a few (in GaAs three)
different species of nuclei with strongly varying g factors.
In principle, this species inhomogeneity can cause dephasing
between the nuclear spins. However, for a uniform external
magnetic field this dephasing mechanism only applies to
nuclei belonging to different species. In a rotating wave
approximation, this leads to a few mutually decohered sub-
systems (in GaAs three) each of which being driven towards
a two-mode squeezed-like steady state: note that, because
of the opposite polarizations in the two dots, the nuclear
target state |ξ 〉ss is invariant under the application of a
homogeneous magnetic field. This argument, however, does
not hold for an inhomogeneous magnetic field which causes
dephasing of |ξ 〉ss as the nuclear states |m, − m〉 (m is the
nuclear spin projection) pick up a phase exp[2im�nuc

ext t], where
�nuc

ext ≈ 10−3�ext. If one uses an external magnetic gradient to
incite the nuclear self-polarization process, after successful
polarization one should therefore switch off the gradient [87]
to support the generation of entanglement between the two
ensembles.

Weak nuclear interactions. We have neglected nuclear
dipole-dipole interactions among the nuclear spins. The
strength of the effective magnetic dipole-dipole interac-
tion between neighboring nuclei in GaAs is about gdd ∼
(100 μs)−1 [3,13]. Spin-nonconserving terms and flip-flop
terms between different species can be suppressed efficiently
by applying an external magnetic field of Bext � 10 mT [88].
As discussed above, the corresponding (small) electron Zee-
man splitting ωext ≈ 0.25 μeV does not hamper our protocol.
Then, it is sufficient to consider so-called homonuclear
flip-flop terms between nuclei of the same species only
and phase changing zz terms. First, nuclear spin diffusion
processes—governing the dynamics of the spatial profile of the
nuclear polarization by changing Az

i —have basically no effect
within an (almost) completely symmetric Dicke subspace.
With typical time scales of � 10 s, they are known to be
very slow and therefore always negligible on the time scale
considered here [88–90]. Second, the interactions ∝ σ z

i σ z
j lead

to dephasing similar to the nuclear Zeeman terms discussed
above: In a mean-field treatment one can estimate the effective
Zeeman splitting of a single nuclear spin in the field of its
surrounding neighbors to be a few times gdd [70]. This mean
field is different only for different species and thus does
not cause any homonuclear dephasing. Still, the variance of
this effective field may dephase spins of the same species,
but for a high nuclear polarization pnuc this effect is further
suppressed by a factor ∼ (1 − p2

nuc) as the nuclei experience
a sharp field for a sufficiently high nuclear polarization pnuc.
Lastly, we refer to recently measured nuclear decoherence
times of ∼1 ms in vertical double quantum dots [26]. Since
this is slow compared to the dissipative gap of the nuclear
dynamics τgap ≈ (3–30) μs for N ≈ 105–106, we conclude
that it should be possible to create entanglement between the
two nuclear spin ensembles faster than it gets disrupted due
to dipole-dipole interactions among the nuclear spins or other
competing mechanisms [32]. Moreover, since strain is largely
absent in electrically defined QDs [5], nuclear quadrupolar
interactions have been neglected as well. For a detailed analysis

of the internal nuclear dynamics within a HP treatment, we
refer to Ref. [74].

Charge noise. Nearly all solid-state qubits suffer from some
kind of charge noise [91]. In a DQD device background charge
fluctuations and noise in the gate voltages may cause undesired
dephasing processes. In a recent experimental study [91],
voltage fluctuations in ε have been identified as the source
of the observed dephasing in a singlet-triplet qubit. In our
setting, however, the electronic subsystem quickly settles
into the quasisteady state ρel

ss which lives solely in the (1,1)
triplet subspace spanned by {|T±〉} and is thus relatively
robust against charge noise. Still, voltage fluctuations in
ε lead to fluctuations in the parameter ξ characterizing
the nuclear two-mode target state given in Eq. (44). For
typical parameters (t = 20 μeV, ε = 30 μeV,� = 40 μeV),
however, ξ turns out to be rather insensitive to fluctuations
in ε; that is, |dξ/dε| ≈ 10−2/μeV. Note that the system
can be made even more robust (while keeping ξ constant)
by increasing both ε and t : For t = 50 μeV, ε = 90 μeV,
the charge noise sensitivity is further reduced to |dξ/dε| ≈
3 × 10−3/μeV. We can then estimate the sensitivity of
the generated steady-state entanglement via |d�EPR/dε| =
|(dξ/dε)(d�EPR/dξ )| � 2 × 10−2/μeV, where we have used
|d�EPR/dξ | = 2/ (1 + ξ )2 < 2. Typical fluctuations in ε of
the order of ∼(1–3) μeV as reported in Ref. [58] may then
cause a reduction of entanglement in the nuclear steady state of
approximately ∼5% as compared to the optimal value of ε. If
the typical time scale associated with charge noise τnoise is fast
compared to the dissipative gap of the nuclear dynamics, i.e.,
τnoise � τgap, the nuclear spins effectively only experience the
averaged value of ξ , coarse-grained over its fast fluctuations.

VIII. CONCLUSION AND OUTLOOK

In summary, we have developed a theoretical master-
equation-based framework for a DQD in the Pauli-blockade
regime which features coupled dynamics of electron and
nuclear spins as a result of the hyperfine interaction. Our
analysis is based on the typical separation of time scales
between (fast) electron spin evolution and (slow) nuclear spin
dynamics, yielding a coarse-grained quantum master equation
for the nuclear spins. This reverses the standard perspective in
which the nuclei are considered as an environment for the
electronic spins, but rather views the nuclear spins as the
quantum system coupled to an electronic environment with
an exceptional degree of tunability. Here, we have focused on
a regime favorable for the generation of entanglement in the
nuclear steady state, whereas the electrons are driven to an
unpolarized, classically correlated separable state. Therefore,
in this setting, electron dephasing turns out to be an asset
rather than a liability. Our central master equation directly
incorporates nonlinear feedback mechanisms resulting from
the backaction of the Overhauser field on the electron
energy levels and thus explains the nuclear multistability
in a very transparent way. The associated instability of the
nuclei towards self-polarization can be used as a means for
controlling the nuclear spin distribution [33]. For example,
as a prominent application, we predict the deterministic
generation of entanglement between two (spatially separated)
mesoscopic spin ensembles, induced by electron transport and
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the common, collective coupling of the nuclei to the electronic
degrees of freedom of the DQD. The nuclear entangled
state is of EPR type, which is known to play a key role in
continuous variable quantum information processing [92,93],
quantum sensing [94], and metrology [95–97]. Since the
entanglement generation does not rely on coherent evolution,
but is rather stabilized by the dissipative dynamics, the
proposed scheme is inherently robust against weak random
perturbations. Moreover, as two large spin ensembles with
N ∼ 106 get entangled, the nuclear system has the potential
to generate large amounts of entanglement, i.e., many ebits.
Lastly, the apparent relatively large robustness of the nuclear
steady state against charge noise shows that, when viewed as
(for example) a platform for spin-based quantum memories,
nuclear spin ensembles have certain, intrinsic advantages with
respect to their electronic cousins.

Our results provide a clear picture of the feedback-driven
polarization dynamics in a generic electron transport setting
and, therefore, should serve as a useful guideline for future
experiments aiming at an enhanced, dynamical control of the
nuclear spins: While DNP experiments in double quantum
dots, for example, have revealed an instability towards large
Overhauser gradients, consistent with our results, the question
of whether or not this instability results from dot asymmetry or
some other mechanism is still unsettled [23,53,54]. Here, we
study a generic DC setting, where the buildup of a large OH
gradient straightforwardly emerges even in the presence of a
completely symmetric coherent hyperfine interaction. From
a more fundamental, conceptual point of view, our theory
gives valuable insights into the complex, nonequilibrium
many-body dynamics of localized electronic spins interacting
with a mesoscopic number of nuclear spins. Understanding
the quantum dynamics of this central spin model marks
an important goal in the field of mesoscopic physics, as a
notable number of unexpected and intriguing phenomena such
as multistability, switching, hysteresis, and long time scale
oscillations have been observed in this system [9,24,51,90].

On the one hand, reversing again our approach, our scheme
may lead to a better quantum control over the nuclear
spin bath and therefore improved schemes to coherently
control electron spin qubits, by reducing the Overhauser field
fluctuations and/or exploiting the gradient for electron spin
manipulation (as demonstrated experimentally already for
example in Ref. [23]). On the other hand, with nuclear spin
coherence times ranging from hundreds of microseconds to
a millisecond [5,26], our work could be extended towards
nuclear-spin-based information storage and manipulation pro-
tocols. The nuclear spin ensembles could serve as a long-lived
entanglement resource providing the basic building block
for an on-chip (solid-state) quantum network. The nodes of
this quantum network could be interconnected with electrons
playing the role of photons in more conventional atomic,
molecular, and optical (AMO) based approaches [98]. To
wire up the system, coherent transport of electron spins over
long distances (potentially tens of microns in state-of-the-art
experimental setups) could be realized via QD arrays [99,100],
quantum Hall edge channels [101–105], or surface acoustic
waves [106–109]. Building upon this analogy to quantum
optics, the localized nuclei might also be used as a source
to generate a current of many entangled electrons [110]. Using

the aforementioned tunability of the electronic degrees of
freedom, one could also engineer different electronic quasis-
teady states, possibly resulting in nuclear stationary states with
on-demand properties. On a more fundamental level, our work
could also be extended towards deeper studies of dissipative
phase transitions in this rather generic transport setting. When
combined with driving—realized via, for example, a magnetic
field Bx perpendicular to the polarization direction—a variety
of strong-correlation effects, nonequilibrium, and dissipative
phase transitions can be expected [72,111,112] and could now
be studied in a mesoscopic solid-state system, complementing
other approaches to dissipative phase transitions in quantum
dots [113–116].
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APPENDIX A: SPIN-BLOCKADE REGIME

