
7 0  |  N A T U R E  |  V O L  5 4 8  |  3  A U g U s T  2 0 1 7

LETTER
doi:10.1038/nature23022

Quantum simulation of a Fermi–Hubbard model 
using a semiconductor quantum dot array
T. Hensgens1, T. Fujita1, L. Janssen1, Xiao Li2, C. J. Van Diepen3, C. Reichl4, W. Wegscheider4, s. Das sarma2 & 
L. M. K. Vandersypen1

Interacting fermions on a lattice can develop strong quantum 
correlations, which are the cause of the classical intractability of 
many exotic phases of matter1–3. Current efforts are directed towards 
the control of artificial quantum systems that can be made to 
emulate the underlying Fermi–Hubbard models4–6. Electrostatically 
confined conduction-band electrons define interacting quantum 
coherent spin and charge degrees of freedom that allow all-electrical 
initialization of low-entropy states and readily adhere to the Fermi–
Hubbard Hamiltonian7–17. Until now, however, the substantial 
electrostatic disorder of the solid state has meant that only a few 
attempts at emulating Fermi–Hubbard physics on solid-state 
platforms have been made18,19. Here we show that for gate-defined 
quantum dots this disorder can be suppressed in a controlled 
manner. Using a semi-automated and scalable set of experimental 
tools, we homogeneously and independently set up the electron 
filling and nearest-neighbour tunnel coupling in a semiconductor 
quantum dot array so as to simulate a Fermi–Hubbard system. With 
this set-up, we realize a detailed characterization of the collective 
Coulomb blockade transition20, which is the finite-size analogue 
of the interaction-driven Mott metal-to-insulator transition1. As 
automation and device fabrication of semiconductor quantum 
dots continue to improve, the ideas presented here will enable the 
investigation of the physics of ever more complex many-body states 
using quantum dots.

The potential for realizing novel electronic and magnetic properties 
of correlated-electron phases in low-dimensional condensed-matter 
physics, in fields ranging from high-Tc superconductivity to electronic 
spin liquids1–3, has prompted quantum simulation efforts across 
 multiple platforms4–6,18,19,21,22. Theoretical and proof-of-principle 
experimental work has shown how emergent spin physics21 and two-
site Mott physics22 can be simulated on programmable quantum com-
puting platforms. These digital quantum simulation efforts promise 
universality, but come at the cost of requiring large numbers of highly 
controlled quantum bits with additional error-correction overhead. 
Analogue quantum simulation efforts, on the other hand, aim to imple-
ment well-defined Hamiltonians directly. Such emulators are typically 
limited by the residual entropy of the initialized system,  restricting 
experimental correlations in span and strength6. Furthermore,  
scaling to sufficiently homogeneous systems of larger size is not always 
straightforward4–6,19.

Semiconductor quantum dots form a scalable platform that 
is naturally described by a Fermi–Hubbard model in the low- 
temperature, strong-interaction regime, when cooled down to dilution 
 temperatures7–10. As such, pure state initialization of highly entan-
gled states is possible even without the use of adiabatic initialization 
schemes23. Coherent evolution of excitations can span many sites, as, 
contrary to what might be expected, more than 20 coherent oscillations 
in charge or spin can be observed on adjacent sites13–15. Furthermore, 

local control and read-out of both charge and spin degrees of freedom 
have become mature areas of research, given the large ongoing effort 
towards using quantum dots as a platform for quantum information 
processing11–17. In particular, excellent control of small on-site energy 
differences24 or tunnel couplings14,15 has been shown at specific values 
of electron filling and tuning.

Quantum simulation experiments can make use of many of these 
developments, trading off some of the experimental  difficulties 
involved in full coherent control for ease of scaling. Until now, 
 however,  calibration routines for quantum dots have been quite 
 inefficient and limited in scope. As such, the effective control of larger 
parameter spaces as well as the calibration of larger samples seem like 
 insurmountable obstacles. What has been lacking, therefore, is an 
efficient and scalable control paradigm for Hamiltonian engineering 
that extends to the collective Fermi–Hubbard parameter regimes well 
beyond those required for qubit operation25,26.

In this Letter, we demonstrate the simulation of Fermi–Hubbard 
physics using semiconductor quantum dots. We describe an experi-
mental toolbox, validated by direct numerical simulations, that allows 
for the independent tuning of filling and tunnel coupling as well as the 
measurement of all interaction energies, and use it to map out the acces-
sible parameter space of a triple-quantum-dot device with unprece-
dented detail and precision. As the tunnel couplings are homogeneously 
increased, we witness the delocalization transition between isolated 
Coulomb blockade and collective Coulomb blockade, the finite-size 
analogue of the interaction-driven Mott transition.

The one-dimensional quantum dot array is electrostatically defined 
using voltages applied to gate electrodes fabricated on the surface of a 
GaAs/AlGaAs heterostructure (Fig. 1) that selectively deplete regions 
of the 85-nm-deep two-dimensional electron gas (2DEG) underneath. 
The outermost dots can be (un)loaded from adjacent Fermi reservoirs, 
which have an effective electron temperature of 70–75 mK (6.0–6.5 μ eV).  
The three gates at the top are used to define a sensing-dot channel, 
the conductance of which is sensitive to changes in the charge state of 
the array and is directly read out using radio-frequency reflectometry.

