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Semiconductor quantum dot arrays defined electrostatically in a 2D electron gas provide a scalable

platform for quantum information processing and quantum simulations. For the operation of

quantum dot arrays, appropriate voltages need to be applied to the gate electrodes that define the

quantum dot potential landscape. Tuning the gate voltages has proven to be a time-consuming task,

because of initial electrostatic disorder and capacitive cross-talk effects. Here, we report on the

automated tuning of the inter-dot tunnel coupling in gate-defined semiconductor double quantum

dots. The automation of the tuning of the inter-dot tunnel coupling is the next step forward in

scalable and efficient control of larger quantum dot arrays. This work greatly reduces the effort of

tuning semiconductor quantum dots for quantum information processing and quantum simulation.

VC 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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Electrostatically defined semiconductor quantum dots

are actively studied as a platform for quantum computa-

tion1–3 and quantum simulation.4,5 Control over the inter-dot

tunnel coupling is a key ingredient for both applications. Via

control over the tunnel coupling, we have control over the

exchange coupling, which is vital for realizing the various

proposals for spin-based qubits.1,6,7 Based on the natural

description of semiconductor quantum dots in terms of the

Fermi-Hubbard model, control over the tunnel coupling

allows for analog simulations to explore the physics of inter-

acting electrons on a lattice.8,9

An obstacle for the efficient use of semiconductor quan-

tum dots are the background charged impurities and varia-

tions in the gate patterns, which lead to a disordered potential

landscape. Initial disorder can be compensated for by apply-

ing individually adjusted gate voltages. Additionally, even

though gates are designed to specifically control a chemical

potential or a tunnel coupling, in practice, capacitive coupling

induces cross-talk from all gates to dot chemical potentials

and tunnel couplings. The disorder and cross-talk increase the

complexity of tuning up ever larger dot arrays. The effort

of tuning can be reduced by automation based on image

processing. Earlier work on automation of tuning for semi-

conductor quantum dots has shown that it is possible to auto-

matically form double quantum dots with a sensing dot (SD),

and to find the single electron regime in the double dot, how-

ever, without the control of the inter-dot tunnel coupling.10

More recently, such automated tuning routines were used to

determine the initialization, read-out, and manipulation points

for a singlet-triplet qubit.11 Machine learning was used for

the automated tuning between an open channel, a single dot

and a double quantum dot regime in a nanowire.12 An auto-

mated control over the inter-dot tunnel coupling is an

important next step forward in control for scaling up the num-

ber of spin qubits in semiconductor quantum dots.

In this letter, we present a computer-automated algo-

rithm for the tuning of the inter-dot tunnel coupling in semi-

conductor quantum dot arrays and demonstrate the algorithm

on separate double dots. The algorithm consists of two parts.

Part I determines a virtual barrier gate, which corresponds to

a linear combination of voltages to apply on multiple gates

in order to adjust the tunnel barrier without influencing the

chemical potentials in the dots. To determine such a virtual

barrier gate, we model and fit the capacitive anti-crossings

measured in charge stability diagrams. Part II tunes the

tunnel coupling using a feed-back loop, which consists of

stepping the virtual barrier gate value and measuring the tun-

nel coupling, until the tunnel coupling converges to a user-

defined target value. To measure the tunnel coupling, we use

two methods. The first method is based on photon-assisted

tunneling13 (PAT), while the second method is based on the

broadening of the inter-dot transition line.14 We describe the

algorithm and demonstrate its power by automatically tuning

the tunnel coupling to a target value for two double dots. We

show results for tuning both to higher and lower tunnel cou-

plings for several different initial values, both for a single

electron and for two electrons on the double dot.

The platform used for the demonstration of the algo-

rithm is a linear triple quantum dot device.15 A scanning

electron microscopy image of a device similar to the one

used in our experiment is shown in Fig. 1(a). By applying

voltages on gate electrodes on the surface of a GaAs/AlGaAs

heterostructure, we shape the potential landscape in the two-

dimensional electron gas 85 nm below the surface. Gates LS

and RS are designed to control the tunnel couplings to the

left and right reservoir, respectively. Additionally, plunger
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gates, Pi, are designed to control the chemical potential of

dot i, and barrier gates, Di, are designed to control the inter-

dot tunnel coupling between dot i and dot iþ 1. The device

allows for the formation of three quantum dots in a linear

configuration, which are indicated with three white dashed

circles in the bottom part of Fig. 1(a). In the present work,

we focus on two of the three dots at a time. There is one

additional dot, indicated with the larger white dashed circle

in the upper part, which we refer to as the sensing dot (SD),

because it is operated as a charge sensor, utilizing its capaci-

tive coupling to the three other quantum dots. One of the SD

contacts is connected via a bias-tee to a resonator circuit,

permitting fast read-out of the charge configuration in the

bottom dots, by measuring the SD conductance with radio-

frequency reflectometry. To optimize the sensitivity of the

charge sensor, we operate the SD half-way on the flank of a

Coulomb peak. Automation on the tuning of the sensing dot

for read-out was already shown in Ref. 10. One of the bottom

gates, P2, is connected to a microwave source, used for PAT

measurements.