In this Appendix, for completeness we explicitly derive
inequalities involving the chemical potentials μL(R) of the
left and right lead, respectively, as well as the Coulomb
energies introduced in Eq. (7) that need to be satisfied in order
to tune the DQD into the desired Pauli-blockade regime in
which at maximum two electrons reside on the DQD. For
simplicity, Zeeman splittings are neglected for the moment as
they typically constitute a much smaller energy scale compared
to the Coulomb energies. Still, an extension to include them
is straightforward. Then, the bare energies E(m,n) for a state
with (m,n) charge configuration can easily be read off from
the Anderson Hamiltonian HS . In particular, we obtain

E(1,1) = εL + εR + ULR, (A1)

E(2,1) = 2εL + εR + UL + 2ULR, (A2)

E(1,2) = εL + 2εR + UR + 2ULR, (A3)

E(0,2) = 2εR + UR, (A4)

E(2,0) = 2εL + UL. (A5)

In order to exclude the occupation of (2,1) and (1,2) states if
the DQD is in a (1,1) charge configuration the left chemical
potential must fulfill the inequality μL < E(2,1) − E(1,1) =
εL + UL + ULR . An analog condition needs to be satisfied
for the right chemical potential μR so that we can write in total

μi < εi + Ui + ULR. (A6)
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The same requirement should hold if the DQD is in a (0,2) or
(2,0) charge configuration which leads to

μi < εi + 2ULR. (A7)

At the same time, the chemical potentials μi are tuned
sufficiently high so that an electron is added to the DQD from
the leads whenever only a single electron resides in the DQD.
For example, this results in μL > E(1,1) − εR = εL + ULR . An
analog condition needs to hold for the right lead which gives

μi > εi + ULR. (A8)

In particular this inequality guarantees that the right dot is
always occupied, since μR > εR . Moreover, localized singlet
states cannot be populated directly if μi < εi + Ui holds. Since
ULR < Ui , the conditions to realize the desired two-electron
regime can be summarized as

εi + ULR < μi < εi + 2ULR. (A9)

By applying a large bias that approximately compensates
the charging energy of the two electrons residing on the
right dot, that is, εL ≈ εR + UR − ULR , the occupation of a
localized singlet with charge configuration (2,0) can typically
be neglected [116,117]. In this regime, only states with the
charge configurations (0,1), (1,0), (1,1), and (0,2) are relevant.
Also, due to the large bias, admixing within the one-electron
manifold is strongly suppressed—for typical parameters we
estimate t/ (εL − εR) ≈ 10−2—such that the relevant single-
electron states that participate in the transport cycle in the
spin-blockade regime are the two lowest ones |0,σ 〉 = d

†
Rσ |0〉

with (0,1) charge configuration [60].

APPENDIX B: QUANTUM MASTER EQUATION
IN SPIN-BLOCKADE REGIME

Following the essential steps presented in Ref. [46], we
now derive an effective master equation for the DQD system
which experiences irreversible dynamics via the electron’s
coupling to the reservoirs in the leads. We start out from the
von Neumann equation for the global density matrix given in
Eq. (18). It turns out to be convenient to decompose H as

H = H0 + H1 + HT , (B1)

with H0 = HS + HB and H1 = VHF + Ht . We define the
superoperator P as

P� = TrB[�] ⊗ ρ0
B. (B2)

It acts on the total system’s density matrix � and projects
the environment onto their respective thermal equilibrium
states, labeled as ρ0

B . The map P satisfies P 2 = P and is
therefore called a projector. By deriving a closed equation
for the projection P� and tracing out the unobserved reservoir
degrees of freedom, we arrive at the Nakajima-Zwanzig master
equation for the system’s density matrix

ρ̇ = [LS + L1] ρ

+
∫ t

0
dτTrB

[
LT e(L0+LT +L1)τLT ρ (t − τ ) ⊗ ρ0

B

]
, (B3)

where the Liouville superoperators are defined as usual via
Lα· = −i [Hα,·]. Next, we introduce two approximations:

First, in the weak-coupling limit, we neglect all orders higher
than 2 in LT . This is well known as the Born approximation.
Accordingly, we neglectLT in the exponential of the integrand.
Second, we apply the approximation of independent rates of
variations [59] which can be justified self-consistently, if the
bath correlation time τc is short compared to the typical time
scales associated with the system’s internal interactions, that
is, ghfτc � 1 and tτc � 1, and if H1 can be treated as a
perturbation with respect to H0. In our system, the latter is
justified as H0 incorporates the large Coulomb energy scales
which energetically separate the manifold with two electrons
on the DQD from the lower manifold with only one electron
residing in the DQD, whereas H1 induces couplings within
these manifolds only. In this limit, the master equation then
reduces to

ρ̇ = [LS +L1]ρ +
∫ t

0
dτTrB

[
LT eL0τLT ρ(t − τ ) ⊗ ρ0

B

]
.

(B4)

In the next step, we write out the tunnel Hamiltonian HT in
terms of the relevant spin eigenstates. Here, we single out one
term explicitly, but all others follow along the lines. We get

ρ̇ = · · · +
∑

σ

∫ t

0
dτC (τ ) |0,σ 〉 〈S02|

× [e−iH0τ ρ(t − τ )eiH0τ ] |S02〉 〈0,σ | , (B5)

where

C (τ ) =
∫ ∞

0
dεJ (ε) ei(�E−ε)τ , (B6)

and J (ε) = |TR|2 nR (ε) [1 − fR (ε)] is the spectral density of
the right lead, with nR (ε) being the density of states per spin
of the right lead; fα (ε) denotes the Fermi function of lead
α = L,R and �E is the energy splitting between the two levels
involved, i.e., for the term explicitly shown above �E = εR +
UR . The correlation time of the bath τc is determined by the
decay of the memory kernel C (τ ). The Markov approximation
is valid if the spectral density J (ε) is flat on the scale of
all the effects that we have neglected in the previous steps.
Typically, the effective density of states D (ε) = |TR|2 nR (ε)
is weakly energy dependent so that this argument is mainly
concerned with the Fermi functions of the left (right) lead
fL(R) (ε), respectively. Therefore, if fi (ε) is flat on the scale
of ∼t , ∼ghf , and the dissipative decay rates ∼�, it can be
evaluated at �E and a Markovian treatment is valid [46]. In
summary, this results in

ρ̇ = · · · + �R

∑
σ

D [|0,σ 〉 〈S02|] ρ, (B7)

where �R is the typical sequential tunneling rate �R =
2π |TR|2 nR (�E) [1 − fR (�E)] describing direct hopping at
leading order in the dot-lead coupling [46,63].

Pauli blockade. The derivation above allows for a clear
understanding of the Pauli-spin blockade in which only the
level |S02〉 can decay into the right lead whereas all two electron
states with (1,1) charge configuration are stable. If the |S02〉
level decays, an energy of �E2 = E(0,2) − εR = εR + UR

is released on the DQD which has to be absorbed by the
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right reservoir due to energy conservation arguments. On
the contrary, if one of the (1,1) levels were to decay to
the right lead, an energy of �E1 = E(1,1) − εL = εR + ULR

would dissipate into the continuum. Therefore, the DQD
is operated in the Pauli-blockade regime if fR (�E2) = 0
and fR (�E1) = 1 is satisfied. Experimentally, this can be
realized easily as �E2 scales with the on-site Coulomb
energy �E2 ∼ UR , whereas �E1 scales only with the interdot
Coulomb energy �E1 ∼ ULR .

Taking into account all relevant dissipative processes within
the Pauli-blockade regime and assuming the Fermi function of
the left lead fL (ε) to be sufficiently flat, the full quantum
master equation for the DQD reads

ρ̇ = −i [HS + H1,ρ] + �R

∑
σ

D [|0,σ 〉 〈S02|] ρ

+�L {D [|T+〉 〈0, ⇑|] ρ + D [|⇓⇑〉 〈0, ⇑|] ρ}
+�L {D [|T−〉 〈0, ⇓|] ρ + D [|⇑⇓〉 〈0, ⇓|] ρ} , (B8)

where the rate �R ∼ [1 − fR (�E2)] describes the decay of
the localized singlet |S02〉 into the right lead, while the second
and third line represent subsequent recharging of the DQD
with the corresponding rate �L ∝ |TL|2 [118].

We can obtain a simplified description for the regime in
which on relevant time scales the DQD is always populated
by two electrons. This holds for sufficiently strong recharging
of the DQD which can be implemented experimentally by
making the left tunnel barrier TL more transparent than the
right one TR [46,60,61]. In this limit, we can eliminate the
intermediate stage in the sequential tunneling process (0,2) →
(0,1) → (1,1) and parametrize HS + H1 in the two-electron
regime as Hel + Hff + Hzz. Then, we arrive at the effective
master equation

ρ̇ = −i [Hel,ρ] + K�ρ + Vρ, (B9)

where the dissipator

K�ρ = �
∑

x∈(1,1)

D [|x〉 〈S02|] ρ (B10)

models electron transport through the DQD; the sum runs over
all four electronic bare levels with (1,1) charge configuration,
i.e., |σ,σ ′〉 for σ,σ ′ = ⇑,⇓: Thus, in the limit of interest, the
(1,1) charge states are reloaded with an effective rate � =
�R/2 via the decay of the localized singlet |S02〉 [60,61].