The control of Fermi–Hubbard model parameters is achieved by 
modulation of the potential landscape in the 2DEG using the seven 
bottom-most gate electrodes (Fig. 1). These gates come in two types. 
Plunger gates Pi are designed to tune the single-particle energy offsets 
εi of individual dots i, allowing us to set an overall chemical potential 
μ′ = 〈 〉ε i  and add site-specific detuning terms δ εi. Barrier gates Bij allow 
for the modulation of tunnel couplings tij between the ith and jth dot 
or of Γi between an outer dot i and its adjacent Fermi reservoir. The 
interaction energies are determined by the potential landscape realized 
to achieve this set {μ′ , δ εi, tij, Γi}, and comprise the on-site Coulomb 
interaction terms Ui and the inter-site Coulomb interaction terms Vij. 
With each dot filled with an even number of electrons, we can describe 
the addition of the next two electrons per dot within an effective 
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single-band extended Hubbard picture27, using site-and-spin-specific 
electronic creation and annihilation operators σci

†  and ciσ, and dot occu-
pations =∑σ σ σn c ci i i

†  (h.c. below indicates Hermitian conjugate):
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In practice, both Pi and Bij gates exhibit cross-talk to all the εi, Γi  and tij 
(with smaller effects on Ui and Vij), and in addition must compensate 
for initial disorder. Setting Hamiltonian parameters experimentally 
therefore requires carefully chosen linear combinations of gate voltages. 
This idea is employed regularly in spin qubit experiments in order to 
change the on-site energies εi deterministically over small ranges24, but 
here we go further in important ways. Our experimental toolbox uses 
linear combinations of gate voltage changes {Pi, Bij} for the independent 
control of the Fermi–Hubbard parameters {μ′ , δ εi, tij} to within several 
kBT and over a wide range of fillings and tunnel couplings.

Figure 2a, b shows the filling of the array with up to N =  9 electrons, 
three electrons per dot, while keeping the inter-dot tunnelling terms 
small (tij <  Vij <  Ui) and the tunnel couplings to the reservoirs roughly 
constant. The dark lines arise from steps in the charge detector con-
ductance, indicating a transition in the number of electrons on one of 
the dots. The horizontal and diagonal lines indicate filling of one of the 
dots from the reservoir, whereas the vertical (polarization) lines 
 indicate electron transitions between sites (not seen in Fig. 2b, which 
shows only changes in N). To achieve this level of control required 
several new insights. As a start, we measure the cross-talk between the 
seven gate voltages and the three dot detunings at multiple points in 
gate space, allowing for the direct definition of virtual δ εi gates that are 
accurate over a range of several meV (see Methods and Extended Data 
Fig. 1). Furthermore, it allows us to define virtual barrier gates that 
change specific tunnel couplings while keeping all dot detunings 
 constant. In addition, we achieve homogeneous filling of a quantum 
dot array (as in Fig. 2a) through non-homogeneous changes in the εi, 
as the dots have to each overcome a different sum of local interaction 
energies +∑ ≠U Vi i j ij . This is a consequence of the finite size of the 
array (only the middle dot has two neighbours) and the inhomogeneity 
in interaction terms (see Methods and Extended Data Figs 2, 3). Finally, 
as multiple electrons are added to the array, we use the virtual barrier 
gates described above to counter the effect that changing plunger gate 
voltages (and the higher wavefunction overlap of higher electron fill-
ings) have on the tunnel couplings.

Having filled the array with a given number of electrons, we can 
quantitatively characterize the various parameters in the Fermi–
Hubbard model directly from relevant feature sizes in the charge 
 stability diagram as we detune away from uniform filling. The spacing 
between charge addition lines of half-filled dot levels yields the on-site 
Coulomb interaction term Ui, whereas the displacement of single 
charge addition lines on filling with another dot yields their inter-site 
Coulomb coupling Vij (see Fig. 2c and Methods for automation and 
protocols). Finally, we can extract the inter-dot tunnel coupling tij at 
transitions where an added electron moves between adjacent sites i and j  
(the polarization lines seen in Fig. 2a). The width of such transitions is 
determined by the hybridization of the charge states on the two sites and 
is thus a measure of tunnel coupling. We implement an iterative tuning 
process that allows for automated repeated measurements at rates of 
1 Hz of the polarization line width with changing virtual barrier gates 
and thus tunnel coupling. To account for the only remaining cross-talk, 
that between each virtual barrier gate and the other tunnel coupling, 
we redefine the virtual barrier gates such that they influence their local 
tunnel coupling only, while keeping all other parameters constant  
(see Fig. 2d and Extended Data Fig. 4).

We demonstrate the potential of well-controlled quantum dot arrays 
to emulate Fermi–Hubbard physics by employing this newly developed 
toolbox for the realization of collective Coulomb blockade  physics, 
 validating the results through direct numerical Fermi–Hubbard model 
calculations. Coulomb blockade is a purely classical effect that arises 
from the finite charging energies of each individual quantum dot, where 
a gap for charge excitations exists at half filling, analogous to the Mott 
gap. When quantum tunnelling effects between sites are turned on, 
however, a much richer phase diagram appears. The Coulomb blockade  
of individual dots is destroyed as the degeneracy of the peaks in the 
equilibrium charge addition spectrum is lifted and broadened into 
minibands, giving way to collective Coulomb blockade20 (see Fig. 3a 
and Extended Data Fig. 5 for simulated data of a simplified model). As 
tunnel couplings continue to increase relative to local charging  energies, 
the gap for charge excitations will vanish in the thermodynamic limit, 
giving rise to a metallic state. The physics of collective Coulomb 
 blockade is best described by the equilibrium electron  addition spec-
trum as a function of filling and tunnel coupling, which are the two 
main experimental control parameters of the quantum dot array.

The experimental phase diagram is mapped out by  independent 
control over electron filling and tunnel coupling strength over as 
large a range as possible (Methods). It is constructed continuously by 
 linear interpolation of gate values between 3–12 calibrated points per 
 miniband (Fig. 3b) where the on-site energies and tunnel  couplings  
are well calibrated and the interaction energies measured (see 
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Figure 1 | Gate-defined quantum dot array as a platform for quantum 
simulations of the Fermi–Hubbard model. Left, electron micrograph 
of a sample nominally identical to the one used for the measurements. 
The bottom three dashed circles indicate the triple-quantum-dot array, 
whose Hamiltonian parameters derive from the local potential landscape 
controlled by the seven gates under (B1L to B3R). The top dashed circle and 
arrow indicate the sensing dot channel, the radio-frequency reflectance of 
which is monitored to enable real-time charge sensing. Crossed squares 
indicate distinct Fermi reservoirs that are contacted using ohmic contacts. 
Right, diagrams showing how setting the gates controls the potential 

