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We propose a scheme for the deterministic generation of steady-state entanglement between the two

nuclear spin ensembles in an electrically defined double quantum dot. Because of quantum interference in

the collective coupling to the electronic degrees of freedom, the nuclear system is actively driven into a

two-mode squeezedlike target state. The entanglement buildup is accompanied by a self-polarization of

the nuclear spins towards large Overhauser field gradients. Moreover, the feedback between the electronic

and nuclear dynamics leads to multistability and criticality in the steady-state solutions.
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Entanglement is a key ingredient to applications in
quantum information science. In practice, however, it is
very fragile and is often destroyed by the undesired cou-
pling of the system to its environment; hence, robust ways
to prepare entangled states are called for. Schemes that
exploit open system dynamics to prepare them as steady
states are particularly promising [1–5]. Here, we investi-
gate such a scheme in quantum information architectures
using spin qubits in quantum dots [6,7]. In these systems, a
great deal of research has been directed towards the com-
plex interplay between electron and nuclear spins [8–15],
with the ultimate goal of turning the nuclear spins from the
dominant source of decoherence [16–19] into a useful
resource [20–23]. The creation of entanglement between
nuclear spins constitutes a pivotal element towards these
goals.

In this work, we propose a scheme for the dissipative
preparation of steady-state entanglement between the two
nuclear spin ensembles in a double quantum dot (DQD) in
the Pauli-blockade regime [6,24]. The entanglement arises
from an interference between different hyperfine-induced
processes lifting the Pauli blockade. This becomes possible
by suitably engineering the effective electronic environ-
ment, which ensures a collective coupling of electrons and
nuclei (i.e., each flip can happen either in the left or the right
QD and no which-way information is leaked), and that just
two such processes with a common entangled stationary
state are dominant. Engineering of the electronic system
via external gate voltages facilitates the control of the
desired steady-state properties. Exploiting the separation
of electronic and nuclear time scales allows us to derive a
quantum master equation in which the interference effect
becomes apparent: It features nonlocal jump operators
which drive the nuclear system into an entangled steady
state of EPR-type [5]. Since the entanglement is actively
stabilized by the dissipative dynamics, our approach is
inherently robust against weak random perturbations

[1–5]. The entanglement buildup is accompanied by a
self-polarization of the nuclear system towards large
Overhauser (OH) field gradients if a small initial gradient
is provided. Upon surpassing a certain threshold value of
this field the nuclear dynamics turn self-polarizing, and
drive the system to even larger gradients. Entanglement is
then generated in the quantum fluctuations around these
macroscopic nuclear polarizations. Furthermore, feedback
between electronic and nuclear dynamics leads to multi-
stability and criticality in the steady-state solutions.
We consider a DQD in the Pauli-blockade regime [6,24];

see Fig. 1. A source-drain bias across the device induces
electron transport via the cycle ð0; 1Þ ! ð1; 1Þ ! ð0; 2Þ !
ð0; 1Þ. Here, (m, n) refers to a configuration with mðnÞ
electrons in the left (right) dot, respectively. The only
energetically accessible (0, 2) state is the localized singlet,
jS02i. Then, by the Pauli principle, the interdot charge
transition ð1; 1Þ ! ð0; 2Þ is allowed only for the (1, 1)

spin singlet jS11i ¼ ðj*+i � j+*iÞ= ffiffiffi
2

p
, while the spin-

triplet states jT�i and jT0i ¼ ðj*+i þ j+*iÞ= ffiffiffi
2

p
are

blocked. Including a homogeneous Zeeman splitting !0

and a magnetic gradient �, both oriented along ẑ, the DQD
within the relevant two-electron subspace is then described
by the effective Hamiltonian (@ ¼ 1)

Hel ¼ !0ðSz1 þ Sz2Þ þ �ðSz2 � Sz1Þ � �jS02ihS02j
þ tðj*+ihS02j � j+*ihS02j þ H:c:Þ; (1)

where � refers to the relative interdot energy detuning
between the left and right dots and t describes interdot
electron tunneling in the Pauli-blockade regime.
The spin blockade inherent to Hel can be lifted, e.g., by

the hyperfine (HF) interaction with nuclear spins in the host

environment. The electronic spins ~Si confined in either of
the two dots (i ¼ 1, 2) are coupled to two different sets of
nuclei f��

i;jg via the isotropic Fermi contact interaction [25]
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HHF ¼ aHF
2

X
i¼1;2

ðSþi A�
i þ S�i Aþ

i Þ þ aHF
X
i¼1;2

SziA
z
i : (2)