As a starting point for our algorithm, we assume that the

device is tuned near an inter-dot charge transition. Such a start-

ing point can be obtained from a computer-automated tuning

algorithm.10 We also require a rough estimate of the electron

temperature for the modelling of charge transition line widths.

For the PAT measurements, we calibrated the microwave

power such that we only observe single-photon lines.13

Part I of the algorithm [see Fig. 1(b)] determines the vir-

tual plunger and barrier gates by measuring the cross-

capacitance matrix (see supplementary material II), which

describes the capacitive couplings from gates to dot chemical

potentials. To determine this matrix, we measure charge sta-

bility diagrams with charge sensing and fit the avoided cross-

ing with a classical model (supplementary material Fig. S1).

The fitting of the anti-crossings is based on finding the mini-

mum of the sum over all pixels of the difference between the

processed data and a two-dimensional classical model of the

avoided crossing (see supplementary material III). From the

fit of the anti-crossing, we obtain the slopes of all five transi-

tion lines: four addition lines, where an electron moves

between a reservoir and a dot, and the inter-dot transition

line, where a charge moves from one dot to the other. We fit

the anti-crossing to charge stability diagrams measured for

any combination of Pi, Piþ1, and Di over a range of 40mV

around the starting point, to fill in the entries of the cross-

capacitance matrix. From the inverse of this matrix, we

obtain both the virtual barrier, ~Di, and the virtual plungers,
~Pi and ~Piþ1. The effectiveness of this basis transformation in

voltage-space becomes clear from the right angles between

addition lines in the charge stability diagram in the 2D-scan

of ~Pi and ~Piþ1 in Fig. 2(a). The anti-crossing fit also provides

the voltages at the center position on the inter-dot transition

line, indicated with the white dot. The white dotted line indi-

cates the detuning axis, which will be used as a scanning

axis in the second half of the algorithm.

Before describing part II of the algorithm, let us first

explain the two methods we use to measure the tunnel cou-

pling. The first method is PAT [see Figs. 2(b) and 2(e)],

which is based on the re-population of states induced by a

microwave field. We can observe the re-population using the

sensing dot, when the different states correspond to different

charge configurations. While varying the frequency of the

microwave source, we observe resonance peaks when the

frequency is equal to the energy difference between two

states. By scanning over the detuning axis and finding the

resonance peaks, we perform microwave spectroscopy to

map out (part) of the energy level diagram, from which we

determine the tunnel coupling. We obtain the tunnel cou-

pling by using a fitting procedure that consists of three steps.

First, we process the data per microwave frequency, mainly

subtracting a smoothed background signal taken when the

microwave source is off. Second, we find the extrema in this

processed signal per microwave frequency, and last we fit

the curve(s) that connects the extrema using a model of the

energy level diagram. For the PAT measurement with a sin-

gle electron as shown in Fig. 2(b), we model the system in

terms of two levels with energies as shown in Fig. 2(c). The

resonance curve is then described by hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 4t2
p

, where

h is Planck’s constant, f the applied microwave frequency, t

the inter-dot tunnel coupling, and e the detuning, which is

given by aðd ~Pi ÿ d ~Piþ1Þ, with a the lever arm, a conversion

factor between voltage and energy scales.13 If two electrons

occupy the two tunnel coupled dots at zero magnetic field,

there are three relevant energy levels at modest detuning,

two corresponding to hybridized singlet states and the other

to threefold degenerate triplet states [see Fig. 2(f)].2,16 This

level structure results in three possible transitions, with the

corresponding energy differences between the singlet and

triplet states described by hf ¼ 6 e
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 8t2
p

, indicated

with the green and blue wiggly arrows, respectively, and the

energy difference between the two singlet states given by

hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 8t2
p

, indicated with the red wiggly arrow. In the

measurement shown in Fig. 2(e), we only observe two out of

the three transitions. This we explain by observing that the

thermal occupation of the lowest excited state is negligible.

