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High-fidelity hot gates for generic spin-resonator systems
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We propose and analyze a high-fidelity hot gate for generic spin-resonator systems which allows for coherent
spin-spin coupling, in the presence of a thermally populated resonator mode. Our scheme is nonperturbative
in the spin-resonator coupling strength, applies to a broad class of physical systems, including, for example,
spins coupled to circuit-QED and surface acoustic wave resonators as well as nanomechanical oscillators, and
can be implemented readily with state-of-the-art experimental setups. We provide and numerically verify simple
expressions for the fidelity of creating maximally entangled states under realistic conditions.
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I. INTRODUCTION

Motivation. The physical realization of a large-scale quan-
tum information processing (QIP) architecture constitutes a
fascinating problem at the interface between fundamental
science and engineering [1,2]. With single-qubit control
steadily improving in various physical setups, further advances
towards this goal currently hinge upon realizing long-range
coupling between the logical qubits since coherent interactions
at a distance do not only relax some serious architectural
challenges [3], but also allow for applications in quantum
communication, distributed quantum computing, and some
of the highest tolerances in error-correcting codes based on
long-distance entanglement links [2,4,5]. One particularly
prominent approach to address this problem is to interface
qubits with a common quantum bus which effectively mediates
long-range interactions between distant qubits, as has been
demonstrated successfully for superconducting qubits [6,7]
and trapped ions [8].

Executive summary. In the spirit of the celebrated Sørensen-
Mølmer or similar gates for hot trapped ions [9–20], here
we propose and analyze a generic bus-based quantum gate
between distant (solid-state) qubits coupled to one resonator
mode which allows for coherent spin-spin coupling, even if the
mode is thermally populated. For certain times the qubits are
shown to disentangle entirely from the (thermally populated)
resonator mode, thereby providing a gate that is insensitive to
the state of the resonator, without any need of cooling it to the
ground state. While a similar gate has been considered for two
superconducting qubits and (practically) zero temperature in
Refs. [21,22], here we show that this gate opens up the prospect
of operating and coupling qubits at elevated temperatures
∼(1–4) K (as opposed to millikelvin). This finding brings
about the potential to integrate the qubit plane right next to
the classical cryogenic electronics; therefore, our scheme may
provide a solution to the solid-state QIP interconnect problem
between the quantum (for encoding quantum information)
and the classical layer (for classical control and read-out)
[23]. Our approach should be accessible to a broad class
of physical systems [24], including for example circuit-QED
setups with both (i) superconducting qubits [6,21,22,25] and
(ii) spin qubits [26–45], (iii) spins coupled to surface acoustic

wave (SAW) resonators [46–48], and (iv) spins coupled to
nanomechanical oscillators [49–53]; compare Fig. 1. We
discuss in detail the dominant sources of errors for our
protocol, due to rethermalization of the resonator mode and
qubit dephasing, and numerically verify the expected error
scaling.

II. THE SCHEME

We consider a set of spins (qubits) i = 1,2, . . . with
transition frequencies ωq coupled to a common (bosonic)
cavity mode of frequency ωc, as described by the Hamiltonian
(h̄ = 1)

H = ωca
†a + ωq

2
Sz + gS ⊗ (a + a†), (1)

with S = ∑
i,α ηα

i σ α
i , Sz = ∑

i σ
z
i , where �σi refer to the

usual Pauli matrices describing the qubits, and a is the
bosonic annihilation operator for the resonator mode. The
operator S is a generalized (collective) spin operator which
accounts for both transversal (α = x,y) and longitudinal
(α = z) spin-resonator coupling; the unit-less parameters ηα

i

capture potential anisotropies and inhomogeneities in the
single-photon (or single-phonon) coupling constants gα

i =
ηα

i g. Similar to existing (low-temperature) schemes [27,43],
the spin-resonator coupling g = g(t) is assumed to be tunable
on a time scale �ω−1

c ; for details we refer to Appendix D.
Typically, for artificial atoms such as quantum dots the qubit

transition frequencies ωq are highly tunable. In what follows,
we consider the regime where ωq is much smaller than all
other energy scales; therefore, for the purpose of our analytical
derivation, effectively we take ωq = 0. The robustness of our
scheme against nonzero splittings (ωq > 0) will be discussed
below. In this limit, the Hamiltonian given in Eq. (1) can be
rewritten as

H = ωc

(
a + g

ωc

S
)†(

a + g

ωc

S
)

− g2

ωc

S2. (2)

Using the relation UaU † = a + (g/ωc)S, with the unitary
(polaron) transformation U = exp [g/ωcS(a − a†)], Eq. (2)
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(a) (b)

FIG. 1. Schematic illustration for a generic spin-resonator sys-
tem, comprising a set of spins {�σi} coupled to a common resonator
mode [as provided by, e.g., (a) a transmission line or (b) nanome-
chanical oscillators], with a nonvanishing thermal occupation.

can be recast into the form

H = U

[
ωca

†a − g2

ωc

S2

]
︸ ︷︷ ︸

H0

U †, (3)

where we have used that S commutes with U . The time
evolution governed by the Hamiltonian H reads as

e−iH t = e−iUH0U
†t = Ue−iωcta

†aei
g2

ωc
tS2

U †, (4)

where the second equality directly follows from exp (x) =∑
n xn/n! and U †U = 1. For certain times where ωctm =

2πm (with m integer), the first exponential equals the identity,
exp [−iωcta

†a] = exp [−i2πma†a] = 1, since the number
operator n̂ = a†a has an integer spectrum 0,1,2, . . . . Thus,
for tm = (2π/ωc)m, the full time evolution reduces to

e−iH tm = ei
g2

ωc
tmS2 = exp[i2πm(g/ωc)2S2]. (5)

This relation comes with two major implications: (i) Our
approach is not based on a perturbative argument; therefore,
apart from Eq. (5), the resonator-mediated qubit-qubit inter-
action does not lead to any further undesired, spurious terms.
(ii) Since the unitary transformation given in Eq. (5) does
not contain any operators acting on the resonator mode, it is
completely insensitive to the state of the resonator [9,10,12],
even though the spin-spin interactions present in S2 have been
established effectively via the resonator degrees of freedom;
similar considerations have been applied for the case of two
(superconducting) qubits for a zero-temperature mode [22]
and for small finite temperature T in a classically modeled
mode [21]. For specific times, the time evolution in the
polaron and the laboratory frame fully coincide and become
truly independent of the resonator mode, allowing for the
realization of a thermally robust gate, without any need of
cooling the resonator mode to the ground state. This statement
holds provided that rethermalization of the resonator mode
can be neglected over the relevant gate time. The experimental
implications for this condition will be discussed below.