Transport dissipator in eigenbasis of Hel. The electronic
transport dissipator K� as stated in Eq. (B10) describes
electron transport in the bare basis of the two-orbital Anderson
Hamiltonian which does not correspond to the eigenbasis
of Hel due to the presence of the interdot tunnel coupling
Ht ; in deriving Eq. (B10) admixing due to Ht has been
neglected based on the approximation of independent rates
of variation [59]. It is valid if tτc � 1 where τc ≈ 10−15s
specifies the bath correlation time [46]. Performing a basis
transformation ρ̃ = V †ρV which diagonalizes the electronic
Hamiltonian H̃el = V †HelV = diag (ω0, − ω0,ε1,ε2,ε3) and
neglecting terms rotating at a frequency of εl − εk for k �= l,

the electronic transport dissipator takes on the form [120]

K�ρ̃ =
∑

k,ν=±
�kD [|Tν〉 〈λk|] ρ̃

+
∑
k,j

�k→jD[|λj 〉〈λk|]ρ̃, (B11)

where �k = κ2
k � and �k→j = �k[1 − |κj |2]. Since only (1,1)

states can be refilled, the rate at which the level |λj 〉 is
populated is proportional to ∼ [1 − |κj |2]; compare Ref. [61].
While the first line in Eq. (B11) models the decay from the
dressed energy eigenstates |λk〉 back to the Pauli-blocked
triplet subspace |Tν〉(ν = ±) with an effective rate according
to their overlap with the localized singlet, the second line
refers to decay and dephasing processes acting entirely within
the “fast” subspace spanned by {|λk〉}. Intuitively, they should
not affect the nuclear dynamics that take place on a much
longer time scale. This intuitive picture is corroborated by
exact diagonalization results: Leaving the HF interaction V
aside for the moment, we compare the dynamics ρ̇ = K0ρ

generated by the full electronic Liouvillian

K0ρ = −i [Hel,ρ] + K�ρ + K±ρ + Ldephρ, (B12)

K±ρ = �±
∑
ν=±

D [|Tν̄〉 〈Tν |] ρ + �±
∑
ν=±

[D [|Tν〉 〈T0|] ρ

+D [|T0〉 〈Tν |] ρ] , (B13)

formulated in terms of the five undressed, bare levels
{|σ,σ ′〉,|S02〉}, to the following Liouvillian,

L0ρ̃ = −i[H̃el,ρ̃] + L�ρ̃ + L±ρ̃ + Ldephρ̃, (B14)

which is based on the simplified form as stated in
Eq. (B11) [121]. Here, we have also disregarded all dissipative
processes acting entirely within the fast subspace, that is, all
terms of the formD[|λj 〉〈λk|]; see the second line in Eq. (B11).
First, as shown in Fig. 15, we have checked numerically that
both K0 and L0 feature very similar electronic quasisteady
states, fulfilling K0[ρel

ss] = 0 and L0[ρ̃el
ss] = 0, respectively,

with a Uhlmann fidelity [122] Fel(ρel
ss,ρ̃

el
ss) = ‖√ρel

ss

√
ρ̃el

ss‖tr

exceeding 99%; here, ‖ · ‖tr is the trace norm, the sum of the
singular values. Second, we examine the electronic asymptotic
decay rate ADRel, corresponding to the eigenvalue with the
largest real part different from zero, which quantifies the
typical time scale on which the electronic subsystem reaches
its quasisteady state [72]. In other words, the ADRel gives the
spectral gap of the electronic Liouvillian K0(L0) setting the
inverse relaxation time towards the steady state and therefore
characterizes the long-time behavior of the electronic system.
The two models produce very similar results: Depending on
the particular choice of parameters, the electronic ADRel

is set either by the eigenvectors |λ2〉〈T±|, |T+〉〈T−| and
|T+〉〈T+| − |T−〉〈T−|, which explains the kinks observed in
Fig. 15 as changes of the eigenvectors determining the ADRel.
In summary, both the electronic quasisteady state (ρel

ss ≈ ρ̃el
ss)

and the electronic asymptotic decay rate ADRel are well
captured by the approximative Liouvillian given in Eq. (B14).
Further arguments justifying this approximation are provided
in Appendix C.
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FIG. 15. (Color online) Electronic asymptotic decay rate ADRel

and fidelity Fel for the purely electronic Lindblad dynamics: The
results obtained for the full dissipator given in Eq. (B12) (circles)
are in good agreement with the results we get for the simplified
description as stated in Eq. (B14) (squares). The blue and red curves
correspond to � = 25 μeV, �± = 0.25 μeV, �deph = 0.5 μeV and
� = 25 μeV, �± = 0.3 μeV, �deph = 0, respectively. Inset: The
fidelity Fel as a figure of merit for the similarity between the
quasisteady-state solutions ρel

ss and ρ̃el
ss , respectively. Other numerical

parameters are t = 20 μeV, ε = 30 μeV, and ω0 = 0.

APPENDIX C: TRANSPORT-MEDIATED TRANSITIONS
IN FAST ELECTRONIC SUBSPACE

In this Appendix, we provide analytical arguments as to
why one can drop the second line in Eq. (B11) and keep only
the first one to account for a description of electron transport
in the eigenbasis of Hel. The second line, given by

Lfastρ =
∑
k,j

�k→jD[|λj 〉〈λk|]ρ, (C1)

describes transport-mediated transitions in the fast subspace
{|λk〉}. The transition rate �k→j = κ2

k [1 − κ2
j ]� refers to a

transport-mediated decay process from |λk〉 to |λj 〉. Here,
we show that Lfast simply amounts to an effective dephasing
mechanism which can be absorbed into a redefinition of the
effective transport rate �.

The only way our model is affected by Lfast is that it
adds another dephasing channel for the coherences |λk〉 〈T±|
which are created by the hyperfine flip-flop dynamics; see
Appendix H. In fact, we have

Lfast [|λk〉 〈T±|] = −�fast,k |λk〉 〈T±| , (C2)

�fast,k = 1

2

∑
j

�k→j . (C3)

Due to the normalization condition
∑

j κ2
j = 1, the new

effective dephasing rate �fast,k is readily found to coincide
with the effective transport rate �k; that is, �fast,k = �k = κ2

k �.

This equality is readily understood since all four (1,1) levels
are populated equally. While �k describes the decay to the two
Pauli-blocked triplet levels, �fast,k accounts for the remaining
transitions within the (1,1) sector. Therefore, when accounting
for Lfast, the total effective dephasing rates �̃k needs to
be modified as �̃k → �̃k + �k = 2�k + 3�± + �deph/4. The
factor of 2 is readily absorbed into our model by a simple
redefinition of the overall transport rate � → 2�.

APPENDIX D: ELECTRONIC LIFTING
OF PAULI BLOCKADE

This Appendix provides a detailed analysis of purely elec-
tronic mechanisms which can lift the Pauli blockade without
affecting directly the nuclear spins. Apart from cotunneling
processes discussed in the main text, here we analyze virtual
spin exchange processes and spin-orbital effects [33,50]. It is
shown that these mechanisms, though microscopically distinct,
phenomenologically amount to effective incoherent mixing
and pure dephasing processes within the (1,1) subspace which,
for the sake of theoretical generality, are subsumed under the
term 2© in Eq. (1).

Let us also note that electron spin resonance (ESR)
techniques in combination with dephasing could be treated
on a similar footing. As recently shown in Ref. [38], in the
presence of a gradient �, ESR techniques can be used to drive
the electronic system into the entangled steady state |−〉 =
(|T+〉 − |T−〉) /

√
2. Magnetic noise may then be employed to

engineer the desired electronic quasisteady state.

1. Spin exchange with the leads

In the Pauli-blockade regime the (1,1) triplet states |T±〉 do
not decay directly, but—apart from the cotunneling processes
described in the main text—they may exchange electrons
with the reservoirs in the leads via higher-order virtual
processes [33,50]. We now turn to these virtual, spin-exchange
processes which can be analyzed along the lines of the interdot
cotunneling effects. Again, for concreteness we fix the initial
state of the DQD to be |T+〉 and, based on the approximation
of independent rates of variation [59], explain the physics in
terms of the electronic bare states. The spin-blocked level
|T+〉 can virtually exchange an electron spin with the left
lead yielding an incoherent coupling with the state |⇓⇑〉; this
process is mediated by the intermediate singly occupied DQD
level |0, ⇑〉 where no electron resides on the left dot. Then,
from |⇓⇑〉 the system may decay back to the (1,1) subspace
via the localized singlet |S02〉. Therefore, for this analysis, in
Fig. 3 we simply have to replace |T+(0,2)〉 and �ct by |0, ⇑〉
and �se, respectively. Along the lines of our previous analysis
of cotunneling within the DQD, the bottleneck of the overall
process is set by the first step, labeled as �se. The main purpose
of this Appendix is an estimate for the rate �se.

The effective spin-exchange rate can be calculated in a
“golden rule” approach in which transitions for different initial
and final reservoir states are weighted according to the respec-
tive Fermi distribution functions and added incoherently [123];
for more details, see Refs. [124,125]. Up to second order in
HT , the cotunneling rate �se for the process |T+〉 � |⇓⇑〉 is
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then found to be

�se = 2πn2
L |TL|4

∫ μL+�

μL

dε
1

(ε − δ+)2

≈ �2
L

2π

�

(μL − δ+)2 . (D1)

Here, nL is the left lead density of states at the Fermi energy,
μL is the chemical potential of the left lead, � = ET+ − E⇓⇑
is the energy released on the DQD (which gets absorbed by
the reservoir), and δ+ = ET+ − E0⇑ = εL↑ + ULR refers to
the energy difference between a doubly and singly occupied
DQD in the intermediate virtual state. Moreover, �L refers
to the first-order sequential tunneling rates �L = 2πnL |TL|2
for the left (L) lead. Note that in the limit T → 0 the DQD
cannot be excited; accordingly, for � > 0, the transition
|T±〉 � |⇑⇓〉 is forbidden due to energy conservation [63].
As expected, �se is proportional to ∼ |TL|4, but suppressed by
the energy penalty �+

se = μL − δ+ which characterizes the
violation of the two-electron condition in Eq. (A9) in the
virtual intermediate step. Notably, this can easily be tuned
electrostatically via the chemical potential μL. Comparing
the parameter dependence �se ∼ |TL|4 to �ct ∼ t2 |TL|2 shows
that, in contrast to the cotunneling processes �ct, �se is
independent of the interdot tunneling parameter t . Moreover,
it can be made efficient by tuning properly the energy penalty
�+

se and the tunnel coupling to the reservoir TL. A similar
analysis can be carried out for example for the effective
decay process |T−〉 � |⇓⇑〉 by spin exchange with the right
reservoir. The corresponding rates are the same if �L/�+

se =
�R/�−

se, where �−
se = μR − (εR↓ + ULR), is satisfied. Taking

the energy penalty as �se ≈ �st, a comparison of �se to
interdot cotunneling transitions (as discussed in the main text)
gives �ct/�se ≈ 2πt2/(��). Thus, for � ≈ 2πt and t ≈ �

(as considered in this work), we get approximately �ct ≈ �se.
The effective spin-exchange rate �se can be made very

efficient in the high-gradient regime. For example, to obtain
�se ≈ 1 μeV when � ≈ 40 μeV, we estimate the required
characteristic energy penalty to be �se ≈ 200 μeV. As stated
in the main text, for an energy penalty of ∼500 μeV and
for �L ≈ 100 μeV, we estimate �se ≈ 0.25 μeV, making
�se fast compared to typical nuclear time scales; note that
for less transparent barriers with �L ≈ 1 μeV, �se is four
orders of magnitude smaller, in agreement with values given
in Ref. [50]. Moreover, as apparent from Eq. (D1), in the
low-gradient regime �se ∼ � is suppressed due to a vanishing
phase space of reservoir electrons that can contribute to this
process without violating energy conservation. To remedy
this, one can lower the energy penalty �se; however, if �se

becomes comparable to �, this leads to a violation of the
Markov approximation and tunes the system away from the
sequential tunneling regime. Note that the factor � appears
in Eq. (D1) as we consider explicitly the inelastic transition
|T+〉 � |⇓⇑〉. In a more general analysis, � should be replaced
by the energy separation �E (which is released by the DQD
into the reservoir) for the particular transition at hand [63].

Here, we have considered spin-exchange via singly
occupied levels in the virtual intermediate stage only;
they are detuned by the characteristic energy penalty δ =
|μi − (εi + ULR)| for i = L,R. In principle, spin exchange

with the leads can also occur via electronic levels with (1,2)
or (2,1) charge configuration. However, here the characteristic
energy penalty can be estimated as δ = |εi + Ui + ULR − μi |
which can be significantly bigger due to the appearance of
the on-site Coulomb energies Ui in this expression. Therefore,
they have been disregarded in the analysis above.

2. Spin-orbit interaction

For the triplet states |T±〉 interdot tunneling is suppressed
due to Pauli spin blockade, but—apart from HF interaction
with the nuclear spins—it can be mediated by spin-orbit inter-
action which does not conserve the electronic spin. In contrast
to hyperfine-mediated lifting of the spin blockade, spin-orbital
effects provide another purely electronic alternative to escape
the spin blockade, i.e., without affecting the nuclear spins.
They describe interdot hopping accompanied by a spin rotation
thereby coupling the triplet states |T±〉 with single occupation
of each dot to the singlet state |S02〉 with double occupation of
the right dot. Therefore, following Refs. [60,116,117,126,127],
spin-orbital effects can be described phenomenologically in
terms of the Hamiltonian

Hso = tso (|T+〉 〈S02| + |T−〉 〈S02| + H.c.) , (D2)

where the coupling parameter tso in general depends on the
orientation of the the DQD with respect to the crystallographic
axes. Typical values of tso can be estimated as tso ≈ (d/lso) t ,
where t is the usual spin-conserving tunnel coupling, d the
interdot distance, and lso the material-specific spin-orbit length
(lso ≈ 1–10 μm for GaAs); this estimate is in good agreement
with the exact equation given in Ref. [117] and yields tso ≈
(0.01–0.1) t .

In Eq. (D2) we have disregarded the spin-orbit coupling
for the triplet |T0〉 = (|⇑⇓〉 + |⇓⇑〉) /

√
2. It may be taken into

account by introducing the modified interdot tunneling Hamil-
tonian Ht → H ′

t with H ′
t = t↑↓ |⇑⇓〉 〈S02| − t↓↑ |⇓⇑〉 〈S02| +

H.c., where the tunneling parameters t↑↓ and t↓↑ are approx-
imately given by t↑↓(↓↑) = t ± tso/

√
2 ≈ t, since the second

term marks only a small modification of the order of 5%.
While |T0〉 is dark under tunneling in the singlet subspace, that
is, Ht |T0〉 = 0, similarly the slightly modified (unnormalized)
state |T ′

0〉 = t↓↑ |⇑⇓〉 + t↑↓ |⇓⇑〉 is dark under H ′
t . Since this

effect does not lead to any qualitative changes, it is disregarded.
Phenomenological treatment. In the following, we first

focus on the effects generated by Hso within the three-level
subspace {|T±〉 , |S02〉}. Within this reduced level scheme, the
dynamics ρ̇ = Lrdρ are governed by the Liouvillian

Lrdρ = −i [Hrd,ρ] + �
∑
ν=±

D [|Tν〉 〈S02|] ρ, (D3)

where the relevant Hamiltonian within this subspace is

Hrd = ω0 (|T+〉 〈T+| − |T−〉 〈T−|) − ε |S02〉 〈S02| + Hso.

(D4)

This situation is schematized in Fig. 16. The external Zeeman
splitting ω0 is assumed to be small compared to the interdot
detuning ε yielding approximately equal detunings between
the triplet states |T±〉 and |S02〉. In particular, we consider
the regime tso � ε,�, with the corresponding separation of
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FIG. 16. (Color online) Phenomenological treatment of spin-
orbital effects in the spin-blockade regime. Scheme of the simplified
electronic system: The triplet states |T±〉 are coherently coupled to
the local singlet |S02〉 by spin-orbit interaction. Via coupling to the
leads, the DQD is discharged and recharged again with an effective
rate �. The triplet states may experience a Zeeman splitting ω0. The
parameter ε specifies the interdot energy offset. Since �,ε � tso, the
local singlet |S02〉 can be eliminated adiabatically yielding effective
dissipative processes of strength �so (green dashed arrows).

time scales allowing for an alternative, effective description
of spin-orbital effects. Since the short-lived singlet state
|S02〉 is populated negligibly throughout the dynamics, it
can be eliminated adiabatically using standard techniques.
The symmetric superposition |−〉 = (|T+〉 − |T−〉) /

√
2 is a

dark state with respect to the spin-orbit Hamiltonian Hso.
Therefore, it is instructive to formulate the resulting effective
master equation in terms of the symmetric superposition
states |±〉 = (|T+〉 ± |T−〉) /

√
2. Within the two-dimensional

subspace spanned by the symmetric superpositions |±〉, the
effective dynamics is given by

ρ̇ = +iω0 [|−〉 〈+| + |+〉 〈−| ,ρ]

−i�so [|+〉 〈+| − |−〉 〈−| ,ρ] + 2�soD [|−〉 〈+|] ρ

+�so

2
D [|+〉 〈+| − |−〉 〈−|] ρ, (D5)

where the effective rate

�so = t2
so

ε2 + �2
� (D6)

governs decay as well as pure dephasing processes within the
triplet subspace. We estimate �so ≈ (0.2–0.3) μeV which is
still fast compared to typical nuclear time scales. In Eq. (D5)
we have also introduced the quantity �so = (ε/�) �so. As
we are particularly concerned with the nuclear dynamics in
the limit where one can eliminate the electronic degrees of
freedom, Eq. (D5) provides an alternative way of accounting
for spin-orbital effects: In Eq. (D5) we encounter a decay
term—see the third line in Eq. (D5)—which pumps the
electronic subsystem towards the dark state of the spin-orbit
Hamiltonian, namely the state |−〉. This state is also dark
under the Stark shift and pure dephasing terms in the second
and last line of Eq. (D5), respectively. However, by applying

an external magnetic field, the state |−〉 dephases due to the
induced Zeeman splitting ω0. This becomes apparent when
examining the electronic quasisteady state corresponding to
the evolution given in Eq. (D5). In the basis {|T+〉 ,|T−〉}, it is
found to be

ρel
ss =

⎛
⎜⎝

1
2

[
1 + ω0�so

ω2
0+�2

so+�2
so

] −�2
so+�2

so+i�soω0

2
(
ω2

0+�2
so+�2

so

)
−�2

so+�2
so−i�soω0

2
(
ω2

0+�2
so+�2

so

) 1
2

[
1 − ω0�so

ω2
0+�2

so+�2
so

]
⎞
⎟⎠ , (D7)

which in leading orders of ω−1
0 reduces to

ρel
ss ≈

(
1
2 + �so

2ω0
−i �so

2ω0

i �so
2ω0

1
2 − �so

2ω0

)
. (D8)

Accordingly, for sufficiently large Zeeman splitting ω0 �
�so,�so, the electronic subsystem is driven towards the
desired equal mixture of blocked triplet states |T+〉 and |T−〉.
Alternatively, the off-diagonal elements of |−〉 〈−| are damped
out in the presence of dephasing processes either mediated
intrinsically via cotunneling processes or extrinsically via
engineered magnetic noise yielding approximately the equal
mixture ρel

target = (|T+〉 〈T+| + |T−〉 〈T−|) /2 in the quasisteady
state.

Numerical analysis. To complement the perturbative, an-
alytical study, we carry out a numerical evaluation of the
electronic quasisteady state in the presence of spin-orbit cou-
pling. In the two-electron subspace, the corresponding master
equation (including spin-orbital effects) under consideration
reads

ρ̇ = K̃0ρ = −i [Hel + Hso,ρ] + K�ρ + Ldephρ. (D9)

We evaluate the exact electronic quasisteady state ρel
ss fulfilling

K̃0ρ
el
ss = 0. As a figure of merit, we compute the Uhlmann

fidelity [122]

Fso = tr
[(√

ρel
ssρ

el
target

√
ρel

ss

)1/2]2
, (D10)

which measures how similar ρel
ss and ρel

target are. The results
are illustrated in Fig. 17: For �deph = 0 the electronic system
settles into the pure dark state |−〉 〈−|. However, in the
presence of dephasing, the coherences are efficiently damped
out. In the low-gradient regime ρel

ss has a significant overlap
with the triplet |T0〉, whereas in the high-gradient regime it is
indeed approximately given by the desired mixed target state
ρel

target. Lastly, we have checked that in the high-gradient regime
the corresponding asymptotic decay rate can be approximated
very well by ADRel ≈ −2�so.