landscape, filled with a given number of spin-up (red) and spin-down 
(blue) electrons and how a Fermi–Hubbard model is set up. We describe 
a toolbox that allows for the control of the quantum dot array at the level 
of the microscopic Fermi–Hubbard model. In particular, it allows for 
the independent calibration of {μ′ , δ εi, tij} and the measurement of the 
Coulomb interaction terms {Vij, Ui} (see Fig. 2, main text and Methods). 
Measurable observables for quantum dots include both local charge 
occupation and global charge transport as well as local spin degrees of 
freedom and nearest-neighbour singlet–triplet spin correlations (through 
spin-to-charge conversion protocols11,16,17).
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Extended Data Fig. 6). At low tunnel coupling, the miniband has a 
finite width owing to residual Vij. The main effect of increased nearest- 
neighbour tunnel coupling on the addition spectrum is a widening of 
the  minibands at the expense of the collective gap at uniform filling, 
 analogous to the reduction of the Mott gap with increasing tunnel 
 coupling. Along with tunnel coupling, the inter-site Coulomb coupling 

Vij also increases (see Extended Data Fig. 6). The gap between mini-
bands continues to decrease with increasing tunnel coupling, but will 
be prohibited from closing completely by the charging energy of what 
has essentially become one large dot: this energy is inversely propor-
tional to the large but finite total capacitance of the ‘large dot’. The 
low and high tunnel coupling regimes are also clearly distinguished 
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Figure 2 | Hamiltonian engineering using a scalable toolbox of local 
control and measurements. a, Charge stability diagram showing uniform 
filling of the array of up to three electrons per dot in the vertical direction, 
using a combination of all seven gate voltages (only P1 values are shown) 
that equally sweeps the local fillings ni while keeping the tunnel couplings 
between dots and to the reservoirs nominally identical. Lines correspond 
to charge transitions. Δ indicates the centre of the measurements of c, 
whereas the blue and red arrows indicate respectively the transitions where 
the measurements of t12 and t23 of d were performed. b, Theoretical charge 
stability diagram of a triple-quantum-dot system in the classical limit 
(t =  0) exchanging particles with a reservoir at kBT/U =  0.003, showing the 
addition of electrons as a function of homogeneous filling (vertical) and 
detuning of the outer dots (horizontal), analogous to the measurement in a.  

c, As we focus on relevant sections of the charge-stability diagram of the 
array, we calibrate all relative cross-capacitances of the seven-gate, three 
dot-system, allowing for deterministic changes in εi and subsequent 
measurement of on-site and inter-site Coulomb couplings. U2 and V12 are 
shown as examples. d, Measurements of both tunnel couplings as a 
function of two linear combinations of gate voltages, ∗B12 and ∗B23, that keep 
either t23 or t12 (the full line denotes the average value) as well as the three 
on-site energies εi constant while increasing t12 or t23, respectively  
(an exponential fit to αexp( ∗Bij/β) is shown). Individual tunnel coupling 
data points for t12 and t23 are taken at the transitions indicated by the blue 
and red arrow in a and have typical fitting errors of several per cent (not 
shown). Text in brackets denote the dominant charge states in the many-
body eigenstate.
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Figure 3 | Collective Coulomb blockade physics in the Fermi–Hubbard 
phase space. a, Schematic representation of the charge addition spectrum 
of a Mott insulator at half filling and a triple-quantum-dot array in 
Coulomb blockade (CB: bottom) and those of a metallic phase at half 
filling and a triple-quantum-dot array in collective Coulomb blockade 
(CCB: top). b, The experimentally accessible parameter space of the 
Fermi–Hubbard model for a triple-quantum-dot array as a function 
of electron filling and nearest-neighbour tunnel coupling. Continuous 
charge sensing measurements following the charging lines are shown, at 
calibrated gate values where the dots are filled homogeneously (only  

ε3 values are shown) and the values of tij are set to be roughly equal. Plotted 
spacings between the bands are set by the Coulomb interaction terms 
measured at small tunnel coupling. Red circles indicate extended Hubbard 
model calculations of the transitions. In the vertical direction, they are set 
using the same measured tavg =  (t12 +  t23)/2 as the experimental data. In 
the horizontal direction, the simulations start from measured interaction 
energies with about 10% errors (see Methods, Extended Data Fig. 6 and 
Extended Data Tables 1, 2). Text in brackets denotes electron filling, red 
shading indicates the section of the experimental phase space that is 
typically accessed in spin qubit experiments.
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in transport measurements through the quantum dot array and 
in charge stability diagrams (see Extended Data Fig. 7). To test the 
 validity of our approach, we perform numerical calculations of the 
addition  spectrum within each band based on equation (1) and using 
experimental  parameters that are either calibrated or measured (see 
Methods and Extended Data Tables 1, 2). The agreement between 
measurement and numerical calculation in Fig. 3b indeed validates  
the experimental tools for Hamiltonian engineering over the entire 
measured diagram.