To further illustrate Eq. (5), let us consider three paradig-
matic examples: (1) For longitudinal coupling (ηz

i = 1, ηx
i =

η
y

i = 0), as could be realized (for example) with defect spins
coupled to nanomechanical oscillators [50], we can identify the
effective spin-spin Hamiltonian Heff = �m(σ z

1 + σ z
2 )2, which

results in a relative phase φ = 4�m for the states |11〉 =
|⇑⇑〉,|00〉 = |⇓⇓〉 as compared to the states |10〉 and |01〉,
respectively. By adding a local unitary on both qubits, such that

|0〉i → exp (−iφ/2)|0〉i and |1〉i → exp (iφ/2)|1〉i , in total
for φ = π/2 we obtain a controlled phase gate UCphase =
diag(1,1,1, − 1), which gives a phase of −1 exclusively to
|11〉, while leaving all other states invariant. Note that such
a controlled phase gate can be implemented even in the
presence of nonzero and inhomogeneous qubit-level splittings
(ωq > 0), when applying either fast local single-qubit gates
(to correct the effect of known ωq 
=0) or standard spin-
echo techniques (to compensate unknown detunings), thereby
lifting the requirement of having a small qubit-level splitting
ωq ; see Appendix H for details. (2) Again, for longitudinal
coupling (ηz

i = 1, ηx
i = η

y

i = 0) and N � 2 qubits, Eq. (5)
results in a unitary transformation U = exp [−iθI 2

z ] generated
by a nonlinear top Hamiltonian describing precession around
the Iz = ∑

i σ
z
i axis with a rate depending on the z component

of angular momentum [12], which can be used to simulate
nonlinear spin models [12]. (3) For transversal coupling with
S = σx

1 + σx
2 , as could be realized (for example) with quan-

tum dot based qubits embedded in circuit-QED cavities [29,43]
or SAW cavities [46,47], we have S2 = 2 × 1 + 2σx

1 σx
2 . Up to

an irrelevant global phase φgp due to the first term ∼1, we get

e−iH tm = e−iφgp exp
[
i4πm(g/ωc)2σx

1 σx
2

]︸ ︷︷ ︸
≡Ux

id(m,g/ωc)

, (6)

which for m(g/ωc)2 = 1
16 yields a maximally entangling gate,

that is Ux
id(1, 1

4 )|⇑⇓〉 = 1√
2
(|⇑⇓〉 + i|⇓⇑〉), etc., i.e., initial

qubit product states evolve to maximally entangled states, irre-
spectively of the temperature of the resonator mode, on a time
scale tmax = π/8geff (where geff = g2/ωc); compare Fig. 2 for
an exemplary time evolution, starting initially from the product
state ρ(0) = |⇑⇓〉〈⇑⇓| ⊗ ρth(T ), with the cavity mode in the
thermal state ρth(T ) = Z−1 exp [−βωca

†a], and β = 1/kBT .
Indeed, entanglement peaks are observed at stroboscopic times
(ωctm = 2πm), independent of the temperature T , culminating
in a maximally entangled state at time tmax.

III. COUPLING TO THE ENVIRONMENT

In the analysis above, we have ignored the presence of deco-
herence, which in any realistic setting will degrade the effects
of coherent qubit-resonator interactions. Therefore, we com-
plement our analytical findings with numerical simulations of
the full master equation for the system’s density matrix ρ,

ρ̇ = −i[H,ρ] + κ(n̄th + 1)D[a]ρ + κn̄thD[a†]ρ

+


4

∑
i=1,2

D
[
σ z

i

]
ρ, (7)

where the generic spin-resonator Hamiltonian H is given in
Eq. (1) and the last two dissipative terms in the first line of
Eq. (7), with D[a]ρ = aρa† − 1

2 {a†a,ρ} and a cavity mode
decay rate κ = ωc/Q, describe rethermalization of the cavity
mode towards the thermal occupation n̄th = (exp[h̄ωc/kBT ] −
1)−1 at temperature T ; here, Q is the quality factor of
the cavity. The last line in Eq. (7) describes dephasing of
the qubits with a dephasing rate 
 ∼ 1/T �

2 , where T �
2 is

the time-ensemble-averaged dephasing time. As discussed in
detail in Appendix J, the noise model underlying Eq. (7)
is accurate in the experimentally most relevant regime of
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FIG. 2. Fidelity F with the maximally entangled tar-
get state |�tar〉 = (|⇑⇓〉 + i|⇓⇑〉)/√2 for transversal coupling
(S = σ x

1 + σ x
2 ), the initial product state ρ(0) = |⇑⇓〉〈⇑⇓| ⊗ ρth(T )

and different temperatures kBT /ωc = 0,1,2,3,4,5. Independently
of the temperature T , the spins periodically disentangle from the
(hot) resonator mode and systematically build up entanglement
among themselves. While the peaks are merely independent of
temperature, the amplitude of the precursory oscillations do increase
with temperature. Inset: occupation of the resonator 〈n̂〉t showing
small oscillations due to weak entanglement between the qubits and
the cavity mode [10]. Other numerical parameters: ωq/ωc = 
 =
0, g/ωc = 1

16 , κ/ωc = Q−1 = 10−5.

weak spin-resonator coupling (g�ωc), where (within the
approximation of independent rates of variation [54]) the
interactions with the environment can be treated separately
for spin and resonator degrees of freedom. In Eq. (7) we have
ignored single-spin relaxation processes since the associated
time scale T1 is typically much longer than T �

2 ; still, relaxation
processes could be included straightforwardly in our model
by adding the decay terms ρ̇ = · · · + T −1

1

∑
i D[σ−

i ]ρ and the
corresponding error (infidelity) could be analyzed along the
lines of our analysis shown below (see Appendix N for details).

Numerical results. To quantitatively capture the effects of
decoherence, in the following we provide numerical results
of the master equation (7), for the initial product state
ρ(0) = |⇑⇓〉〈⇑⇓| ⊗ ρth(T ), and (transversal) spin-resonator
coupling with ηx

i = 1 and η
y

i = ηz
i = 0. As a figure of

merit for our protocol, we quantify the state fidelity F =
〈�tar|�|�tar〉 with the maximally entangled target state |�tar〉 =
(|⇑⇓〉 + i|⇓⇑〉)/√2; here, � = tra[ρ] refers to the density
matrix of the qubits, with tra[. . . ] denoting the trace over
the resonator degrees of freedom. As shown in Appendix O,
similar results can be obtained for the average gate fidelity.
Typical results from our numerical simulations in the presence
of noise are displayed in Fig. 3. As expected from our analytical
results, for ωctm = 2πm the two qubits disentangle from the
thermally populated resonator mode and systematically evolve
towards the maximally entangled target state |�tar〉; for exam-
ple, for g/ωc = 1