APPENDIX E: EFFECTIVE NUCLEAR
MASTER EQUATION

In this Appendix, we present a detailed derivation of
the effective nuclear dynamics presented in Sec. III. We
use standard adiabatic elimination techniques to derive an
effective simplified description of the dynamics. To do so,
we assume that electronic coherences decay quickly on
typical nuclear time scales. Conservatively, i.e., not taking
into account the detuning of the HF-mediated transitions,
this holds for 2�± + �deph/4 � ghf , where ghf quantifies the
typical HF interaction strength. Alternatively, one may use a
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FIG. 17. (Color online) Electronic quasisteady-state fidelities in
the presence of spin-orbit coupling for the dynamics generated by
K̃0 as a function of the gradient �. As expected, in the absence of
dephasing [�deph = 0 (black curve)], the system settles into the dark
state |−〉. For �deph = 1 μeV (blue and red curves), the off-diagonal
elements of |−〉 are strongly suppressed, leading to a high fidelity
Fso � 0.9 with the desired mixed state ρel

target in the high-gradient
regime: the blue and red curves refer to t = 20 μeV and t = 30 μeV,
respectively. Other numerical parameters are tso = 0.1t , ω0 = 0, � =
25 μeV, and ε = 30 μeV.

projection-operator-based technique [46,72]; this is done in
detail in Appendix H for the high-gradient regime where
ρel

ss = (|T+〉 〈T+| + |T−〉 〈T−|) /2, but a generalization for the
electronic quasisteady state in Eq. (33) is straightforward.

Throughout this Appendix, for convenience we adopt the
following notation: |a〉 = |T+〉, |b〉 = |λ2〉, |c〉 = |T−〉, L =
L2, L = L2, and D [c] ρ = Dcρ. Within this simplified three-
level model system, the flip-flop Hamiltonian Hff reads

Hff = ahf

2
[L |b〉 〈a| + L |b〉 〈c| + H.c.] . (E1)

For simplicity, we assume ω0 = 0 and neglect nuclear fluc-
tuations arising from Hzz. This approximation is in line
with the semiclassical approximation for studying the nuclear
polarization dynamics; for more details also see Appendix F.
Within this reduced scheme, the dynamics are then described
by the master equation

ρ̇ = −i [Hff,ρ] − iε2 [|b〉 〈b| ,ρ] + �deph

2
D|a〉〈a|−|c〉〈c|ρ

+�±
[
D|c〉〈a|ρ + D|a〉〈c|ρ + D|b〉〈a|ρ + D|b〉〈c|ρ

]
+ (�± + �2)

[
D|a〉〈b|ρ + D|c〉〈b|ρ

]
. (E2)

After adiabatic elimination of the electronic coherences
ρab = 〈a|ρ|b〉, ρcb, and ρac, we obtain effective equations
of motion for the system’s density matrix projected onto the
electronic levels |a〉, |b〉, and |c〉 as follows:

ρ̇aa = �± (ρcc − ρaa) + �± (ρbb − ρaa) + �2ρbb

+ γ
[
L†ρbbL − 1

2 {L†L,ρaa}
] + iδ[L†L,ρaa], (E3)

ρ̇cc = �± (ρaa − ρcc) + �± (ρbb − ρcc) + �2ρbb

+ γ
[
L†ρbbL − 1

2 {L†L,ρcc}
] + iδ[L†L,ρcc], (E4)

and

ρ̇bb = −2�2ρbb + γ
[
LρaaL

† − 1
2 {LL†,ρbb}

] − iδ[LL†,ρbb]

+γ
[
LρccL

† − 1
2 {LL†,ρbb}

] − iδ[LL†,ρbb]

+�± (ρaa + ρcc − 2ρbb) . (E5)

Since this set of equations is entirely expressed in terms of
ρaa , ρbb, and ρcc, the full density matrix of the system obeys a
simple block structure, given by

ρ = ρaa |a〉 〈a| + ρbb |b〉 〈b| + ρcc |c〉 〈c| . (E6)

Therefore, the electronic decoherence is fast enough to prevent
the entanglement between electronic and nuclear degrees
of freedom and the total density matrix of the system ρ

factorizes into a tensor product for the electronic and nuclear
subsystem [34], respectively, that is ρ = ρel ⊗ σ, where σ =
Trel [ρ] refers to the density matrix of the nuclear subsystem.
This ansatz agrees with the projection operator approach where
Pρ = σ ⊗ ρel and readily yields ρaa = paσ , where we have
introduced the electronic populations

pa = 〈a|ρel|a〉 = Trn [ρaa] , (E7)

and accordingly for pb and pc; here, Trn [. . . ] denotes the trace
over the nuclear degrees of freedom. With these definitions,
Eqs. (E3), (E4), and (E5) can be rewritten as

ṗa = �±(pc − pa) + �2pb + γ [pb〈LL†〉 − pa〈L†L〉]
+�±(pb − pa),

ṗc = �±(pa − pc) + �2pb + γ [pb〈LL†〉 − pc〈L†L〉]
+�±(pb − pc),

ṗb = −2�2pb + �±(pa + pc − 2pb)

+γ [pa〈L†L〉 − pb〈LL†〉 + pc〈L†L〉 − pb〈LL†〉].
(E8)

Similarly, the effective master equation for the nuclear density
matrix σ = Trel[ρ] is obtained from σ̇ = Trel[ρ̇] = ρ̇aa +
ρ̇bb + ρ̇cc, leading to

σ̇ = γ {pbDL†[σ ] + pbD†
L[σ ] + paDL[σ ] + pcDL[σ ]}

+ iδ{pa[L†L,σ ] + pc[L†L,σ ]

−pb[LL†,σ ] − pb[LL†,σ ]}. (E9)

Equation (E9) along with Eq. (E8) describes the coupled
electron-nuclear dynamics on a coarse-grained time scale that
is long compared to electronic coherence time scales. Due
to the normalization condition pa + pb + pc = 1, this set
of dynamical equations comprises three coupled equations.
Differences in the populations of the levels |a〉 and |c〉 decay
very quickly on time scales relevant for the nuclear evolution;
that is,

ṗa − ṗc = −3�±(pa − pc) + γ [pb(〈LL†〉 − 〈LL†〉)
−pa〈L†L〉 + pc〈L†L〉]. (E10)

Due to a separation of time scales, as �± � γc = Nγ ≈
10−4 μeV, in a perturbative treatment the effect of the
second term can be neglected and the electronic subsystem
approximately settles into pa = pc. This leaves us with a
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single dynamical variable, namely pa , entirely describing the
electronic subsystem on relevant time scales. Thus, using
pc = pa and pb = 1 − 2pa , the electronic quasisteady state is
uniquely defined by the parameter pa and the nuclear evolution
simplifies to

σ̇ = γ {pa[DL[σ ] + DL[σ ]] + (1 − 2pa)[DL†[σ ] + D†
L[σ ]]}

+ iδ{pa([L†L,σ ] + [L†L,σ ])

− (1 − 2pa)([LL†,σ ] + [LL†,σ ])}, (E11)

with pa obeying the dynamical equation

ṗa = �±(1 − 3pa) + �2(1 − 2pa)

−γ [pa〈L†L〉 + (1 − 2pa)〈LL†〉].
Neglecting the HF terms in the second line, we recover
the projection-operator-based result for the quasisteady state,
pa ≈ (�± + �2)/(3�± + 2�2), as stated in Eq. (34).

APPENDIX F: EFFECTIVE NUCLEAR DYNAMICS:
OVERHAUSER FLUCTUATIONS

In Sec. III we have disregarded the effect of
Overhauser fluctuations, described by ρ̇ = −i[Hzz,ρ] =
−iahf

∑
i[S

z
i δA

z
i ,ρ]. In the following analysis, this simplifi-

cation is discussed in greater detail.
First of all, we note that this term cannot induce couplings

within the effective electronic three-level system, {|T±〉,|λ2〉},
since |T±〉 are eigenstates of Sz

i , that is, explicitly Sz
i |T±〉 =

± 1
2 |T±〉, which leads to

〈T±|Sz
i |λ2〉 = 0. (F1)

In other words, different Sz
tot subspaces are not coupled by the

action of Hzz; this is in stark contrast to the flip-flop dynamics
Hff .