Putting these results in perspective, we are able to calibrate and char-
acterize site-specific quantum dot parameters up to values of  tunnel 
coupling reaching U/t =  7.1(4). The large energy scales obtained 
 compared to temperature, t/kBT =  54(5), give access to the regime 
where quantum correlations are strong1–3. Extending this work to larger 
quantum dot arrays, whether for the purpose of analogue  quantum 
simulation or quantum computation, requires further automation of 
our methods28, and extensions to parallelize the calibration  routines. 
Scalable gate layouts for one-dimensional arrays already exist29, which, 
together with the programmable disorders in on-site energies, can 
be mapped onto the physics of many-body localization30. Further 
advances in connectivity and homogeneity are underway in the pursuit 
of scalable quantum computing—including square31 and triangular32 
geometries, industrial-grade fabrication processes and magnetically 
quiet 28Si substrates33—and open up further possibilities for quantum 
simulation experiments with quantum dots.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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MethOds
Materials and set-up. The triple-quantum-dot sample was fabricated on a GaAs/
Al0.25Ga0.75As heterostructure that was grown by molecular-beam epitaxy. The 
85-nm-deep 2D electron gas has an electron density of 2.0 ×  1011 cm−2 and  
4 K mobility of 5.6 ×  106 cm2 V−1 s−1. All sample structures were defined using  
electron-beam lithography, with metallic gates (Ti/Au) and ohmic contacts  
(Ni/AuGe/Ni) deposited on the bare wafer in a lift-off process using electron-beam 
evaporation, similarly to the definition of metallic markers, leads and bonding 
pads, and with sample mesas defined using a diluted Piranha wet etch. The plunger 
gates were connected to bias-tees on the printed circuit board, allowing fast sweeps 
and RF excitations to be applied in addition to DC voltages. RF  reflectometry34 
of the sensing dot channel conductance is done at 110.35 MHz employing a 
 homebuilt LC circuit on the printed circuit board. The sample was cooled down 
in an Oxford Kelvinox 400HA dilution refrigerator to a base temperature of  
45 mK while  applying positive bias voltages to all gates. With the sample cold 
and the dots formed through application of appropriate voltages to the metallic 
gates, read-out was performed by feeding the RF reflectometry circuit a roughly 
− 99 dBm carrier wave, the reflected signal of which is amplified at 4 K and 
subsequently  demodulated and measured using custom electronics. Using this 
technique on a sensing dot is preferred to forming a quantum point contact, and 
yields  measurement bandwidths exceeding 1 MHz. The sensing dot position is 
asymmetric in order to obtain different sensitivities to each of the three dots. Note 
that as an alternative to electrostatically defined charge sensors in the 2DEG itself, 
dispersive read-out using the nanofabricated top gates would allow measurement 
of how much charges move in response to gate voltage changes35. For more detailed 
methods, please see ref. 16.
Eliminating cross-talk through the definition of virtual gates. Changes in εi can be 
tracked directly by following transitions in the charge stability diagram and are found 
to depend linearly on gate values for voltage changes up to several tens of millivolts. 
In general, small changes in the energy offsets of each of the three dots will thus be 
achieved via a linear combination of voltage changes on each of the seven gates:
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Of these 21 matrix elements, the three αiis describe the coupling of the plungers Pi 
to the energy offset εi of their respective dot i. The other 18 elements are cross-talks, 
whose values can easily be related to the αiis through the slope of charge addition 
lines (see Extended Data Fig. 1a). This leaves the relative weights of the αiis and 
the absolute value of one of the elements to be determined. As the difference 
between the single-particle energies of two dots stays fixed along a polarization 
line, we can determine the relative weights from the slope of these lines (see 
Extended Data Fig. 1b). The absolute value of α22 is called the lever arm and can 
be found using photon-assisted tunnelling measurements (see Extended Data  
Fig. 4). For the measurements presented in Fig. 3b, the matrix has been measured 
multiple times for different fillings and tunnel couplings: the ‘plunger’ side  
α11–α33 of the matrix was measured 25 times in total and the ‘barrier’ part α14–α37 
12 times (see Extended Data Fig. 1c). In between these points, we used linear 
interpolation as a function of measured tunnel coupling to extract matrix elements 
when needed.

With all matrix elements known, the εis can be deterministically changed, a 
technique which is extensively used throughout the results presented here in two 
main ways: (1) by measuring Hamiltonian parameters through direct interpreta-
tion of features in the addition spectrum; and (2) through the definition of ‘virtual 
gates’, both for plunger and barrier gates, that greatly simplify the tuning process. 
For instance, the virtual gate for the energy offset of the leftmost dot, ε1, is defined 

by a simple combination of plunger gates: 
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 which allows us to make the barrier 

 separating dots 1 and 2 more (or less) transparent without changing the energy 
offsets εi of any of the dots: that is, they stay at the same location in the charge 
stability diagram. Finally, linear combinations of ′B12 and its equivalent between 
dots 2 and 3, ′B23, yield the two orthogonal control gates ∗Bij for changing tij, as used 
in Fig. 2d. 
Classically coupled dots and homogeneous filling. Isolated quantum dots  
are well described by a classical capacitance model36. This description is valid  
as long as tunnel coupling energies are negligible compared to capacitive 
(Coulomb) effects. In this case, the charge states s of the system are simply 
described by the set of individual dot occupations (n1, n2, ...) as the nis are good 

quantum numbers. As has been shown previously9, one can map the classical 
capacitance model onto the extended Hubbard model of equation (1) with 
 omission of its tunnelling terms, which is readily diagonalized with eigenenergies 

... =−∑ +∑ − +∑ ≠εE n n n n n V n n( , , ) ( 1)i i i i
U

i i i j i ij i j1 2 2 ,
i . Because we experi-

men tally probe changes in the equilibrium charge state of the array coupled to 
adjacent electron reservoirs, which are typically kept at an equal and constant 
electrochemical potential μ and temperature kBT, we are interested in the charge 
addition spectrum 
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where =∑N ni i is the total electron number and Z is the grand partition function. 
In this classical case and at constant chemical potential μ =  0, the equations for the 
charge addition spectrum =
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B . Note that for the purpose of finding the charge 
transitions, any spin-degeneracy of the charge states can be ignored. The charge 
stability measurements shown in the main text effectively show two-dimensional 
slices of the charge addition spectrum as a function of changes in the εis.

The filling of the quantum dot array is controlled experimentally by changing 
the energy difference between the electronic states at the Fermi level of the 
 reservoir and those of the dot array itself. The former can be changed by applying 
a bias voltage to the relevant Fermi reservoir, and the latter can be changed by 
applying voltages to top gates that influence the single-particle energies εi on the 
dots. Because the partition function is only sensitive to changes in H −  μN, one 
can equivalently think about changes in the εis as influencing the chemical  potential 
directly through μδ = δ ∑ εN n( ) ( )i i i , which at uniform filling simplifies to 
μδ = 〈δ 〉εi . This allows a different look at gate control over a quantum dot array 

with M sites. Instead of thinking about M different εis, we can define one global 
chemical potential term μ′ = 〈 〉εi  and M −  1 energy differences δi =  εi −  μ′ , where 
the latter describe the setting of some (controllable) disorder potential landscape 
at a fixed chemical potential μ′ .