We note that some PAT transitions involve a spin-flip, which

is mediated by the spin-orbit interaction and a difference in

the Overhauser fields between the two dots.17 The variation

FIG. 1. (a) A scanning electron microscopy image of a device nominally identical to the one used for the measurements. The three smaller dashed circles indi-

cate the positions of the dots in the array. The larger dashed circle indicates the location of the sensing dot. Squares indicate Fermi reservoirs, which are con-

nected to ohmic contacts. (b) A flowchart of the automated tunnel coupling tuning algorithm. The dashed boxes indicate the two parts of the algorithm.
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in intensity for different horizontal lines in Figs. 2(b) and

2(e) is caused by the frequency dependence of the transmis-

sion of the high-frequency wiring. One could compensate for

this by adjusting the output power of the microwave source

per frequency. The blue tails in Fig. 2(e) are caused by

sweeping gate voltages at a rate which is of the same order

of magnitude as the triplet-singlet relaxation rate. This was

confirmed by inverting the sweep direction and observing

that the blue tails appear on the other side of the transition

line.

The second method to measure the tunnel coupling is

based on the broadening of the inter-dot transition line14 [see

Fig. 2(d)]. The broadening reflects a smoothly varying

charge distribution when scanning along the detuning axis,

caused by the tunnel coupling via the hybridization of the

relevant states and the temperature through the thermal occu-

pation of excited states. For the single-electron case, the

average excess charge on the left (right) dot is given as

Q ¼ 1

Z
X

n

ðcneÿEn=kBTeÞ; (1)

with Z the partition function, cn ¼ 1
2
7e=En the probability

of finding the excess charge on the left (right) dot for the

eigenstate with energy En, and the thermal energy kBTe
� 10.5 leV, with Te the effective electron temperature. An

analogous expression applies to the two-electron case, with

cn¼ 0 for the triplets and cn ¼ 1
2
16e=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 8t2
pÿ �

for the

hybridized singlets. The lever arm used for measuring the

tunnel coupling from the broadening of the inter-dot transi-

tion line is obtained from PAT, but could also be measured

with Coulomb diamonds or bias triangles.2 Based on Eq. (1),

we obtain the model for the charge sensor response when

scanning over the detuning axis (see the caption of Fig. 2).9

Here, we compare the two methods for extracting the

tunnel coupling. An advantage of the method based on the

broadening of the inter-dot transition line is that it is about

two orders of magnitude faster than PAT (see Table I in the

supplementary material), because it is effectively a single

scan over the detuning axis while PAT is a series of scans

over the detuning axis for different microwave frequencies.

Another difference is in the range of tunnel couplings over

which the two methods work well. For PAT, the upper limit

depends on the maximum frequency that the microwave

source can produce. We expect that the lower limit for PAT

is determined by charge noise, resulting in broadening of the

PAT peaks. With PAT, we were able to automatically mea-

sure tunnel coupling values as low as 5 leV. The lower limit

for the inter-dot transition broadening method is set by the

effective electron temperature, kBTe, here � 10.5 leV.14 The

upper limit for this method is that for very large tunnel cou-

plings, the broadening of the inter-dot transition line extends

to the boundaries of the charge stability region. In the mea-

surements shown here, we did not come close to this upper

limit, but tunnel couplings up to 75GHz � 300 leV have

been measured with the inter-dot transition line broadening

method.9 We observe that the two methods are in good

correspondence with one another, i.e., the difference

between the two is smaller than 10% of their average value

(see supplementary material V). Measurement errors are

usually smaller than the accuracy in target tunnel coupling

we are interested in, while potential outliers will typically be

caused by unpredictable charge jumps.

Now, let us describe part II of the algorithm [see Fig.

1(b)] which performs a feedback loop. For each iteration, the

virtual barrier gate value, i.e., the linear combination of gate

FIG. 2. In all subfigures, (N1, N2) indicates charge occupation of the left and

middle dot, with no dot formed on the right. (a) A double quantum dot

charge stability diagram, showing the processed sensing dot signal as a func-

tion of virtual plunger gate voltages. The fitted anti-crossing model is indi-

cated with dashed lines. The detuning axis is indicated with the white dotted

line and the center point on the inter-dot transition line with a white dot. (b)

Photon-assisted tunneling measurement showing the charge detector signal

(background subtracted) as a function of frequency and inter-dot detuning at

the (0,1) to (1,0) transition. The red dashed line is a fit of the form

hf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 4t2
p

. The detuning lever arm is extracted from the slope of the

hyperbola in the large detuning limit. (c) The energy level diagram for one-

electron occupation. The eigenenergies are 6 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 4t2
p