When also accounting for Overhauser fluctuations, the
dynamical equations for the coherences read

ρ̇ab = (iε2 − �̃)ρab − i[L†ρbb − ρaaL
†]

− iahf

∑
i

[〈
Sz

i

〉
a
δAz

i ρab − 〈
Sz

i

〉
b
ρabδA

z
i

]
, (F2)

where 〈Sz
i 〉a = 〈a|Sz

i |a〉; an analog equation holds for ρ̇cb.
Typically, the second line is small compared to the fast
electronic quantities ε2,�̃ in the first line. Therefore, it will
be neglected. In Eqs. (E3), (E4), and (E5), the Overhauser
fluctuations lead to the following additional terms

ρ̇aa = · · · − i

2
ahf

∑
i

[
δAz

i ,ρaa

]
, (F3)

ρ̇cc = · · · + i

2
ahf

∑
i

[
δAz

i ,ρcc

]
, (F4)

ρ̇bb = · · · − iahf

∑
i

〈
Sz

i

〉
b

[
δAz

i ,ρbb

]
. (F5)

First, this leaves the electronic populations pa = Trn [ρaa]
untouched; Hzz does not induce any couplings between them.
Second, the dynamical equation for the nuclear density matrix

σ = Trel [ρ] is modified as

σ̇ = · · · − iahf

∑
i

[
1

2
(pa − pc) + pb

〈
Sz

i

〉
b

] [
δAz

i ,σ
]
,

≈ · · · − i (1 − 2pa) ahf

∑
i

〈
Sz

i

〉
b

[
δAz

i ,σ
]
. (F6)

In the second step, we have used again that differences in pa

and pc are quickly damped to zero with a rate of 3�±. Now,
let us examine the effect of Eq. (F6) for different important
regimes: In the high-gradient regime, where pb is fully
depleted, it does not give any contribution since the electronic
quasisteady state does not have any magnetization [〈Sz

i 〉b =
〈Sz

i 〉ss = 0] and pa = 1/2. In the low-gradient regime, |b〉
approaches the triplet |T0〉 and again (since 〈Sz

i 〉b = 0) this
term vanishes. Finally, the intermediate regime has been
studied within a semiclassical approximation (see Sec. IV):
Note that Eq. (F6), however, leaves the dynamical equation for
the nuclear polarizations I z

i unchanged, since they commute
with Hzz.

APPENDIX G: NUMERICAL RESULTS FOR DNP

In this Appendix the analytical findings of the semiclassical
model are corroborated by exact numerical simulations for
small sets of nuclear spins. This treatment complements
our analytical DNP analysis in several aspects: First, we
do not restrict ourselves to the effective three-level system
{|T±〉,|λ2〉}. Second, the electronic degrees of freedom are
not eliminated adiabatically from the dynamics. Lastly, this
approach does not involve the semiclassical decorrelation
approximation stated in Eq. (46).

Technical details. We consider the idealized case of ho-
mogeneous hyperfine coupling for which an exact numerical
treatment is feasible even for a relatively large number of
coupled nuclei as the system evolves within the totally sym-
metric low-dimensional subspace {|J,m〉,m = −J, . . . ,J },
referred to as a Dicke ladder. We restrict ourselves to the
fully symmetric subspace where Ji = Ni/2 ≈ 3. Moreover,
to mimic the separation of time scales in experiments where
N ≈ 106, the HF coupling is scaled down appropriately to
the constant value ghf ≈ 0.1 μeV; also compare the numerical
results presented in Fig. 6.

Our first numerical approach is based on simulations of
the time evolution. Starting out from nuclear states with
different initial Overhauser gradient �OH(t = 0), we make
the following observations, depicted in Fig. 18: First of all,
the tristability of the Overhauser gradient with respect to the
initial nuclear polarization is confirmed. If the initial gradient
�OH(t = 0) + �ext exceeds a certain threshold value, the
nuclear system runs into the highly polarized steady state;
otherwise it gets stuck in the trivial, zero-polarization solution.
There are two symmetric high-polarization solutions that
depend on the sign of �OH(t = 0) + �ext; also note that the
Overhauser gradient �OH may flip the sign as determined by
the total initial gradient �OH(t = 0) + �ext. Second, in the
absence of an external Zeeman splitting ωext, a potential initial
homogeneous Overhauser polarization ω̄OH is damped to zero
in the steady state. For finite ωext �= 0, a homogeneous Over-
hauser polarization ω̄OH builds up which partially compensates
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FIG. 18. (Color online) Exact time evolution for N = 8 and N =
12 (red dashed curves) nuclear spins, four and six in each quantum
dot, respectively. Depending on the initial value of the gradient,
the nuclear system either runs into the trivial, unpolarized state or
into the highly polarized one, if the initial gradient exceeds the
critical value; the blue dotted, black dash-dotted, and all other refer
to �ext = −5 μeV, �ext = 0, and �ext = 5 μeV, respectively. For
ωext �= 0, also a homogeneous OH field ωOH builds up which partially
compensates ωext: here, ωext = 0.1 μeV (magenta dash-dotted) and
ωext = −0.1 μeV (cyan dash-dotted). Other numerical parameters:
t = 10 μeV, ε = 30 μeV, � = 25 μeV, �± = �deph = 0.1 μeV.

ωext. Lastly, the high-polarization solutions �ss
OH ≈ 2 μeV

are far away from full polarization. This is an artifact of
the small system sizes Ji ≈ 3: As we deal with very short
Dicke ladders, even the ideal, nuclear two-mode squeezed-like
target state |ξ 〉ss given in Eq. (7) does not feature a very high
polarization. Pictorially, it leaks with a nonvanishing factor
∼ ξm into the low-polarization Dicke states. This argument is
supported by the fact that (for the same set of parameters) we
observe tendency towards higher polarization for an increasing
number of nuclei N (which features a larger Dicke ladder) and
confirmed by our second numerical approach to be discussed
below.

Our second numerical approach is based on exact diagonal-
ization: As we tune the parameter �, we compute the steady
state for the full electronic-nuclear system directly giving the
corresponding steady-state nuclear polarizations 〈I z

i 〉ss. We
see a clear instability towards the buildup of an Overhauser
gradient �ss

OH (Fig. 19): Inside the small-gradient region
(|�| < |�crt

OH|) we observe negative feedback sgn(�ss
OH) =

−sgn(�), whereas outside of it (|�| > |�crt
OH|) the nuclear

system experiences positive feedback sgn(�ss
OH) = sgn(�).

The latter leads to the buildup of large OH gradients, in
agreement with our semiclassical analysis.

APPENDIX H: EFFECTIVE NUCLEAR MASTER
EQUATION IN HIGH-GRADIENT REGIME

This Appendix provides background material for the
derivation of the effective nuclear master equation as stated

FIG. 19. (Color online) Instability towards nuclear self-
polarization: Exact numerical results for small system sizes
Ji = Ni/2. The exact steady state of the coupled electron-nuclear
dynamics is computed as a function of the gradient �. The circles
(squares) refer to the polarization in the left (right) dot, respectively.
(a) For � > |�crt

OH|, we find �OH > 0, whereas for � < −|�crt
OH| we

get �OH < 0; i.e., outside of the small-gradient regime [see inset
(c)] the nuclear system is seen to be unstable towards the buildup
of a OH gradient with opposite polarizations in the two dots. The
nuclear polarization depends on the system size Ji and the parameter
|ξ |; compare inset (b). (c) The critical value of �crt

OH ≈ 3 μeV agrees
with the semiclassical estimate; it becomes smaller for smaller
values of �±. Numerical parameters in μeV: ε = 30, � = 10,
�± = �deph = 0.3, ωext = 0, and t = 10 except for the cyan curve
where t = 20 and �± = �deph = 0.6 for the orange curve in (c).

in Eq. (55) using projection-operator techniques [46,72]. We
start with

Trel[PVPρ] = Trel[PLffPρ] + Trel[PLzzPρ]. (H1)

The first term is readily found to be

Trel [PLffPρ] = −i
ahf

2

∑
i,α=±

〈
Sα

i

〉
ss

[
Aᾱ

i ,σ
]
, (H2)

where 〈·〉ss = Trel[·ρel
ss] denotes the steady-state expectation

value. An analog calculation yields

Trel [PLzzPρ] = −iahf

∑
i

〈
Sz

i

〉
ss

[
δAz

i ,σ
]
. (H3)

Using that 〈Sα
i 〉ss = 0 and 〈Sz

i 〉ss = 0 (the Knight shift seen by
the nuclear spins is zero since the electronic quasisteady state
carries no net magnetization), the first two Hamiltonian terms
vanish.

The second-order term of interest

Kσ = Trel
[
PVQ

( − L−1
0

)
QVPρ

]
(H4)

can be decomposed as Kσ = Kffσ + Kzzσ , where

Kffσ = Trel
[
PLffQ

( − L−1
0

)
QLffPρ

]
, (H5)

Kzzσ = Trel
[
PLzzQ

( − L−1
0

)
QLzzPρ

]
. (H6)
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All other second-order terms containing combinations of the
superoperators Lff and Lzz can be shown to vanish. In the
following, we will evaluate the two terms separately.

Hyperfine flip-flop dynamics. First, we will evaluate Kff

which can be rewritten as

Kffσ =
∫ ∞

0
dτTrel[PLffe

L0τLffPρ]︸ ︷︷ ︸
a©

−
∫ ∞

0
dτTrel [PLffPLffPρ]︸ ︷︷ ︸

b©

. (H7)

Here, we used the Laplace transform −L−1
0 = ∫ ∞

0 dτeL0τ and
the property eL0τP = PeL0τ = P [72]. The first term labeled
as a© is given by

a© = −
∫ ∞

0
dτTrel

([
Hff,e

L0τ
[
Hff,σ ⊗ ρel

ss

]])
. (H8)

Then, using the relations

L0 [|λk〉 〈T±|] = −i(δ±
k − i�̃k) |λk〉 〈T±| , (H9)

L0 [|T±〉 〈λk|] = +i(δ±
k + i�̃k) |T±〉 〈λk| , (H10)

where (to shorten the notation) δ+
k = �k and δ−

k = δk , respec-
tively, we find

eL0τ
(
Hffσρel

ss

) = ahf

4

∑
k

[
e−i(δ+

k −i�̃k )τ |λk〉〈T+|Lkσ

+ e−i(δ−
k −i�̃k )τ |λk〉〈T−|Lkσ

]
, (H11)

and along the same lines

eL0τ
(
σρel

ssHff
) = ahf

4

∑
k

[
e+i(δ+

k +i�̃k )τ |T+〉〈λk|σL
†
k

+ e+i(δ−
k +i�̃k )τ |T−〉〈λk|σL†

k

]
. (H12)

Plugging Eqs. (H11) and (H12) into Eq. (H8), tracing out the
electronic degrees of freedom, performing the integration in
τ , and separating real and imaginary parts of the complex
eigenvalues leads to

a© =
∑

k

[
γ +

k

2
D [Lk] σ + i

�+
k

2
[L†

kLk,σ ] (H13)

+γ −
k

2
D [Lk] σ + i

�−
k

2
[L†

kLk,σ ]

]
. (H14)

This corresponds to the flip-flop mediated terms given in
Eq. (55) in the main text. The second term labeled as b© can be
computed along these lines: due to the additional appearance
of the projector P , it contains factors of 〈Sα

i 〉ss and is therefore
found to be zero.