8 (as used in Fig. 3), the spins evolve towards
Ux

id(1, 1
8 )|⇑⇓〉 = cos (π/16)|⇑⇓〉 + i sin (π/16)|⇓⇑〉 for m =

FIG. 3. Fidelity F (left) in the presence of noise, with a zoom-in
around tmax (right). As a benchmark, the solid (topmost) black
line refers to the quasi-ideal limit (
 = 0, κ/ωc = Q−1 = 10−5, and
kBT /ωc = 0), while (only) the red dashed curve accounts for a
nonzero qubit-level splitting ωq/ωc = 0.1. The solid blue line also
accounts for dephasing of the qubits with a (rather large) dephasing
rate 
/ωc = 1% and finite thermal occupation of the resonator mode
with kBT /ωc = 5 (n̄th ≈ 4.5). The results are relatively insensitive
to the quality factor of the cavity, provided that κeff � 
; the orange
dashed line (where Q = 103) is basically identical to the Q = 105

scenario, whereas the green dashed-dotted (lowest) one with Q = 102

(that is, κ/ωc = 
/ωc = 1%) shows a clear reduction in F . This
result can be traced back to the hot-gate requirement given in
Eq. (8). Ideally, maximum entanglement is reached for fct = 4, with
several precursory oscillation peaks at fct = 1,2,3. Other numerical
parameters: g/ωc = 1

8 , ωq/ωc = 0 (except for the red dashed curve
where ωq/ωc = 0.1).

1, Ux
id(2, 1

8 )|⇑⇓〉 = cos (π/8)|⇑⇓〉 + i sin (π/8)|⇓⇑〉 for m =
2, and Ux

id(3, 1
8 )|⇑⇓〉 = cos (3π/16)|⇑⇓〉 + i sin (3π/16)|⇓⇑〉

for m = 3, before the entanglement buildup culmi-
nates in the fully entangling dynamics Ux

id(4, 1
8 )|⇑⇓〉 =

(|⇑⇓〉 + i|⇓⇑〉)/√2. For all practical purposes, this statement
holds independently of the temperature T and the associated
thermal occupation of the resonator mode n̄th ≈ kBT /h̄ωc,
provided that the quality factor of the cavity Q is sufficiently
high; a quantitative statement specifying this regime will
be given below. Moreover, while our analytical treatment
has assumed ωq = 0, we have numerically verified that the
proposed protocol is robust against nonzero level splittings of
the qubits ωq/ωc � 0.1; compare the dashed line in Fig. 3 and
further information provided in Appendixes G, H, and K.

IV. GATE TIME REQUIREMENTS: ERROR SCALING

As described by Eq. (7), coupling to the environment leads
to two dominant error sources: (i) rethermalization of the
resonator mode with an effective rate ∼κn̄th, and (ii) dephasing
of the qubits on a time scale ∼T �

2 . For any hot gate, the
associated gate time tgate ∼ g−1

eff , with geff = g2/ωc = μ2ωc,
has to be shorter than the time scale associated with the
effective (thermally enhanced) rethermalization rate κeff =
κn̄th ≈ kBT /Q. For the gate described above, this directly
leads to the requirement

g2/ωc � kBT /Q ⇔ kBT � Qμ2ωc. (8)

Thus, for T = 1 K (kBT /2π ≈ 20 GHz) and a cavity qual-
ity factor Q ≈ 105–106, we need geff/2π � (20–200) kHz.
Provided that our assumption ωc � ωq is still fulfilled, for
fixed temperature T , quality factor Q, and coupling g, relation
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FIG. 4. Errors (ξ = 1 − Fmax) due to rethermalization of the cavity mode (a) and qubit dephasing (b). (a) Rethermalization-induced error
for kBT /ωc = 2 (blue) and kBT /ωc = 4 (red), and 
 = 0. The error ξκ is found to be independent of μ = g/ωc: μ = 1

16 (squares) and μ = 1
8

(blue circles and red diamonds). (b) Dephasing-induced errors for μ = 1
4 (squares), μ = 1

8 (circles), and μ = 1
16 (diamonds); here, κ/ωc = 10−6

and kBT /ωc = 0.01. In both cases, the linear error scaling is verified. Other numerical parameters: ωq/ωc = 0. (c) Total error ξ as a function
of both the effective rethermalization rate ∼κ/ωcn̄th ∼ n̄th/Q and the spin dephasing rate ∼
/ωc for g/ωc = 1

16 , kBT /ωc = 2, and ωq = 0.

(8) may be conveniently fulfilled by choosing ωc sufficiently
small, up to the lower limit ωc�4g (which is needed to fulfill
m�1; compare Appendix C) and at the cost of a potentially
relatively large device (since the device dimensions scale
with ∼λc ∼ ω−1

c ). Conversely, for fixed μ = g/ωc [27,47,55],
Eq. (8) can be achieved by choosing ωc sufficiently large. In
addition, the gate time has to be short compared to the qubit’s
dephasing time T �

2 ∼ 
−1, which gives the second requirement

g2/ωc � 
 ⇔ 
 � μ2ωc. (9)

For concreteness, let us consider a specific setup where
conditions (8) and (9) can be met with state-of-the-art technol-
ogy: quantum dots (QDs) have been successfully integrated
with superconducting microwave cavities, with a relatively
large charge-cavity coupling of gch/2π ∼ (20–100 ) MHz
[35–38,40]. For QD spin qubits a vacuum Rabi frequency of
gsp/2π ∼ 1 MHz has been predicted [28,29,36], with the po-
tential to increase this coupling to ∼10 MHz with new, recently
demonstrated cavity designs [56]. Furthermore, for supercon-
ducting transmission line resonators quality factors Q ∼ 106

have been demonstrated [57]. Then, taking gsp/2π = 10 MHz,
ωc/2π ≈ (0.16–1) GHz, i.e., geff/2π ≈ (0.1–0.6) MHz, and
Q = 106, conditions (8) and (9) can be met simultaneously for
temperatures T ∼ 1 K [since T �5(30) K to fulfill condition
(8) for geff/2π ≈ 0.1(0.6) MHz] and dephasing time scales
T �

2 ∼ 100 μs [since 
/2π�(0.1–0.6) MHz to fulfill condition
(9)], as has been demonstrated with isotopically purified Si
samples [58]. Therefore, a faithful implementation of our gate
will not require cooling to millikelvin temperatures. Similar
promising estimates also apply to spin qubits coupled to SAW
resonators; compare Appendix I.