. A microwave pho-

ton (red wiggly arrow) can induce a transition (and potentially tunnelling

between the dots) when the difference between the energy levels corresponds

to the photon energy (PAT). (d) Excess charge extracted from a fit to the sens-

ing dot signal as a function of e for different t, measured by scanning over the

detuning axis for the single-electron occupation. The model used to fit to the

SD signal is VðeÞ ¼ V0 þ dVQðeÞ þ ½dV
de
jQ¼0 þ dV

de
jQ¼1 ÿ dV

de
jQ¼0

� �

QðeÞ�e.
Here, V0 is the background signal, dV is a measure of the charge sensitivity, Q

the excess charge as a fraction of the electron charge, and dV
de

the gate-sensor

coupling when e is varied.9 (e) Photon-assisted tunneling measurement similar

to (b) but for the inter-dot transition from (2,0) to (1,1). Coloured dashed lines

are fits to the measured data. (f) The energy level diagram for the two electron

transition. Coloured wiggly arrows indicate microwave photon excitations.

The energy levels are given by e
2
6

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2 þ 8t2
p

for the singlets and are 0 for

the degenerate triplets.
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voltages as determined in part I, is adjusted and the tunnel

coupling is measured. Before the first step of the algorithm,

we measure the tunnel coupling with PAT. For this initial

measurement, we cannot rely on the (faster) method based

on the broadening of the inter-dot transition, since at this

stage, the lever arm has not yet been determined. If we are

not yet within 1 leV, of the user-defined target tunnel cou-

pling value, we step the virtual barrier gate value with the

step size equal to the maximal step size in the positive direc-

tion if the tunnel coupling is too low and vice versa. We limit

the barrier gate step size to 20mV such that the position of

the anti-crossing can again be located automatically by

fitting the anti-crossing model. For larger step sizes, the posi-

tion of the anti-crossing becomes harder to predict due to

non-linearities. After stepping the virtual barrier gate, we

measure the tunnel coupling again using PAT. Then, we

have measured the tunnel coupling for two settings and we

determine the next step for the virtual barrier, by predicting

the voltage required to reach the target value from an expo-

nential fit9,18 to the measured tunnel couplings and their

respective virtual barrier values (we thereby force the expo-

nential to go to zero for very negative barrier voltages).

After the tunnel coupling has been measured five times with

PAT, we also have five measured lever arm values for differ-

ent gate voltages. The small differences in lever arm we

interpret as caused by small shifts in the dot positions with

the gate voltages. We predict the lever arm for other voltages

using a linear approximation (see supplementary material

V). Using this knowledge of the lever arm, the algorithm can

be sped up for the subsequent iterations by measuring the

tunnel coupling from inter-dot transition broadening.

Following the procedure described earlier, the algorithm

automatically tunes the inter-dot tunnel coupling to a target

value, within the range of the measurable tunnel coupling

values and the achievable values with our gate design and

electron occupations. Figure 3 shows the results of the tuning

algorithm for various initial and target tunnel coupling

values, indicated with different colours. The target tunnel

coupling values are indicated with black dashed lines. We

clearly see that the algorithm finds the gate voltages that

bring the tunnel coupling to the target value, stepwise moving

closer. In Fig. 3(a), the results for the left pair of dots with a

single electron are shown, while Fig. 3(b) shows the results

for an occupation with two electrons. We have obtained simi-

lar results for the second pair of neighbouring dots in the

triple dot (see supplementary material VII). The duration of a

run of the algorithm mainly depends on the difference

between the initial and the final tunnel coupling value,

because we limit the maximum step size. The time the tuning

algorithm takes to tune an inter-dot tunnel coupling is on the

order of 10min (see supplementary material VI for more

details).

In conclusion, we have shown automation of the tuning

of the tunnel coupling between adjacent semiconductor

quantum dots. Key for this automation was image processing

methods to automatically fit the shape of an anti-crossing

and to find the shape of the resonance curve in a PAT mea-

surement. The present methods for measuring inter-dot tun-

nel couplings and the feedback routine can be extended to

larger quantum dot arrays, in the future including also two-

dimensional arrays. When tuning multiple tunnel couplings,

cross-talk effects from the tuning of one tunnel coupling on

the values of nearby tunnel couplings will have to be com-

pensated for, which so far was done by hand.9 This work

demonstrates further automated control over semiconductor

quantum dots and is the next step forward in automated

tuning of larger quantum dot arrays, necessary for scaling up

the number of spin-based qubits implemented with semicon-

ductor quantum dots.

See supplementary material for the explanation of the con-

cept of virtual gates, details on the fitting routines, comparison

between the two methods to measure the tunnel coupling, data

on the automated tuning of another double dot, and informa-

tion about the time required for the tuning algorithm.
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