In the case of a large and homogeneous system, changing all εi equally would 
uniformly and homogeneously fill all dots in the system. For the triple- quantum-
dot sample described in the main text, however, both the finite size (for example, 
only one of the three dots has two direct neighbours) and inhomogeneous inter-
action terms (for example, U1 ≠  U2) mean a different approach is needed: we have 
to link up a set of well-defined points in (ε1, ε2, ε3)-space. In the case of Vij =  0, and 
focusing on the regime from 0 to 2 electrons per site, the only obvious choice would 
be to identify and align points A (where the eight charge states (000) to (111) are 
degenerate) and point B (where (111) to (222) are degenerate) (see Extended Data 
Fig. 2a). These points are lined up by changing the on-site single particle energies 
by the ratio of their on-site repulsions μ= ′ /〈 〉ε U Ui i . Analogously, under finite Vij, 
we use the ratio of the sum of all locally relevant interaction energies 
= +∑ ≠W U Vi i j i ij as μ= ′ /〈 〉ε W Wi i . Note, however, that the inter-site repulsion 

breaks particle–hole symmetry and moves states with more than one particle added 
to a homogeneously filled state to higher energy, meaning we can only find points 
with at most 4 degenerate states. We can align points C (where (000), (100), (010) 
and (001) are degenerate) and D (where (111), (211), (121) and (112) are 
 degenerate) (see Extended Data Fig. 2b), or we can align points E (where (110), 
(101), (110) and (111) are degenerate) and F (where (221), (212), (221) and (222) 
are degenerate) (see Extended Data Fig. 2c), the two of which are particle–hole 
partners of the same total state.

Defining a miniband as the region in chemical potential where one uniform 
filling transitions to the next one (the first miniband is thus the transition region 
between (000) and (111)), it becomes clear that the inter-site Coulomb terms 
already widen the miniband at zero tunnel coupling. On top of this, too large 
a deviation in the site-specific energy offsets εis from the desired values (which 
amounts to disorder in the dot energies) can also increase the miniband width. 
This can be seen in Fig. 2a and b as we horizontally move away from the centre line. 
For changes in δ ε2, the width remains minimized as long as the δ ε2 remains in the 
window between two well-defined points denoted by the crosses and diamonds 
of Extended Data Fig. 2 (see also Extended Data Fig. 3).
Anti-crossing measurement and fit. Much of the day-to-day work in quantum 
dot arrays in general and for the measurements described here in particular 
 consists of the interpretation of features in the charge stability diagram. In the case 
of well isolated dots with localized electrons / �t U( 1), this essentially boils down 
to one-dot features (parallel lines) and two-dot features (anti-crossings and 
 associated polarization lines). Indeed, pattern recognition of anti-crossings is the 
crucial step in the automated initial tuning of double quantum dots28.

In general, the processing of a charge stability diagram (for example, Fig. 2c) 
starts with finding charge transitions in the raw sensor dot data using an edge 
finding algorithm. The results are filtered to only leave edge sections with more 
than a threshold number of points. Next, we employ a k-means algorithm to   

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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cluster the edges into line sections. Depending on the data, manual input might be 
needed, either in the selection of relevant clusters or, sometimes, in the case of noisy 
data, manual selection of points. In determining on-site interaction terms Ui,  
calculating the orthogonal distance between two parallel lines suffices. In the  
case of an anti-crossing, we employ a 2D fitting routine in a rotated frame 
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parameters are three of the matrix elements (corresponding to the angles of the 
two dot lines and the polarization line), the two offsets x0 and y0 and the two 
energies Vij and tij. Both the procedures to find Ui and Vij are limited to t/U <  0.15, 
as around this value for the tunnel coupling there are no straight line sections in 
the charge addition diagram left where two well-defined localized charge states 
meet. Further discussion on this can be found with Extended Data Fig. 6.
Practical limits to achievable parameter space. As can be seen in Fig. 3b, there 
are limits to the achievable parameter space in terms of electron filling and tunnel 
coupling for the device measured. This is mostly due to the gate layout, which was 
designed for spin qubit experiments at fillings around one electron per site and 
tunnel couplings up to several tens of μ eV (red shaded area in Fig. 3b). The chosen 
lithographic separation between the dots does not allow for sufficient wavefunction 
overlap between singly-occupied sites to achieve much larger tunnel couplings. 
With multiple electrons per dot, however, the wavefunctions are more extended 
and much larger tunnel couplings are possible. Here, practical difficulties in  
compensating for cross-talk make it hard to reach very small tunnel couplings.
Verification of miniband width through Fermi–Hubbard calculations. We 
perform numerical simulations with two levels of detail. Extended Data Fig. 5 
shows the collective Coulomb blockade transition in a simplified model to illustrate 
the main concepts. Results from a more detailed simulation are overlaid with the 
experimental data in Fig. 3b. We here elaborate on these two approaches.

In the simplified model calculation, we ignored the inter-site Coulomb inter-
actions Vijninj, which will split the peaks in the addition spectrum even at zero 
tunnel coupling, as discussed above. It is included in the detailed model. Because 
it is difficult to experimentally fix the absolute chemical potential over large areas 
of the parameter space due to nonlinearities in the gating effects, the addition 
spectrum in Fig. 3b was constructed by plotting the middle transition within each 
miniband as a straight line at fixed ε3, and measuring the chemical potentials of 
adjacent transitions with respect to those. As we can see from Extended Data  
Fig. 5b, such an approximation is justified at small t/U (< 0.15), although it neglects 
any change in the interaction terms with increasing tunnel coupling. Furthermore, 
since the interaction parameters are non-constant over the experimental phase 
space (Extended Data Fig. 6), the detailed simulations take this into account. 
Finally, as also discussed above, it requires an inhomogeneous change in the 
site-specific energy offsets to homogeneously fill the array. In order to allow direct 
comparison to the experiment, we thus have to take the correct ε ε ε( , , )1 2 3  line to 
describe the filling (horizontal axis of Fig. 3b). Note that because of the non- 
constant interaction energies, this vector will generally differ with miniband 
 number and tunnel coupling.