In the following, we quantify the infidelities induced by the
two error sources outlined above: rethermalization of the res-
onator mode during the gate leads to errors (infidelities) if the
resonator is entangled with the qubits. Due to leakage of which-
way information, resonator noise leads to qubit dephasing at
a rate proportional to the relevant separation in phase space,
that is the square of the resonator displacement μ = g/ωc

[50]. The effective rethermalization-induced dephasing rate
for the qubits is then 
eff ∼ κn̄th(g/ωc)2. To obtain a simple

estimate for the rethermalization-induced error, this effective
rate 
eff is multiplied with the relevant gate time which scales
as tgate ∼ ωc/g

2, yielding the error ξκ ∼ (κ/ωc)n̄th, which is
independent of the spin-resonator coupling strength g [22,50];
for a full analytical derivation, we refer to Appendix L.
However, since the overall gate time tgate ∼ ωc/g

2 increases
for small μ = g/ωc, errors will accumulate due to direct
qubit decoherence processes. Accordingly, errors due to qubit
dephasing are expected to scale as ξ
 ∼ 
/geff ∼ μ−2
/ωc.

This simple linear scaling holds for a Markovian noise
model where qubit dephasing is described by a standard pure
dephasing term [compare Eq. (7)] leading to an exponential
loss of coherence ∼ exp [−t/T �

2 ]; for non-Markovian qubit
dephasing a better, sublinear scaling can be expected [46,50].
For small infidelities (geff � κeff,
), the individual linear error
terms due to cavity rethermalization and qubit dephasing can
be added independently, yielding the total error

ξ ≈ ακ (κ/ωc)n̄th + α

/ωc. (10)

This simple linear error model has been verified
numerically; compare Fig. 4. Based on these results we
extract the coefficients ακ ≈ 4 (which is approximately
independent of g [22]; compare Appendixes K and L
for details) and α
 ≈ 0.1/μ2. For gsp/2π ≈ 10 MHz
[28,29,56], a relatively low resonator frequency
ωc/2π = 16gsp/2π = 160 MHz, T = 1 K (corresponding
to n̄th ≈ 130), Q = 105 [56,57], and a realistic dephasing
rate 
/2π ≈ 0.1 MHz [58], that is κ/ωcn̄th ≈ 1.3 × 10−3

and 
/ωc ≈ 6 × 10−4, our estimates then predict an overall
infidelity of ξ ≈ 2%, with the potential to reach error rates
ξ ≈ 0.2% below the threshold for quantum error correction
for state-of-the-art experimental parameters (Q ≈ 106,

/2π ≈ 10 kHz) [4,57,58]. This simple estimate compares
well with other bus-based, two-qubit (hot) gates reaching
fidelities ∼97% [20,50,59] and has been corroborated by
numerical simulations that fully account for higher-order
errors; compare the density plot in Fig. 4(c). We like
to emphasize that, due to the fundamental temperature
insensitivity of our gate, technological improvements in
the achievable Q factor directly translate to a proportional
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reduction of thermalization-induced errors and therefore
increase the acceptable temperature. Note that the error
estimate given in Eq. (10) assumes perfect timing of the
gate, as the maximum fidelity is reached exactly at time
tmax, whereas under experimentally realistic conditions there
will be a residual error due to imperfect timing of the gate.
However, as shown in Appendix K, for sufficiently small, but
realistic, timing accuracies of (ωc/2π )�t � 1% and small
spin-resonator coupling g/ωc � 1

16 (implying small oscillation
amplitudes), the effects of time jitter become negligible.

V. CONCLUSIONS AND OUTLOOK

To conclude, we have proposed and analyzed a high-fidelity
hot gate for generic spin-resonator systems which allows
for coherent spin-spin coupling, even in the presence of a
thermally populated resonator mode. While we have mostly
focused on just two spins, our scheme fully applies to more
than two spins, which should allow for the preparation of
maximally entangled multipartite states; as shown in Ref. [11]
in the context of trapped ions, a propagator of the form given in
Eq. (5) applied to the initial product state |00 . . . 0〉 may be used
to generate states of the form 1/

√
2(|00 . . . 0〉 + eiφ|11 . . . 1〉),

where |00 . . . 0〉 and |11 . . . 1〉 are product states with all qubits
in the same state |0〉 or |1〉, respectively.
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APPENDIXES

The following appendixes provide additional background
material to specific topics of the main text. They are structured
as follows: In Appendix A we provide typical thermal
occupation numbers n̄th for relevant experimental parameter
regimes. In Appendix B we compare the ideal evolution in the
laboratory frame to the one in the polaron frame. In Appendix
C we derive the ideal gate time tmax. In Appendix D we discuss
a prototypical implementation of a spin-resonator system
that allows for time-dependent control of the spin resonator
g = g(t), as required for the faithful realization of the proposed
hot gate. In Appendix E we discuss the standard approach to
coupling spins via a common resonator mode in the dispersive
regime, in which, in contrast to the proposed hot gate, the
spin degrees of freedom do not fully disentangle from the
resonator mode. In Appendix F we compare our general result
to a perturbative calculation in the framework of a Schrieffer-
Wolff transformation. In Appendixes G and H we analyze in
detail the effects coming from a nonzero qubit-level splitting
(ωq/ωc > 0). In Appendix I we provide further details on
how to implement experimental candidate systems governed

by the class of Hamiltonians given in Eq. (1), using quantum
dots embedded in high-quality surface acoustic wave (SAW)
resonators. In Appendix J we provide a microscopic derivation
of the master equation given in Eq. (7) of our paper. In
Appendix K we present further results based on the numerical
simulation of the master equation given in Eq. (7) of the main
text. In Appendix L we derive an analytical expression for
rethermalization-induced errors, while Appendix M provides
an analytical model for dephasing-induced errors. In Appendix
N we address in detail errors induced by relaxation processes.
In Appendix O we conclude with a discussion on the average
gate fidelity.

APPENDIX A: THERMAL OCCUPATION

Here, we first provide typical thermal occupation num-
bers n̄th for relevant experimental parameter regimes. At a
temperature T = 4 K, a (mechanical) oscillator of frequency
ωc/2π ∼ (1–10) GHz has a thermal equilibrium occupation
number much larger than one, n̄th ≈ 8–80 (compare Fig. 5).