Here, S�i and A�
i ¼ P

jai;j�
�
i;j for� ¼ �, z denote electron

and collective nuclear spin operators, and ai;j defines the

unitless HF coupling constant between the electron spin

in dot i and the jth nucleus:
PNi

j¼1 ai;j ¼ N, where N ¼
ðN1 þ N2Þ=2� 106 refers to the average number of nuclei
per dot. The individual nuclear spin operators ��

i;j are

assumed to be spin- 12 and we neglect the nuclear Zeeman

and dipole-dipole terms [25]. The second term in Eq. (2)
can be split into an effective nuclear magnetic field and
residual quantum fluctuations, Hzz ¼ aHF

P
i¼1;2S

z
i�A

z
i ,

where �Az
i ¼ Az

i � hAz
i it. The (time-dependent) semiclas-

sical OH field exhibits a homogeneous �!OH ¼ ðaHF=2Þ�
ðhAz

1it þ hAz
2itÞ and inhomogeneous component �OH ¼

ðaHF=2ÞðhAz
2it � hAz

1itÞ, which can be absorbed into the
definitions of !0 and � in Eq. (1) as !0 ¼ �!OH þ!ext

and � ¼ �OH þ�ext, respectively. For now, we assume

the symmetric situation of vanishing external fields!ext ¼
�ext ¼ 0 [26]. Thus, !0 and � are dynamic variables
depending on the nuclear polarizations.
The flip-flop dynamics, given by the first term in Eq. (2),

and the OH fluctuations described by Hzz can be treated
perturbatively with respect to the effective electronic
Hamiltonian Hel. Its eigenstates within the Sztot¼Sz1þSz2¼0
subspace can be expressed as j�ki ¼ �kj*+i þ �kj+*i þ
�kjS02i (k ¼ 1, 2, 3) with corresponding eigenenergies �k.

For t � !0, gHF, where gHF ¼
ffiffiffiffi
N

p
aHF, j�1;3i are far

detuned, and the electronic subsystem can be simplified to
an effective three-level system comprising the levels
fjT�i; j�2ig. Effects arising due to the presence of j�1;3i
will be discussed below. Within this reduced scheme, Hff

reads

Hff ¼ aHF
2

½L2j�2ihTþj þ L2j�2ihT�j þ H:c:�; (3)

where the nonlocal nuclear operators L2 ¼ �2A
þ
1 þ�2A

þ
2

and L2 ¼ �2A
�
1 þ �2A

�
2 are associated with lifting the

Pauli blockade from jTþi and jT�i via j�2i, respectively.
They can be controlled via the external parameters t and �
defining the amplitudes �2 and �2.
The dynamical evolution of the system is described in

terms of a Markovian master equation for the reduced
density matrix of the DQD system 	 describing the relevant
electronic and nuclear degrees of freedom [11]. Besides the
HF dynamics described above, it accounts for other purely
electronic mechanisms like, e.g., cotunneling. These effects
and their implications for the nuclear dynamics are
described in [26] and lead to effective decay and dephasing
processes in the T� subspace with rates 
�, 
deph; see

Fig. 1(c). For fast electronic dynamics (
�, 
deph � gHF)

and a sufficiently high gradient � * 3 �eV (see [26]), the
hybridized electronic level j�2i exhibits a significant
overlap with the localized singlet jS02i and the electronic
subsystem settles in the desired quasisteady state, 	el

ss ¼
ðjTþihTþj þ jT�ihT�jÞ=2, on a time scale much shorter
than the nuclear dynamics. One can then adiabatically
eliminate all electronic coordinates yielding a coarse-
grained equation of motion for the nuclear density matrix
� ¼ Trel½	�, where Trel½. . .� denotes the trace over the
electronic degrees of freedom: _� ¼ Lid½�� þLnid½��.
Here, the first dominant term describes the desired nuclear
squeezing dynamics

Lid½�� ¼ 


2
½D½L2��þD½L2��� þ i

�

2
ð½Ly

2L2; ��
þ ½Ly2L2; ��Þ; (4)

where D½c�	 ¼ c	cy � 1
2 fcyc; 	g. It arises from coupling

to the level j�2i, while Lnid½�� results from coupling to the
far detuned levels j�1;3i and OH fluctuations described by

Hzz [26]. Here, 
 and � refer to a HF-mediated decay rate
and Stark shift, respectively, [27].
Pure stationary solutions j�ssi associated with the

dynamics generated by Eq. (4) can be obtained from the

(a)

(b) (c)