In order to find the correct filling vector and subsequently the position of the 
transitions, we use the following procedure for each data set at a particular tunnel 
coupling and miniband number: (i) When the system has N =  3n electrons, its 
ground state is tuned to be the (n, n, n,) state. (ii) The two critical points (both for 
n and n′  =  n +  1) at which the four states (n, n, n,), (n ±  1, n, n), (n, n ±  1, n) and 
(n, n, n ±  1) are degenerate are identified. (iii) Linking these points in the three- 
dimensional parameter space spanned by (ε1, ε2, ε3) yields the filling line δ ε ε ε( , , )1 2 3 .  
(iv) The three charge transitions of the miniband are subsequently found to  
lie somewhere on this line. (v) This procedure yields a fixed width of the miniband, 
but leaves one degree of freedom unspecified, which is the relative position  
of the middle dot detuning relative to the outer dots, addressed in the next  
paragraph.

We illustrate this procedure for the data with the second largest tunnel couplings 
in the fourth miniband in Fig. 3b in the main text, for which the following set of 
quantum dot parameters applies: t =  0.29, U1 =  2.26, U2 =  2.70, U3 =  2.48, 
V12 =  0.65, V23 =  0.57, V13 =  0.43 (all in meV). First of all, it is helpful to show the 
‘uniform’ chemical potential μ that correspond to the specific εis (a ‘global’ 
 chemical potential μ can be regained through μ= ∑ ε n

N i i i
1 ). Such a comparison 

is shown in Extended Data Table 1. We can see that in the three-dimensional 
parameter space the filling vector defined by δ ε ε ε( , , )1 2 3  can be very different from 
the one defined by δ μ μ μ( , , ). This shows that the distinction is important, and a 
simple simulation with a uniform chemical potential as in Extended Data Fig. 5b 
will not compare well with the experiment. Second, we note that the simulations 
are done for the specific middle dot detuning denoted by the asterisk in Extended 
Data Fig. 2b and Extended Data Fig. 3b, whereas the experimental detuning will 
be in between that situation and the detuning denoted by the diamond in the same 
figures. This means that although the total width of the miniband will be fixed, the 
relative position of the middle transition between the outer transitions of each 
miniband (which we denote α and which will be close to 0.5) depends on the 
specific middle dot detuning. To overlay the simulation results on the  experimental 
data, we used values of α =  (0.5, 0.6, 0.65, 0.6) for the four minibands, respectively. 
Finally, Extended Data Table 2 gives an overview of the width of the fourth 
 miniband at different tunnel couplings, as Fig. 3b in the main text only plots the 
data along the ε3 direction. It can be seen that the theory compares well with the 
experiment along all three directions, which further corroborates the consistency 
of our measurements.
Data availability. Source data for both main text figures and Extended Data figures 
are provided with the paper. Raw data and analysis files supporting the findings of 
this study are available from https://doi.org/10.5281/zenodo.546675. 
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Extended Data Figure 1 | Gate-to-dot cross-talk. a, Cross-talk 
measurement of gates P1 and B12 on the left dot detuning. (See Fig. 1  
for details of the triple-quantum-dot array and associated gates.)  
The slope of the charge transition (fit in white) yields the relative effect  
(δ B12/δ P1 =  − α11/α14) of the two gates on the single-particle energy 
offset ε1 of the leftmost dot. Note also the non-zero background in charge 
sensor response we find in experiments, which is due to a direct coupling 
between the swept gate voltages and the sensing dot conductivity. Text 
in brackets denotes electron filling. b, Charge stability diagram showing 
the anti-crossing (white) and polarization line (red) between the left and 

middle dot, yielding the relative effect α11 =  α21 +  [(δ P2/δ P1)(α22 −  α12)] 
of the two plunger gates (P1 and P2) on their respective dots. Automated 
edge finding and fitting procedures are outlined in Methods. c, Measured 
matrix elements αij/α22 (top left of each panel) as a function of tunnel 
coupling, tavg. No visual distinction is made between the measured matrix 
elements at different electron filling. No error bars are shown, as the small 
uncertainty in the slope fits yields errors smaller than marker size. Note 
that α22/α22 =  1 is shown as a line and αii/α22 values as red-filled circles, 
indicating that they derive from the slopes of polarization lines, such as the 
one shown in red in b.
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Extended Data Figure 2 | Simulated classical charge addition spectra. 
a–c, Simulated charge addition spectra (see Methods for details and 
nomenclature) for a triple quantum dot at zero tunnel coupling, 
U2 =  1.05U1 =  0.95U3 and up to two particles per dot, connected to a 
reservoir at μ =  0 and kBT =  0.02U (> 10 times larger than for the 
experiments described in the main text), with Vij =  0 and δi =  0 (a) or with 

V12 =  V12 =  2V13 =  0.2U and δi =  0 (b) or δ1 =  δ3 =  0 and δ2 =  U/15 (c). 
=∑N ni i denotes total electron filling, = +∑ ≠W U Vi i j i ij the sum of local 

interactions. States are denoted by charge occupation (n1 n2 n3) and 
specific degeneracy points A–F are referred to in Methods. The relation 
between εi and μ′  specified in the boxes at lower left applies to the vertical 
line at zero (horizontal) detuning.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 3 | Miniband width and electron temperature. 
a, Measured charge stability diagrams of the (222)–(333) miniband 
as a function of homogeneous filling (only P1 values are shown) and 
offset in the outer two dot energies by changing P1 and P3 in opposite 
directions, akin to the simulations of Extended Data Fig. 2c. For crosses 
and dashed line, see b. b, Similar measurement as a function of the offset 
in the middle dot energy, controlled by P2. The P1 values are somewhat 