APPENDIX B: POLARON VERSUS LABORATORY FRAME

In this Appendix we show that for stroboscopic times the
ideal time evolution in the laboratory frame fully coincides
with the one in the polaron frame. In the ideal (noise-free)
scenario, the evolution of the system in the laboratory frame,
comprising both spin and resonator degrees of freedom, is
described by Schrödinger’s equation

i
d

dt
|ψ〉t = H |ψ〉t . (B1)

In the polaron frame, the time evolution is governed by

i
d

dt
˜|ψ〉t = H0 ˜|ψ〉t , (B2)

where ˜|ψ〉t = U †|ψ〉t , U = exp [μS(a − a†)], and H0 =
U †HU = ωca

†a − g2

ωc
S2; the polaron transformation U en-

tangles spin with resonator degrees of freedom. The solution
to Eq. (B2) reads as ˜|ψ〉t = exp [−iH0t] ˜|ψ〉0. Using the

FIG. 5. Thermal occupation n̄th = (exp[h̄ωc/kBT ] − 1)−1 (black
solid line) and high-temperature approximate result n̄th ≈ kBT /h̄ωc

(red dashed line). For T = 4 K and ωc/2π = 1 GHz (ωc/2π =
10 GHz), we have kBT /h̄ωc ≈ 80 (kBT /h̄ωc ≈ 8). For T = 1 K and
ωc/2π = 1 GHz (ωc/2π = 10 GHz), we have n̄th ≈ 20 (n̄th ≈ 2).
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relation exp [−iωcta
†a] = exp [−i2πma†a] = 1 for strobo-

scopic times (ωctm = 2πm, with m integer), full time evolution
in the polaron frame reduces to

˜|ψ〉tm = ei2πmμ2S2 ˜|ψ〉0. (B3)

Transforming back to the laboratory frame with ˜|ψ〉t =
U †|ψ〉t , and using that U commutes with the propagator
exp [i2πmμ2S2], we obtain the (stroboscopic) solution in the
laboratory frame |ψ〉tm = ei2πmμ2S2 |ψ〉0, which fully coincides
with the one in the polaron frame.

APPENDIX C: GATE TIME

Ideally, the gate time tgate has to fulfill two conditions: (i) it
has to be chosen stroboscopically, that is, ωctgate = 2πm, with
m = 1,2, . . . with (ii) the parameters such that mμ2 = 1

16 in
order to obtain a maximally entangling gate (in the absence of
noise). Combination of (i) and (ii) then yields the ideal gate
time

tmax = π

8geff
, (C1)

as given in the main text. The gate time tmax should be short
compared to the relevant noise time scales, which yields the
requirement geff � κeff,
. In principle, large values of geff =
g2/ωc can be obtained by choosing the resonator frequency ωc

sufficiently small, provided that ωc can be tuned independently
of g. This can be done up to the lower bound ωc � 4g which
follows directly from the requirement m = 1/(16μ2) � 1.

APPENDIX D: TIME-DEPENDENT CONTROL OF THE
SPIN-RESONATOR COUPLING

In this Appendix we discuss in detail a prototypical
implementation of a spin-resonator system that allows for
time-dependent control of the spin-resonator coupling g =
g(t), as required for the faithful realization of the proposed hot
gate. Here, we first focus on a charge qubit embedded in a litho-
graphically defined double quantum dot (DQD) containing a
single electron, and then extend our analysis to a singlet-triplet
spin qubit made out two electrons in such a DQD. Based
on the electric dipole interaction, this type of device may
be coupled either to a microwave transmission line resonator
in a circuit-QED-like setup, as investigated theoretically and
experimentally in (for example) Refs. [35,36,40], or a surface-
acoustic-wave resonator, as described in Refs. [46,47]. Our
approach then employs standard all-electrical manipulation
strategies, in which external, tunable gate voltages are used
for (basically) in situ control of the effective spin-resonator
coupling [26], provided that standard adiabaticity conditions
are fulfilled [43], with the additional requirement of having a
relatively small qubit transition frequency ωq when the (hot)
gate is turned on; as shown in Appendix H, this condition can
be dropped, however, for longitudinal spin-resonator coupling.

1. Double quantum dot charge qubit

The Hamiltonian describing a tunnel-coupled DQD in the
single-electron regime coupled to a cavity of frequency ωc is

FIG. 6. Spectrum of the DQD Hamiltonian in the single-electron
regime, Hch = ε

2 τ z + tcτ
x , as a function of the interdot detuning

parameter ε. Inset: mixing parameters sin θ (black solid) and cos θ

(gray dashed) as a function of the interdot detuning parameter ε.

given by [31–33]

H = ε

2
τ z + tcτ

x + ωca
†a + gchτ

z ⊗ (a + a†), (D1)

where ε is the (tunable) level detuning between the dots,
tc gives the (tunable) tunnel coupling, and gch refers to
the single-photon (phonon) coupling strength between the
resonator and the DQD. The electron charge state is described
in terms of orbital Pauli operators defined as τ z = |L〉〈L| −
|R〉〈R| and τ x = |L〉〈R| + |R〉〈L|, respectively, with |L〉(|R〉)
corresponding to the state where the electron is localized in the
left (right) dot, while a† (a) are the standard resonator creation
(annihilation) operators.

Diagonalization of the first two terms in the Hamiltonian
H , that is, Hch = ε

2τ z + tcτ
x , yields the electronic charge

eigenstates

|+〉 = cos θ |L〉 + sin θ |R〉, (D2)

|−〉 = − sin θ |L〉 + cos θ |R〉, (D3)

where the mixing angle is given by tan θ = 2tc/(ε + ωq),
and ωq = √

ε2 + 4t2
c refers to the energy splitting between

the eigenstates |±〉; compare Fig. 6. The logical qubit basis
is (by definition) given by the superposition states |±〉 =
(|L〉 ± |R〉)/√2 at the charge degeneracy point (ε = 0), where
to first order the qubit is insensitive to charge fluctuations
(dωq/dε = 0). In the eigenbasis of Hch, and after a sim-
ple gauge transformation (a → −a, a† → −a†), the spin-
resonator Hamiltonian given in Eq. (D1) can be rewritten as

H = ωq

2
σ z + ωca

†a + (gxσ x − gzσ z) ⊗ (a + a†). (D4)

Here, we have introduced the Pauli operators as
σ z = (|+〉〈+| − |−〉〈−|), and σx = (|+〉〈−| + |−〉〈+|); the
transversal and longitudinal coupling parameters are given by

gx = gch
2tc

ωq

, (D5)

gz = gch
ε

ωq

. (D6)
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FIG. 7. Effective spin-resonator coupling gx (solid) and gz

(dashed) as a function of the interdot detuning parameter ε.

By redefining the interdot detuning parameter as ε → −ε

(or, equivalently, by relabeling |L〉 ↔ |R〉), the spin-resonator
Hamiltonian H may be expressed as [26,31]

H = ωq

2
σ z + ωca

†a + (gxσ x + gzσ z) ⊗ (a + a†). (D7)

Both the effective transversal coupling parameter gx as well as
the longitudinal coupling parameter gz can be controlled via
rapid all-electrical tuning of either the interdot detuning pa-
rameter ε and/or the tunnel splitting tc (recall ωq = √

ε2 + 4t2
c )

[26,30,31,33,35,43]. As shown in Fig. 7, the transversal
coupling parameter gx is maximized around ε = 0 (that is,
when the electron is delocalized in both dots), while it is
strongly suppressed for |ε| � tc. Conversely, the longitudinal
coupling parameter gz is maximized for |ε| � tc, while it
is strongly suppressed for small detuning |ε| � tc. Note
that, outside of our regime of interest, in the limit where
δ,gch � ωc (with δ = ωq − ωc) one can perform a rotating-
wave approximation yielding the standard Jaynes-Cummings
Hamiltonian, as widely discussed in the literature (see, e.g.,
Refs. [26,30,32,33,35,46]).