Overhauser fluctuations. In the next step, we investigate the
second-order effect of Overhauser fluctuations with respect to
the effective QME for the nuclear dynamics. Our analysis starts
out from the second-order expression Kzz which, as above, can

be rewritten as

Kzzσ =
∫ ∞

0
dτTrel[PLzze

L0τLzzPρ]︸ ︷︷ ︸
1©

−
∫ ∞

0
dτTrel [PLzzPLzzPρ]︸ ︷︷ ︸

2©

. (H15)

First, we evaluate the terms labeled by 1© and 2© separately.
We find

1© = −a2
hf

∑
i,j

∫ ∞

0
dτ

[〈
Sz

i (τ )Sz
j

〉
ss

[
δAz

i ,δA
z
jσ

]
− 〈

Sz
jS

z
i (τ )

〉
ss

[
δAz

i ,σ δAz
j

]]
, (H16)

where we used the quantum regression theorem yielding the
electronic autocorrelation functions〈

Sz
i (τ )Sz

j

〉
ss = Trel

[
Sz

i e
L0τ

(
Sz

jρ
el
ss

)]
, (H17)

〈
Sz

jS
z
i

(
τ
)〉

ss = Trel
[
Sz

i e
L0τ

(
ρel

ssS
z
j

)]
. (H18)

In a similar fashion, the term labeled by 2© is found to be

2© = a2
hf

∑
i,j

∫ ∞

0
dτ

〈
Sz

i

〉
ss

〈
Sz

j

〉
ss

[
δAz

i ,
[
δAz

j ,σ
]]

. (H19)

Putting together the results for 1© and 2©, we obtain

Kzzσ =
∑
i,j

�ij

[
δAz

jσδAz
i − δAz

i δA
z
jσ

]
+ϒij

[
δAz

jσδAz
i − σδAz

i δA
z
j

]
, (H20)

which can be rewritten as

Kzzσ =
∑
i,j

(�ij + ϒij )

[
δAz

jσδAz
i − 1

2

{
δAz

i δA
z
j ,σ

}]

− i

2

[
1

i
(�ij − ϒij )δAz

i δA
z
j ,σ

]
. (H21)

Here, we have introduced the integrated electronic autocorre-
lation functions [72]

�ij = a2
hf

∫ ∞

0
dτ

(〈
Sz

i (τ )Sz
j

〉
ss − 〈

Sz
i

〉
ss

〈
Sz

j

〉
ss

)
,

ϒij = a2
hf

∫ ∞

0
dτ

(〈
Sz

i S
z
j (τ )

〉
ss − 〈

Sz
i

〉
ss

〈
Sz

j

〉
ss

)
.

For an explicit calculation, we use the relation

Sz
jρ

el
ss = ρel

ssS
z
j = 1

4 (|T+〉 〈T+| − |T−〉 〈T−|) , (H22)

and the fact that |T+〉 〈T+| − |T−〉 〈T−| is an eigenvector of
L0 with eigenvalue −5�±, which readily yield �ij = ϒij =
γzz/2. From this, we immediately obtain the corresponding
term appearing in the effective nuclear dynamics as

Kzzσ = γzz

∑
i,j

[
δAz

jσδAz
i − 1

2

{
δAz

i δA
z
j ,σ

}]
. (H23)
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APPENDIX I: DIAGONALIZATION OF
NUCLEAR DISSIPATOR

The flip-flop mediated terms Kff in Eq. (55) can be recast
into the following form:

σ̇ =
∑
i,j

γij

2

[
AiσA

†
j − 1

2
{A†

jAi,σ }
]

+ i
�ij

2
[A†

jAi,σ ],

(I1)

where we have introduced the vector A containing the
local nuclear jump operators as A = (A+

1 ,A+
2 ,A−

2 ,A−
1 ). The

matrices γ and � obey a simple block structure according to

γ = γ + ⊕ γ −, (I2)

� = �+ ⊕ �−, (I3)

where the 2×2 block entries are given by

γ ± =
(

γ ±
11 γ ±

12

γ ±
21 γ ±

22

)
=

( ∑
k γ ±

k ν2
k

∑
k γ ±

k μkνk∑
k γ ±

k μkνk

∑
k γ ±

k μ2
k

)
, (I4)

and similarly

�± =
(

�±
11 �±

12

�±
21 �±

22

)

=
( ∑

k �±
k ν2

k

∑
k �±

k μkνk∑
k �±

k μkνk

∑
k �±

k μ2
k

)
. (I5)

The nuclear dissipator can be brought into diagonal form

γ̃ = U †γU = diag(γ̃ +
1 ,γ̃ +

2 ,γ̃ −
1 ,γ̃ −

2 ), (I6)

gradient Δ [μeV]

ω
h
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FIG. 20. (Color online) (a) Knight shift ωhf due to nonzero
populations pk in the electronic quasisteady state for t = 20 μeV
(solid) and t = 30 μeV (dashed). (b) In the high-gradient regime, for
� � �± the levels |λk〉 get depleted efficiently, such that pk < 1% �
p. Other numerical parameters: ε = 30 μeV and x± = 10−3.

where

γ̃ ±
1 = 1

2
[γ ±

11 + γ ±
22 +

√
(γ ±

11 − γ ±
22)2 + 4(γ ±

12)2], (I7)

γ̃ ±
2 = 1

2
[γ ±

11 + γ ±
22 −

√
(γ ±

11 − γ ±
22)2 + 4(γ ±

12)2], (I8)

and U = U+ ⊕ U− with

U± =
(

cos (θ±/2) − sin (θ±/2)
sin (θ±/2) cos (θ±/2)

)
. (I9)

Here, we have defined θ± via the relation tan(θ±) =
2γ ±

12/(γ ±
11 − γ ±

22), 0 � θ± < π . Introducing a new set of
operators Ã = (Ã1,Ã2,B̃1,B̃2) according to

Ãk =
∑

j

UjkAj , (I10)

that is, explicitly,

Ã1 = cos (θ+/2) A+
1 + sin (θ+/2) A+

2 , (I11)

Ã2 = − sin (θ+/2) A+
1 + cos (θ+/2) A+

2 , (I12)

B̃1 = sin (θ−/2) A−
1 + cos (θ−/2) A−

2 , (I13)

B̃2 = cos (θ−/2) A−
1 − sin (θ−/2) A−

2 , (I14)

the effective nuclear flip-flop mediated dynamics simplifies to

σ̇ =
∑

l

γ̃l

2

[
Ãlσ Ã†

l − 1

2
{Ã†

l Ãl ,σ }
]

+ i
∑
k,l

�̃kl

2
[Ã†

l Ãk,σ ],

(I15)

where the matrix �̃kl = ∑
ij U

†
ki�ijUjl associated with

second-order Stark shifts is in general not diagonal. This gives
rise to the Stark term mediated criticality in the nuclear spin
dynamics.

In general, the matrices γ ± have rank (γ ±) = 2, yielding
four nonzero decay rates γ̃ ±

1,2 and four linear independent
Lindblad operators Ãl ; therefore, in general, no pure, nuclear
dark state |�dark〉 fulfilling Ãl|�dark〉 = 0∀l exists. In contrast,
when keeping only the supposedly dominant coupling to the
electronic eigenstate |λ2〉, they simplify to

γ ±
ideal = γ ±

2

(
ν2

2 μ2ν2

μ2ν2 μ2
2

)
, (I16)

which fulfills rank (γ ±
ideal) = 1. Still, also in the nonideal

setting, for realistic experimental parameters we observe a
clear hierarchy in the eigenvalues, namely γ̃ ±

2 /γ̃ ±
1 � 0.1.

APPENDIX J: NONIDEALITIES IN ELECTRONIC
QUASISTEADY STATE

In Sec. V we have analyzed the nuclear spin dynamics
in the submanifold of the electronic quasisteady state ρel

ss =
(|T+〉 〈T+| + |T−〉 〈T−|) /2. In this Appendix we consider
(small) deviations from this ideal electronic quasisteady state
due to populations of the levels |λk〉 (k = 1,2,3), labeled
as pk . Since all coherences are damped out on electronic
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time scales, the generalized electronic quasisteady state under
consideration is

ρel
ss = p (|T+〉 〈T+| + |T−〉 〈T−|) +

∑
k

pk |λk〉 〈λk| . (J1)

Using detailed balance, pk can be calculated via the
equations pk(κ2

k + x±) = px±, where x± = �±/� and p =
(1 − ∑

pk)/2 gives the population in |T±〉, respectively. The
electronic levels |λk〉 get depleted efficiently for �k � �±: In
contrast to the low-gradient regime where p2 ≈ 1/3, in the
high-gradient regime, we obtain pk < 1% � p such that the
electronic system settles to a quasisteady state very close to
the ideal limit where p = 1/2; compare Fig. 20. In describing
the effective nuclear dynamics, nonzero populations pk lead
to additional terms which are second order in ε, but strongly
suppressed further as pk � 1.

Knight shift. For nonzero populations pk , the Knight shift
seen by the nuclear spins does not vanish, leading to the
following (undesired) additional term for the effective nuclear

spin dynamics:

σ̇ = −iωhf
[
δAz

1 − δAz
2,σ

]
, (J2)

where

ωhf = ahf

2

∑
k

pk

(
μ2

k − ν2
k

)
, (J3)

with ahf ≈ 10−4 μeV. As shown in Fig. 20, however, ωhf ≈
10−7μeV is further suppressed by approximately three orders
of magnitude; in particular, ωhf is small compared to the dis-
sipative gap of the nuclear dynamics ADR ≈ 2 × 10−5 μeV
and can thus be neglected.