different from those in a because these measurements were taken at 
slightly different tunnel coupling tunings. The white diamond and asterisk 
indicate (roughly) the position of the same degeneracy points as shown in 
Extended Data Fig. 2. c, Broadening of a charge addition line (blue) due to 
the finite temperature of the (rightmost) Fermi reservoir. A Fermi–Dirac 
fit of the transition is shown in red, which yields an effective reservoir 
temperature of 72(1) mK.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Extended Data Figure 4 | Determining lever arm and tunnel coupling. 
a, Example of a photon assisted tunnelling (PAT) measurement, which at 
low tunnel couplings is the measurement method of choice for both lever 
arm and tunnel coupling. Plotted is the difference in charge sensor 
response between applying a microwave excitation (y axis) or not  
as a function of detuning (x axis). Dashed red line is a fit to the  
hybridized charge state spectrum of the double dot24. The energy 
difference between bonding and antibonding states yields the minimum  
in frequency (2tij, here for dots 1 and 2) and the slope away from the 
transition gives the lever arm between detuning voltages applied to the 
gates and single-particle energy difference change between the two dots. 
The need to generate AC excitations and transmit them without severe 
losses through coaxial cables in the dilution refrigerator set-up, however, 
limits the maximum tunnel frequency we can accurately determine with 
this method to roughly 20 GHz (83 μ eV). b, Example of a polarization line 
width measurement (blue circles), with fit in red. As an alternative to  
PAT, one can determine the tunnel coupling by assessing the width of the 
polarization line37. The excess charge (say on the left dot) transition is 
broadened both by an effective electron temperature and by the tunnel 
coupling. Charge sensor response is however not a direct measurement  
of excess charge. Not only does there exist a finite cross-talk between  
the gate voltages and the charge sensor response that leads to a finite  

slope away from the transition, we also typically find a back-effect  
of the excess charge on the sensing dot, leading to a different slope on 
either side of the transition. We fit the data with the following equation, 
taking this back-effect into account to first order in excess charge: 
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the charge sensor response as a function of the detuning ε =  δ (εi −  εj) away 
from to the transition and V0, δ V and δ

δε
V  are the background signal, 

sensitivity and gate–sensor coupling, respectively. Note that ε is a linear 
combination of the swept gate voltages, taking the relevant cross-
capacitances and the lever arm into account. Excess charge on the left dot 
is described by = +

Ω
Ωε ε( )( )Q( ) 1 tanh T

1
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, with Ω= +ε t4 ij
2 2  and 

effective temperature kBTe ≈  6.5 μ eV (1.6 GHz). c, Excess charge as 
function of detuning for three different tunnel couplings, showing that this 
characterization method works up to tunnel couplings that are several 
times higher than those measurable by PAT. d, Comparison of PAT and 
polarization line width measurements. The data are well explained by 
assuming a constant lever arm α22 =  83(1) μ eV per mV between gate P2 
and the middle dot. Text in brackets denote relevant charge states; error 
bars are 1σ fit uncertainties.
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Extended Data Figure 5 | Simulations of collective Coulomb blockade 
for the simplified Hubbard model. a, Cartoon diagram of a triple-dot 
system, which is a simplified version of the model used to describe the 
experiments in the main text. Specifically, we have set a uniform tunnel 
coupling t and Hubbard U (not shown), while ignoring the inter-site 
Coulomb interaction term Vij. We describe two levels per dot with a level 
splitting Δ that separates the single-particle energies of the first and 
second orbital. Each energy level is doubly degenerate owing to the spin 
degrees of freedom. b, Peaks in the electron addition spectrum for the 
triple-dot system in a. It is known that the classical Coulomb blockade 
effect arises purely from the charging effects of the quantum dots. When 
electron tunnelling between quantum dots is allowed, however, quantum 
fluctuations compete with the classical charging effects and give rise to a 
rich phase diagram, which is known as collective Coulomb blockade20. 
The metal–insulator transition in such a system is best captured by the 
charge addition spectrum, which is precisely what we measure in the 
experiment (Fig. 3b). The numbers in b (at top and bottom of the panel) 
indicate the average electron numbers in the system when the chemical 
potential μ resides at the respective gap. Here we use Δ/U =  0.2, and 
kBT/U =  0.04 (> 20 times larger than for the experiments described in the 
main text). c–f, Line cuts for the addition spectrum in b at different values 

of t/U (shown at top left of each panel). As discussed in the main text, 
there will be three different regimes in this phase diagram: at weak tunnel 
couplings the quantum dot states split into minibands but the isolated 
Coulomb blockade of each individual dot is preserved; at intermediate 
tunnel couplings the Coulomb blockade of individual dots is lost, but the 
gap between minibands remains open; finally, in the large tunnel coupling 
limit the gap between minibands can become comparable to temperature, 
and the system will be in a metallic state. The same can be seen in these 
line cuts. At t =  0 we can see that there are four critical chemical potentials 
μ at which electrons can be added to the triple dot. For the present model, 
these four peaks occur at μ =  0, U, 2U +  Δ, and 3U +  Δ, respectively. Each 
peak is triply degenerate, as the energy cost of adding electrons to any of 
the three dots is identical. For non-zero but small tunnel couplings (d, e) 
each triply degenerate peak at t =  0 starts to split into a miniband, 
indicating the breakdown of Coulomb blockade in each dot. However, 
different minibands are still separated by gaps that arise from a collective 
origin, reminiscent of the energy gap in a Mott insulator. Finally, at 
sufficiently high tunnel couplings we find non-zero 