Then, since the parameters ε(t) and tc(t) can be tuned
all electrically on very fast time scales, the protocol for the
proposed hot gate proceeds as follows: (i) For ε ∼ 0, the hot
gate is turned on, with gx ≈ gch and gz ∼ 0 (corresponding
to purely transversal spin-resonator coupling as discussed
extensively in the main text). In this regime, the qubit-level
splitting is set by the (highly tunable) tunnel coupling,
according to ωq ≈ 2tc, which should be chosen to be much
smaller than the cavity frequency (tc � ωc) in order to satisfy
the requirements of the proposed hot gate. (ii) After some
well-controlled (stroboscopic) time tm = 2πm/ωc, the hot
gate can be turned off by sweeping ε to large detuning values
ε � tc.

Both regimes are readily achievable in the quantum dot
setting: Due to the exponential dependence of tunnel coupling
strength tc on gate voltage, the interdot barrier characterized
by tc can be varied from about 100 μeV (verified by the
broadening of the time-averaged charge transition; note that for
much larger tunnel couplings, two neighboring dots become
one single dot) all the way down to less than 10−12 eV ∼
10−6 GHz (corresponding to a millisecond time scale, as

verified by real-time detection of single charges hopping
on or off the dot) [60], which is five to six orders of
magnitude smaller than realistic cavity frequencies. Similarly,
the detuning ε between the dots can be varied anywhere
between zero and a positive or negative detuning equal to the
addition energy, at which point additional electrons are pulled
into the dot. The typical energy scale for the addition energy
is very large (∼1–3 meV) [60].

Note that in the proposed offsetting [step (ii)] the qubits and
the cavity are not strictly decoupled due to the nonvanishing
longitudinal term (compare Fig. 7). For gch � ωc, this cou-
pling is usually neglected within a rotating-wave approxima-
tion [26,32,35]. However, here we provide an exact treatment,
that takes into account the energy shifts and couplings arising
from the (fast rotating) qubit-cavity coupling term. For gx = 0,
the Hamiltonian H can be diagonalized exactly, yielding
the eigenstates |σ 〉 ⊗ D†(σ gz

ωc
)|n〉 with the corresponding

eigenenergies ε(σ,n) = σωq/2 − g2
z /ωc + nωc, with σ = ±

for spin up and spin down, respectively, the displacement
operator D(α) = exp [αa† − α∗a] and |n〉 denoting the usual
Fock states. This treatment can be extended straightforwardly
to more than one qubit.

While the analysis above has focused on a single charge
qubit, in the following we consider two qubits of this type,
coupled to a common resonator mode. Then, for two qubits and
purely longitudinal spin-resonator coupling, in the presence of
a nonzero (and potentially large, ωq ∼ |ε|) level splitting ωq

the time evolution generated by the Hamiltonian H reads as

U (tm) = e−iH tm = e−i
ωq

2 SztmUz
id(tm), (D8)

with the ideal evolution Uz
id(tm) = exp [i4πmμ2σ z

1 σ z
2 ], up to

an irrelevant global phase. Therefore, in the regime |ε| �
tc, a general two-qubit state |�2q〉 = c00|⇓⇓〉 + c01|⇓⇑〉 +
c10|⇑⇓〉 + c11|⇑⇑〉 evolves as

U (tm)
∣∣�2q

〉 = e+2imπ
ωq

ωc c00|⇓⇓〉 + e−2imπ
ωq

ωc c11|⇑⇑〉
+ e−8imπμ2

(c01|⇓⇑〉 + c10|⇑⇓〉). (D9)

When tuning the qubit-level splitting on resonance
(ωq ≈ |ε| = ωc), such that exp [±2imπωq/ωc] = 1 for all
m = 1,2,3 . . . , for certain times t� = 2πm�/ωc = π/2geff ,
this unitary returns the original state since Uz

id(t�) = 1 and,
therefore, absent any other noise sources, leaves the (typically
entangled) state prepared by the first step (i) with gx =
gch, gz = 0 unaffected; recall that μ = gch/ωc = 1

4 , 1
8 , . . . is

chosen commensurately. While this statement holds for any
two-qubit state |�2q〉, this effect becomes even simpler to see
when the qubits are initialized in any of the four computational
basis states {|σ,σ ′〉}. Here, the ideal transversal gate (i) first
prepares maximally entangled states, according to

|⇓,⇓〉 → 1√
2

(|⇓,⇓〉 + i|⇑⇑〉), (D10)

|⇑,⇑〉 → 1√
2

(|⇑⇑〉 + i|⇓,⇓〉), (D11)

|⇑,⇓〉 → 1√
2

(|⇑,⇓〉 + i|⇓⇑〉), (D12)

|⇓,⇑〉 → 1√
2

(|⇓⇑〉 + i|⇑,⇓〉), (D13)
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which subsequently in stage (ii) where (gx = 0,gz = gch) are
left invariant ∀ m = 1,2, . . . ; Eqs. (D12) and (D13) even hold
independently of ωq .

The charge-qubit-based scheme discussed above can be
extended to (switchable) coupling between the resonator mode
and the electron’ s spin, by making use of various mechanisms
which hybridize spin and charge degrees of freedom, as
provided by spin-orbit interaction or inhomogeneous magnetic
fields [29,30,41,43]. Such an implementation that easily
generalizes to N qubits and would allow to fully turn off any
coupling to the cavity mode (and to do so selectively for any
chosen subset of qubits) is discussed in the next section.

2. Double quantum dot spin qubit

Let us now extend our treatment to singlet-triplet spin qubits
in quantum dots, where logical qubits are encoded in a two-
dimensional subspace of a higher-dimensional two-electron
spin system, as investigated theoretically and experimentally
(for example) in Refs. [60,61]. This approach successfully
combines spin and charge manipulation, making use of the
very long coherence times associated with spin states and, at
the same time, enabling efficient readout and coherent manip-
ulation of coupled spin states based on intrinsic interactions
[27].

In contrast to the charge qubit setting discussed above
(where the electron’s charge will always couple to the resonator
mode with the type of coupling depending on the particular
parameter regime), in this setting the coupling to the cavity
mode can be turned off completely since the dipole moment
associated with the singlet-triplet qubit (which in this case
determines the spin-resonator coupling) vanishes in the so-
called (1,1) regime; here, (m,n) refers to a configuration with
m(n) electrons in the left (right) dot, respectively.