FIG. 1 (color online). (a) Schematic illustration of nuclear
entanglement generation via electron transport. Whenever the
Pauli blockade is lifted via the HF interaction with the nuclear
spins, a nuclear flip can occur in either of the two dots. The local
nature of the HF interaction is masked by the nonlocal character
of the electronic level j�2i. (b) Spectrum of Hel for � ¼ 40 �eV
and t ¼ 30 �eV. The three eigenstates j�ki are displayed in red.
The triplets jT�i are degenerate for !0 ¼ 0. In this setting,
lifting of the spin blockade due to HF interaction is predomi-
nantly mediated by the nonlocal jump operators required for
two-mode squeezing, namely, L2 and L2. The ellipse refers to a
potential operational area of our scheme. (c) The resulting
effective three-level system fjT�i; j�2ig including coherent HF
coupling and the relevant dissipative processes: j�2i decays
according to its overlap with jS02i with an effective decay rate
�2 ¼ jh�2jS02ij2� [43]. Within this three-level subspace, purely
electronic Pauli-blockade lifting mechanisms like cotunneling or
spin-orbital effects result in effective dephasing and dissipative
mixing rates, labeled as 
deph and 
�, respectively.
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dark-state condition L2j�ssi ¼ L2j�ssi ¼ 0. First, we con-
sider the limit of equal dot sizes (N1 ¼ N2) and uniform
HF coupling (ai;j ¼ N=Ni) and generalize our results later.

The nuclear system can be described via Dicke states
jJi; kii, where ki ¼ 0; 1; . . . ; 2Ji and Ji refer to the spin-ẑ
projection and total spin quantum numbers, respectively. For
J1 ¼ J2 ¼ J, one readily checks that the dark-state condi-
tion is satisfied by the (unnormalized) pure state j�ssi ¼P

2J
k¼0 �

kjJ; ki � jJ; 2J � ki, representing an entangled state
closely similar to the two-mode squeezed state [26]. The
parameter � ¼ ��2=�2 quantifies the entanglement and
polarization of the nuclear system. j�j< 1 (j�j> 1) corre-
sponds to states of large positive (negative) OH gradients,
respectively. The system is invariant under the symmetry
transformation (�2 $ �2, A

z
1;2 ! �Az

1;2) which gives rise

to a bistability in the steady state, as for every solution with
positive OH gradient (�> 0), we find another one with
�< 0.

For a given j�j � 1, the individual nuclear polarizations
in the state j�ssi approach one as we increase the system size
J, and we can describe the system dynamics in the vicinity
of the respective steady state in the framework of a Holstein-
Primakoff (HP) transformation [28]. This allows for a
detailed analysis of the nuclear dynamics including pertur-
bative effects from the processes described by Lnid. The
collective nuclear spins I�i ¼ P

j�
�
i;j are mapped to bosonic

operators [29] and the (unique) ideal steady state is well
known to be a two-mode squeezed state [5,26] which rep-
resents j�ssiwithin the HP picture. Since in the bosonic case
the modulus of � is confined to j�j< 1, the HP analysis
refers to one of the two symmetric steady-state solutions
mentioned above. Within the HP approximation the dynam-
ics generated by _� ¼ Lid½�� þLnid½�� are quadratic in the
new bosonic creation and annihilation operators. Therefore,
the nuclear dynamics are purely Gaussian and exactly
solvable. The generation of entanglement can be certified
via the EPR entanglement condition [5,30], �EPR < 1,
where �EPR¼½varðIx1þIx2ÞþvarðIy1þIy2Þ�=ðjhIz1ijþjhIz2ijÞ.
While �EPR � 1 for separable states, the ideal
dynamics Lid drive the nuclear spins into an EPR state
with �id

EPR ¼ ð1� j�jÞ=ð1þ j�jÞ< 1. As illustrated in

Fig. 2, we numerically find that the generation of steady-state
entanglement persists even for asymmetric dot sizes of
�20%, classical uncertainty in the total spins Ji [31], and
the undesired terms Lnid. When tuning t from 10 �eV to
35 �eV, the squeezing parameter j�j increases from�0:2 to
�0:6, respectively. For j�j 	 0:2, we obtain a relatively high
fidelity F with the ideal two-mode squeezed state, close to
80%. For stronger squeezing, the target state becomes more
susceptible to the undesired noise terms, first leading to a
reduction of F and eventually to a breakdown of the HP
approximation. The associated critical behavior can be
understood in terms of a dissipative phase transition [28,32].