μ
∂〈 〉
∂

N  at the middle gap 
(f), indicating that Coulomb blockade is completely overwhelmed by 
temperature.
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Extended Data Figure 6 | Characterizing model parameters. a, 
Simulated charge stability diagram for a triple-dot system with parameters 
t =  0.006, U1 =  3.98, U2 =  3.48, U3 =  2.70, V12 =  0.41, V23 =  0.35, V13 =  0.11 
(all energies in meV). As described in Methods, the eigenstates can be 
obtained exactly in the t =  0 limit, as the eigenstates of the triple-dot 
system can be represented simply by the charge states (n1 n2 n3). In this 
regime, one can show that on the ε2–ε3 plane the border between the  
(111)/(112) region and the border between the (111)/(110) region are 
exactly separated by an energy of U3. Similarly, the border between the 
(111)/(121) region and the border between the (111)/(101) region are 
separated by an energy of U2. In the presence of a non-zero but small 
tunnel coupling as is the case here, we expect that such an estimate is still 
reasonable. Now that the tunnel coupling is non-zero, the ground state 
of the system is no longer an exact charge state (n1 n2 n3), but generally a 
superposition of different charge states. To retain a connection to the t =  0 
limit, we keep labelling sections of the charge stability as (n1 n2 n3), but 
with the distinction in mind that (n1 n2 n3) no longer denotes the exact 
ground state, but instead the charge state with the largest weight in the 
actual ground state. As a check, we can determine the values of U2 and U3 
from the simulated charge stability diagram using the method described 

above and find that U2 =  3.44 meV and U3 =  2.71 meV, respectively, which 
is reasonably close to the corresponding model parameters. Because the 
data in Fig. 2c are taken at t/U =  0.002, we can thus trust the extracted 
U. b, Charge stability diagram for a triple-dot system with parameters 
t =  0.17, U1 =  2.92, U2 =  2.39, U3 =  2.53, V12 =  0.55, V23 =  0.47, V13 =  0.27 
(all energies in meV). We find that the structure of the charge stability 
diagram remains qualitatively the same as that in a, and if we again 
extract the values of U2 and U3 using the same method, we find that 
U2 =  2.48 meV and U3 =  2.56 meV, which still agrees reasonably well 
with the original model parameters. Granted, at sufficiently large t/U the 
structure of the charge stability diagram will change drastically, and the 
present method to extract model parameters is bound to fail. However, as 
we never enter those regimes, our fitting method serves the purpose of this 
experiment. c–e, Calibrated tunnel couplings (c) and measured inter-site 
Coulomb (d) and on-site Coulomb (e) terms at calibrated values of the 
average tunnel coupling, corresponding to the experimental parameter 
space plot shown in Fig. 3b. Plotting symbols are defined in each key; 
blue shows data from the first subband from 0 to 6 electrons, red shows 
data from the second subband from 6 to 12 electrons. Error bars are 1σ  fit 
uncertainties.
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Extended Data Figure 7 | Isolated versus collective Coulomb blockade 
in charge and transport. a–d, Charge stability diagrams (a and c) and 
transport through the array (b and d), at low (a and b) and high (c and d) 
tunnel coupling. Panels a and c show charge stability diagram around the 
(333) regime in the low (a) and high (c) tunnel coupling regimes, using a 
combination of all seven gates (only P1 values are shown) that change the 
local fillings equally. To further investigate the distinct phases, we focus 
on the regime with around nine electrons in total, corresponding to half-
filling of the second band, and look at both charge sensing and transport. 
In the localized phase (t/U <  0.02 in a), the charge stability diagram 
shows transition lines following three distinct, well-defined directions, 
corresponding to the filling of the separate lithographically defined dots. 
In the delocalized phase (t/U >  0.15 in c), this distinct nature is all but 
lost, highlighting the incipient formation of a large single dot. The same 
effect can also be seen in transport measurements, as we observe Coulomb 

diamond sizes as a function of filling. b, Transport through the array 
following the zero-detuning line of Fig. 2b as a function of applied bias 
(60% on leftmost and 40% on bottom right reservoir). In the (333) state, 
this applied bias has to overcome the local (strong) Coulomb repulsion in 
order for current to flow, similar to a Mott insulator whose Fermi energy 
resides inside the gap. Adjacent Coulomb diamonds correspond to a 
Fermi-level inside the miniband and are significantly smaller, allowing 
current to flow at much smaller bias voltages. d, Similar data in the high 
tunnel coupling regime. Whereas the individual nature of the dots is all but 
gone, global (weaker) Coulomb repulsion still prohibits transport at small 
bias, as expected for the collective Coulomb blockade phase. The notion of 
a large gap at half-filling is gone, and it is only the charging energy of the 
entire system that prohibits transport occurring, regardless of filling. The 
dots are in collective Coulomb blockade, and its transport characteristics 
are similar to that of a small, metallic island.
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extended data table 1 | example of simulated transition points

Shown are transition points for a triple-dot system with parameters t =  0.29, U1 =  2.26, U2 =  2.70, U3 =  2.48, V12 =  0.65, V23 =  0.57, V13 =  0.43  
(all in meV). The column headings N1 →  N2 indicate that the data for each column are for the transition from a total of N1 particles to N2  
particles. εi (i =  1, 2, 3) are the ‘local’ chemical potentials on each dot, while μ is the ‘uniform’ chemical potential. The last two columns compare 
the simulated and experimental (Exp.) total width of the fourth miniband. All energies are in meV.
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extended data table 2 | experimental and theoretical miniband widths

Comparison of the experimental (Exp.) and theoretical (Th.) width of the fourth miniband in Fig. 3b 
at five calibrated values of the tunnel coupling, t. Theoretical widths take the interaction energies 
measured at the specific tunnel coupling values into account (see Extended Data Fig. 6). All energies 
are in meV.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


	Quantum simulation of a Fermi–Hubbard model using a semiconductor quantum dot array
	Authors
	Abstract
	References
	Acknowledgements
	Author Contributions
	Figure 1 Gate-defined quantum dot array as a platform for quantum simulations of the Fermi–Hubbard model.
	Figure 2 Hamiltonian engineering using a scalable toolbox of local control and measurements.
	Figure 3 Collective Coulomb blockade physics in the Fermi–Hubbard phase space.
	Extended Data Figure 1 Gate-to-dot cross-talk.
	Extended Data Figure 2 Simulated classical charge addition spectra.
	Extended Data Figure 3 Miniband width and electron temperature.
	Extended Data Figure 4 Determining lever arm and tunnel coupling.
	Extended Data Figure 5 Simulations of collective Coulomb blockade for the simplified Hubbard model.
	Extended Data Figure 6 Characterizing model parameters.
	Extended Data Figure 7 Isolated versus collective Coulomb blockade in charge and transport.
	Extended Data Table 1Example of simulated transition points.
	Extended Data Table 2Experimental and theoretical miniband widths.