We focus on the typical regime of interest, where (following
the standard notation) the relevant electronic levels are given
by the triplet states |T+〉 = |⇑⇑〉, |T−〉 = |⇓⇓〉, and |T0〉 =
(|⇑⇓〉 + |⇓⇑〉)/√2, as well as the singlet states |S11〉 =
(|⇑⇓〉 − |⇓⇑〉)/√2 and |S02〉 = d

†
R↑d

†
R↓|0〉 with |σσ ′〉 =

d
†
Lσ d

†
Rσ ′ |0〉; the fermionic creation (annihilation) operators

d
†
iσ (diσ ) create (annihilate) an electron with spin σ = ↑,↓ in

the orbital i = L,R. For sufficiently large magnetic field B, the
levels |T+〉 and |T−〉 are far detuned and can be neglected for
the remainder of the discussion. Therefore, in the following,
we restrict ourselves to the subspace {|T0〉,|S11〉,|S02〉}, as
schematically depicted in the inset of Fig. 8. In the relevant
regime of interest, the electronic DQD system is described by
the Hamiltonian [27]

HDQD = tc

2
(|S02〉〈S11| + H.c.) + �(|T0〉〈S11| + H.c.)

− ε|S02〉〈S02|, (D14)

where (as before) tc refers to the interdot tunneling amplitude,
ε is the interdot detuning parameter, and � is a static magnetic
field gradient between the two dots which couples singlet
and triplet states. State preparation, measurement, single-
qubit gates, and local two-qubit gates can be achieved by
tuning the bias ε [60]. Tunnel coupling between the singlet
states |S11〉 with (1,1) charge occupation and |S02〉 with (0,2)

FIG. 8. (a) Spectrum of the DQD Hamiltonian in the two-electron
regime, as given in Eq. (D14), as a function of the interdot detuning
parameter ε for � = 0. Tunnel coupling between the singlet states
|S11〉 with (1,1) charge occupation and |S02〉 with (0,2) charge
occupation yields the hybridized singlet states |S±〉. The ellipse refers
to the qubit subspace, spanned by |T0〉 and |S−〉, while the dotted line
(red) refers to the effective exchange coupling J (ε) = t2

c /4ε. The
arrows indicate schematically how to turn on and off the effective
spin-resonator coupling, by changing the effective dipole moment
associated with the qubit. Inset (b): relevant level diagram in the
subspace {|T0〉,|S11〉,|S02〉}.

charge occupation [here, (m,n) refers to a configuration with
m (n) electrons in the left (right) dot, respectively] yields the
hybridized singlet states |S±〉, given by

|S+〉 = cos θ |S11〉 + sin θ |S02〉, (D15)

|S−〉 = − sin θ |S11〉 + cos θ |S02〉, (D16)

with tan θ = tc/(ε + �),� = √
ε2 + t2

c and the associated
eigenenergies ε± = 1/2(−ε ± √

ε2 + t2
c ). For large, negative

detuning values (|ε| � tc), the splitting between the triplet |T0〉
and the hybridized singlet |S−〉 can be approximated very well
by the effective (tunable) exchange splitting J (tc,ε) = t2

c /4ε;
compare Fig. 8. As schematically denoted by the ellipse in
Fig. 8, we focus on the regime where the singlet |S+〉 is far off
resonance, yielding the effective qubit subspace {|T0〉,|S−〉}
with a qubit-level splitting ωq ≈ J (tc,ε).

Again, we consider a resonator with a single relevant mode
of frequency ωc, as modeled by the Hamiltonian

Hcav = ωca
†a. (D17)

In order to couple the electric field associated with the
resonator mode to the electron spin states, the essential idea is
to make use of an effective electric dipole moment associated
with the exchange-coupled spin states of the DQD [27].
The resonator mode interacts capacitively with the double
quantum dot [27], as described by the interaction Hamiltonian
HI = g0|S02〉〈S02| ⊗ (a + a†). Projection onto the electronic
low-energy subspace {|T0〉,|S−〉} (i.e., projecting out the high-
energy level |S+〉) then leads (to lowest order in ∼g0/ε+) to
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FIG. 9. Effective spin-resonator coupling gsp/g0 = cos2 θ (solid
blue line) and qubit-level splitting ωq ≈ |J | relative to ε+ (dashed
red line) as a function of the interdot detuning parameter ε. The
spin-resonator coupling may reach a few percent of the bare charge-
resonator coupling g0, with a qubit frequency ωq that is much smaller
than the energy of the level |S+〉.

the effective spin-resonator system

H = J |S−〉〈S−| − � sin θ (|T0〉〈S−| + H.c.) + ωca
†a

+ g0 cos2 θ |S−〉〈S−| ⊗ (a + a†), (D18)

which includes a tunable spin-resonator coupling, explicitly
given by

gsp/g0 = cos2 θ = 1

2

(
1 + ε√

ε2 + t2
c

)
. (D19)

As demonstrated in Fig. 9, the effective coupling gsp may
be turned on and off by sweeping the detuning parameter
ε (closely following the functional dependence of ωq/ε+),
i.e., by controlling the admixture of |S02〉 to the hybridized
singlet level |S−〉. For large, negative values of ε this admixture
vanishes (cos2 θ → 0), such that the effective dipole moment
associated with the qubit vanishes and therefore the spin-
resonator coupling is switched off. The type of spin-resonator
coupling (transversal versus longitudinal) may be controlled
by the magnetic gradient �, as can be done using, e.g., a
nanomagnet or nuclear Overhauser fields [43,60]. While for
longitudinal spin-resonator coupling the resonator frequency
ωc may be comparable or even smaller than the effective
qubit-level splitting J (see Appendix H for details), in the case
of transversal coupling the effective qubit-level splitting needs
to be much smaller than the cavity frequency, that is |J (tc,ε)| ≈
|t2

c /4ε| � ωc, but, at the same time, ε+ ≈ |ε| + t2
c /4|ε| � ωc

should be fulfilled in order to neglect the high-energy level
|S+〉. Still, both requirements can be satisfied by choosing the
parameters as tc,ωc � |ε|.

APPENDIX E: SPIN-SPIN COUPLING IN DISPERSIVE
REGIME

We consider two identical spins homogeneously coupled
to a common resonator mode. The dynamics is assumed to be

governed by the Jaynes-Cummings Hamiltonian

H = �
(
Sz

1 + Sz
2

) + g[a(S+
1 + S+

2 ) + a†(S−
1 + S−

2 )], (E1)

which is valid within the rotating-wave approximation for√
n̄thg,� � ωc, with the detuning � = ωq − ωc. In the

following, we consider the dispersive regime, where the
spin-resonator coupling is strongly detuned (

√
n̄thg � �).