We now turn to the experimental realization of our
scheme [26]: In the analysis above, we discussed the

idealized case of uniform HF coupling. However, our
scheme also works for nonuniform coupling, provided
that the two dots are sufficiently similar: If the coupling
is completely inhomogeneous, that is ai;j � ai;k for all

j � k, but the two QDs are identical (a1;j ¼ a2;j8 j ¼
1; . . . ; N1 
 N2), Eq. (4) supports a unique pure entangled
stationary state. Up to normalization, it reads j�ssi ¼
�N
j¼1j�ij, where j�ij ¼ j#j; "ji þ �j"j; #ji is an entangled

state of two nuclear spins belonging to different nuclear
ensembles [33]. j�ssi features a (large) polarization gra-
dient �Iz ¼ hIz2i � hIz1i ¼ Nð1� �2Þ=ð1þ �2Þ.
The buildup of a large OH gradient is corroborated

within a semiclassical calculation which neglects correla-
tions among the nuclear spins [26]. This is valid on time
scales that are long compared to nuclear dephasing mecha-
nisms [14,34,36]. Assuming equal dot sizes, N1¼N2¼N,
we use a semiclassical factorization scheme [36] resulting
in decoupled equations of motion for the two nuclear
polarization variables hIz1it and hIz2it [37]. In particular,

�Iz evolves as

d

dt
�Iz ¼ �
eff

�
�Iz � N

�


eff

�
; (5)

(a)

(b)

FIG. 2 (color online). Steady-state entanglement between the
two nuclear spin ensembles quantified via (a) the EPR uncer-
tainty �EPR and (b) fidelity F of the nuclear steady state with the
two-mode squeezed target state. The black solid curve refers to
the idealized setting where the undesired HF coupling to j�1;3i
has been ignored and where J1 ¼ J2 ¼ pJmax, p ¼ 0:8, and
N1 ¼ N2 ¼ 2Jmax ¼ 106, corresponding to �OH ¼ 40 �eV.
The blue-dashed line then also takes into account coupling to
j�1;3i while the red-dashed curve, in addition, accounts for an

asymmetric dot size: N2 ¼ 0:8N1 ¼ 8� 105. The amount of
entanglement decreases for a smaller nuclear polarization:
p ¼ 0:7 (green dashed curve). Classical uncertainty (symbols)
in the total spin Ji quantum numbers leads to less entanglement,
but does not destroy it. Here, we have set the range of the
distribution to �Ji ¼ 50

ffiffiffiffiffiffi
Ni

p
. Other numerical parameters: !0 ¼

0, � ¼ 25 �eV, � ¼ 30 �eV, and 
� þ 
deph=2 ¼ 1 �eV.
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where the HF-mediated depolarization 
eff and pumping
rate � (see [26] for their connection to microscopic pa-
rameters) depend on the gradient � defined in Eq. (1), in
particular on the OH gradient �OH / �Iz . The electron-
nuclear feedback loop can then be closed self-consistently
by identifying steady-state solutions of Eq. (5) in which the
parameter � is provided by the nuclear OH gradient only.

The instantaneous polarization rate _�Iz , given in Eq. (5), is
displayed in Fig. 3 as a function of �, with the electronic
subsystem in its respective steady state, yielding a non-
linear equation for the nuclear equilibrium polarizations.

Stable fixed points (FPs) are determined by _�Iz ¼ 0

and d _�Iz=d�< 0 as opposed to instable ones where

d _�Iz=d�> 0 [13,15,38]. We can identify parameter
regimes in which the nuclear system features three FPs
which are interspersed by two instable points. Two of the
stable FPs are high-polarization solutions of opposite sign,
supporting a macroscopic OH gradient, while one is the
trivial, zero polarization solution. If the initial gradient lies
outside the instable points, the system turns self-polarizing
and the OH gradient approaches a highly polarized FP. For
typical parameter values we estimate that the OH gradient
at the instable points is 	 ð1–2Þ �eV; compare Fig. 3(b).
This comparatively moderate initial gradient could be

achieved via, e.g., a nanomagnet [39,40] or alternative
dynamic nuclear polarization schemes [14,20,35,41].
Next, we address the effects of weak nuclear interac-

tions: First, we have neglected nuclear dipole-dipole inter-
actions. However, we estimate the time scale for the
entanglement creation as t� ¼ @=N
 & 10 �s which is
fast compared to typical nuclear decoherence times,
recently measured to be �1 ms in vertical DQDs [35].
Thus, it should be possible to create entanglement between
the two nuclear spin ensembles faster than it gets disrupted
by dipole-dipole interactions among the nuclei. Second, we
have disregarded nuclear Zeeman terms since our scheme
requires no external homogeneous magnetic field for suf-
ficiently strong tunneling t [42].
Finally, entanglement could be detected by measuring

the OH shift in each dot separately [6]; in combination with
NMR techniques to rotate the nuclear spins [8] we can
obtain all spin components and their variances which are
sufficient to verify the presence of entanglement (similar to
the proposal [9]).
To conclude, we have presented a scheme for the dis-

sipative entanglement generation among the two nuclear
spin ensembles in a DQD. This may provide a long-lived,
solid-state entanglement resource and a new route for
nuclear-spin-based information storage and manipulation.
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