Hyperfine flip-flop dynamics. Moreover, nonzero popu-
lations pk lead to additional Lindblad terms of the form
σ̇ = · · · + pkγ

+
k D[L†

k]σ . They contain terms which are in-
commensurate with the ideal two-mode squeezed-like target
state. Since pk � p, however, they are strongly suppressed
compared to the ones absorbed into Lnid and thus do not lead
to any significant changes in our analysis.
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Wieck, and S. Tarucha, Nat. Nanotechnology 7, 247 (2012).

[109] H. Sanada, Y. Kunihashi, H. Gotoh, K. Onomitsu, M. Kohda,
J. Nitta, P. V. Santos, and T. Sogawa, Nat. Phys. 9, 280 (2013).

[110] H. Christ, J. I. Cirac, and G. Giedke, Phys. Rev. B 78, 125314
(2008).

[111] H. J. Carmichael, J. Phys. B 13, 3551 (1980).
[112] S. Morrison and A. S. Parkins, Phys. Rev. A 77, 043810

(2008).
[113] C.-H. Chung, K. Le Hur, M. Vojta, and P. Wolfle, Phys. Rev.

Lett. 102, 216803 (2009).
[114] L. Borda, G. Zarand, and D. Goldhaber-Gordon, arXiv:cond-

mat/0602019.
[115] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher,

A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[116] M. S. Rudner and L. S. Levitov, Phys. Rev. B 82, 155418

(2010).
[117] D. Stepanenko, M. Rudner, B. I. Halperin, and D. Loss, Phys.

Rev. B 85, 075416 (2012).
[118] In deriving Eq. (B8), we have ignored level shifts arising from

the coupling to the environment; as usual, they can be absorbed
into renormalized energy levels. Moreover, we have applied
the so-called secular approximation which is mathematically
correct in the weak-coupling limit and ensures the positivity of
the dynamics [119].

[119] A. Rivas and S. F. Huelga, Open Quantum System: An
Introduction (Springer, Heidelberg, 2012).

[120] Here, the tilde symbol explicitly refers to the dressed electronic
basis {|Tν〉 , |λk〉}. For notational convenience, it is dropped in
the main text.

[121] For simplicity, in the definition of K± we have included
dissipative cotunneling-mediated transitions in the bare triplet
subspace only {|T±〉 , |T0〉}. To make the comparison with the
Liouvillian in the dressed basis L0ρ̃, the corresponding mixing
terms D [|Tν〉 〈λk|] and D [|λk〉 〈Tν |] in L±ρ̃ appear with a
rate �± |〈λk|T0〉|2. In particular, in the low-gradient regime
where |λ2〉 ≈ |T0〉 this captures well the dissipative mixing
between |T±〉 and |λ2〉 which is the most adverse process
to our scheme. We have also verified that simply replacing
�± |〈λk|T0〉|2 → �± as it is stated in Eq. (30) does not change
Fel or ADRel severely.

[122] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
[123] L. P. Kouwenhoven, G. Schön, and L. Sohn, Proceedings of

the NATO Advanced Study Institute on Mesoscopic Electron
Transport (Kluwer Academic Publishers, Dordrecht, 1997).

[124] P. Recher, E. V. Sukhorukov, and D. Loss, Phys. Rev. Lett. 85,
1962 (2000).

[125] H.-A. Engel and D. Loss, Phys. Rev. B 65, 195321
(2002).

[126] L. R. Schreiber, F. R. Braakman, T. Meunier, V. Calado,
J. Danon, J. M. Taylor, W. Wegschneider, and L. M. K.
Vandersypen, Nat. Commun. 2, 556 (2011).

[127] J. Danon and Yu. V. Nazarov, Phys. Rev. B 80, 041301(R)
(2009).

195310-32

http://dx.doi.org/10.1103/PhysRevLett.101.236803
http://dx.doi.org/10.1103/PhysRevLett.101.236803
http://dx.doi.org/10.1103/PhysRevLett.101.236803
http://dx.doi.org/10.1103/PhysRevLett.101.236803
http://dx.doi.org/10.1103/PhysRevB.25.4444
http://dx.doi.org/10.1103/PhysRevB.25.4444
http://dx.doi.org/10.1103/PhysRevB.25.4444
http://dx.doi.org/10.1103/PhysRevB.25.4444
http://dx.doi.org/10.1103/PhysRevLett.110.086601
http://dx.doi.org/10.1103/PhysRevLett.110.086601
http://dx.doi.org/10.1103/PhysRevLett.110.086601
http://dx.doi.org/10.1103/PhysRevLett.110.086601
http://dx.doi.org/10.1103/PhysRevLett.110.146804
http://dx.doi.org/10.1103/PhysRevLett.110.146804
http://dx.doi.org/10.1103/PhysRevLett.110.146804
http://dx.doi.org/10.1103/PhysRevLett.110.146804
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1016/j.physrep.2007.03.001
http://dx.doi.org/10.1016/j.physrep.2007.03.001
http://dx.doi.org/10.1016/j.physrep.2007.03.001
http://dx.doi.org/10.1016/j.physrep.2007.03.001
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1103/PhysRevLett.104.133601
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1073/pnas.0901550106
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1103/PhysRevLett.104.073604
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature08988
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/nnano.2013.67
http://dx.doi.org/10.1038/nnano.2013.67
http://dx.doi.org/10.1038/nnano.2013.67
http://dx.doi.org/10.1038/nnano.2013.67
http://dx.doi.org/10.1038/nnano.2013.7
http://dx.doi.org/10.1038/nnano.2013.7
http://dx.doi.org/10.1038/nnano.2013.7
http://dx.doi.org/10.1038/nnano.2013.7
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1103/PhysRevLett.100.126802
http://dx.doi.org/10.1126/science.1232572
http://dx.doi.org/10.1126/science.1232572
http://dx.doi.org/10.1126/science.1232572
http://dx.doi.org/10.1126/science.1232572
http://dx.doi.org/10.1103/PhysRevLett.111.216807
http://dx.doi.org/10.1103/PhysRevLett.111.216807
http://dx.doi.org/10.1103/PhysRevLett.111.216807
http://dx.doi.org/10.1103/PhysRevLett.111.216807
http://dx.doi.org/10.1103/PhysRevB.82.201309
http://dx.doi.org/10.1103/PhysRevB.82.201309
http://dx.doi.org/10.1103/PhysRevB.82.201309
http://dx.doi.org/10.1103/PhysRevB.82.201309
http://dx.doi.org/10.1038/nature10416
http://dx.doi.org/10.1038/nature10416
http://dx.doi.org/10.1038/nature10416
http://dx.doi.org/10.1038/nature10416
http://dx.doi.org/10.1038/nature10444
http://dx.doi.org/10.1038/nature10444
http://dx.doi.org/10.1038/nature10444
http://dx.doi.org/10.1038/nature10444
http://dx.doi.org/10.1038/nnano.2012.28
http://dx.doi.org/10.1038/nnano.2012.28
http://dx.doi.org/10.1038/nnano.2012.28
http://dx.doi.org/10.1038/nnano.2012.28
http://dx.doi.org/10.1038/nphys2573
http://dx.doi.org/10.1038/nphys2573
http://dx.doi.org/10.1038/nphys2573
http://dx.doi.org/10.1038/nphys2573
http://dx.doi.org/10.1103/PhysRevB.78.125314
http://dx.doi.org/10.1103/PhysRevB.78.125314
http://dx.doi.org/10.1103/PhysRevB.78.125314
http://dx.doi.org/10.1103/PhysRevB.78.125314
http://dx.doi.org/10.1088/0022-3700/13/18/009
http://dx.doi.org/10.1088/0022-3700/13/18/009
http://dx.doi.org/10.1088/0022-3700/13/18/009
http://dx.doi.org/10.1088/0022-3700/13/18/009
http://dx.doi.org/10.1103/PhysRevA.77.043810
http://dx.doi.org/10.1103/PhysRevA.77.043810
http://dx.doi.org/10.1103/PhysRevA.77.043810
http://dx.doi.org/10.1103/PhysRevA.77.043810
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://dx.doi.org/10.1103/PhysRevLett.102.216803
http://arxiv.org/abs/arXiv:cond-mat/0602019
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1103/PhysRevB.82.155418
http://dx.doi.org/10.1103/PhysRevB.82.155418
http://dx.doi.org/10.1103/PhysRevB.82.155418
http://dx.doi.org/10.1103/PhysRevB.82.155418
http://dx.doi.org/10.1103/PhysRevB.85.075416
http://dx.doi.org/10.1103/PhysRevB.85.075416
http://dx.doi.org/10.1103/PhysRevB.85.075416
http://dx.doi.org/10.1103/PhysRevB.85.075416
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1016/0034-4877(76)90060-4
http://dx.doi.org/10.1103/PhysRevLett.85.1962
http://dx.doi.org/10.1103/PhysRevLett.85.1962
http://dx.doi.org/10.1103/PhysRevLett.85.1962
http://dx.doi.org/10.1103/PhysRevLett.85.1962
http://dx.doi.org/10.1103/PhysRevB.65.195321
http://dx.doi.org/10.1103/PhysRevB.65.195321
http://dx.doi.org/10.1103/PhysRevB.65.195321
http://dx.doi.org/10.1103/PhysRevB.65.195321
http://dx.doi.org/10.1038/ncomms1561
http://dx.doi.org/10.1038/ncomms1561
http://dx.doi.org/10.1038/ncomms1561
http://dx.doi.org/10.1038/ncomms1561
http://dx.doi.org/10.1103/PhysRevB.80.041301
http://dx.doi.org/10.1103/PhysRevB.80.041301
http://dx.doi.org/10.1103/PhysRevB.80.041301
http://dx.doi.org/10.1103/PhysRevB.80.041301