In this regime, the spin-resonator coupling can be treated
perturbatively. To stress the perturbative treatment we write

H = H0 + H1, (E2)

H0 = �Sz, (E3)

H1 = g(aS+ + a†S−), (E4)

where Sα = Sα
1 + Sα

2 (for α = ±,z) are collective spin opera-
tors. We perform a standard Schrieffer-Wolff transformation

H̃ = eAHe−A (E5)

≈ H0 + H1 + [A,H0 + H1] + 1
2 [A,[A,H0]], (E6)

where the operator A (with A† = −A) is assumed to have
a perturbative expansion in g, i.e., A = 0 + O(g) + . . . By
choosing

[A,H0] = −H1, (E7)

one obtains a Hamiltonian H̃ without linear coupling in g,

H̃ ≈ H0 + 1
2 [A,H1]. (E8)

For the Hamiltonian given in Eq. (E2), the condition in Eq. (E7)
is fulfilled by the choice

A = g

�
(aS+ − a†S−), (E9)

which yields the Hamiltonian

H̃ ≈
(

� + g2

�
+ 2

g2

�
a†a

)
Sz + g2

�
(S+

1 S−
2 + S−

1 S+
2 ).

(E10)

Here, the last two terms describe a cavity-state-dependent
dispersive shift of the qubit transition frequencies and spin-
spin coupling via virtual occupation of the cavity mode,
respectively. The strength of the effective spin-spin coupling
is given by

geff = g2

�
= ε√

n̄th
g, (E11)

where we have set
√

n̄thg/� = ε � 1 in order to reach the
regime of validity for Eq. (E10), given by

√
n̄thg � � � ωc. (E12)

By transforming the Hamiltonian given in Eq. (E10) back
into the laboratory frame, we recover the result presented in
Ref. [25], namely,

H ≈
[
ωc + 2

g2

�

(
Sz

1 + Sz
2

)]
a†a +

(
ωq + g2

�

)(
Sz

1 + Sz
2

)
+ g2

�
(S+

1 S−
2 + S−

1 S+
2 ). (E13)
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Here, spins and cavity mode are still coupled by the ac Stark
shift term ∼a†a. Accordingly, one obtains an effective pure
spin Hamiltonian with flip-flop interactions provided that one
can neglect any fluctuations of the photon number a†a → n̄ =
〈a†a〉, where n̄ is the average number of photons in the cavity
mode [30].

Since the operator Sza†a in Eq. (E10) has an integer
spectrum, one may wonder whether for stroboscopic times the
spins disentangle from the resonator mode here as well. Thus,
let us consider the full time evolution generated by Eq. (E1):

e−iH t = e−iU †H̃Ut = U †e−iH̃ tU (E14)

≈ U †{exp[−it(δ + δ̃a†a)Sz − ig̃t(S+
1 S−

2 + S−
1 S+

2 )]}U,

(E15)

with U = exp (A), δ = � + g2/�, δ̃ = 2g2/�, and g̃ =
g2/�. Note that Eq. (E15) is an approximate statement, relying
on a perturbative expansion in the coupling g. Since the
flip-flop interaction conserves Sz, we find

e−iH t ≈ U †e−iδtSz

e−iδ̃tSza†ae−ig̃t(S+
1 S−

2 +S−
1 S+

2 )U. (E16)

For stroboscopic times δ̃t = 2πm, e−iδ̃tSza†a = 1, yielding

e−iH t ≈ U †e−iHspintU, (E17)

where Hspin = δSz + g̃(S+
1 S−

2 + S−
1 S+

2 ) is a pure spin Hamil-
tonian, without any coupling to the resonator mode. However,
in contrast to our scheme presented in the main text, the full
time evolution does not reduce to a pure spin problem since the
Schrieffer-Wolff transformation U = exp [ g

�
(aS− − a†S+)]

does not commute with e−iHspint , but rather entangles the qubits
with the resonator mode.

APPENDIX F: SCHRIEFFER-WOLFF TRANSFORMATION

If one restricts oneself to the regime g � ωc, the result
stated in Eq. (6) may also be derived in the perturbative frame-
work of a Schrieffer-Wolff transformation. For concreteness,
assuming ωq = 0, we consider the Hamiltonian

H = ωca
†a︸ ︷︷ ︸

H0

+ gSx ⊗ (a + a†)︸ ︷︷ ︸
V

, (F1)

where Sx = ∑
i η

x
i σ

x
i is a collective operator. In the following,

and contrary to our general analysis in the main text, we restrict
ourselves to the regime where the spin-resonator coupling V

can be treated perturbatively with respect to H0, that is g � ωc.
Performing a Schrieffer-Wolff transformation H̃ = eAHe−A

as presented in Appendix E, with A = − g

ωc
Sx(a − a†), we

obtain an effective Hamiltonian H̃ where the slow subspace
is decoupled from the fast subspace up to second order in g.
Explicitly, it reads as [compare Eq. (5)]

H̃ ≈ ωca
†a − g2

ωc

S2
x . (F2)

APPENDIX G: NONZERO QUBIT-LEVEL SPLITTING

In our derivation of Eq. (5), starting from the generic
spin-resonator Hamiltonian given in Eq. (1), we have assumed
ωq = 0. As demonstrated also numerically in Appendix K
below, small level splittings with ωq ≈ 0.1ωc may still be

tolerated without a significant loss in the amount of generated
entanglement and the fidelity with the maximally entangled
target state.

In this appendix, we investigate analytically the effects
associated with a finite splitting ωq > 0. In this case, Eq. (3)
can be generalized straightforwardly to

H = U

[
ωca

†a − g2

ωc

S2

︸ ︷︷ ︸
H0

+ ωq

2
S̃z

]
U †, (G1)

where S̃z = U †SzU , with U = exp [ g

ωc
S(a − a†)]. In what

follows, we restrict ourselves to the (experimentally) most rel-
evant regime where μ = g/ωc � 1, which allows for a simple
perturbative treatment. Expansion in the small parameter μ

yields

S̃z ≈ Sz − μ(a − a†)[S,Sz] + μ2

2
(a − a†)2[S,[S,Sz]].

(G2)

Specifically, for S = ∑
i σ

x
i (as considered in the main text)

we then obtain

S̃z ≈ Sz + 2i
g

ωc

Sy(a − a†) + 2

(
g

ωc

)2

Sz(a − a†)2, (G3)

which leads to an additional (undesired) contribution in
Eq. (G1) of the form

ωq

2
S̃z ≈ ωq

2
Sz + ε

[
igSy(a − a†) + g2

ωc

Sz(a − a†)2

]
.

(G4)

Here, in contrast to the ideal Hamiltonian H0 in Eq. (G1)
the spins are not decoupled from the (hot) resonator mode.
However, apart from being detuned by at least ωc − ωq , the
undesired terms, that lead to entanglement of the spins with the
(hot) resonator mode, are suppressed by the small parameter
ε = ωq/ωc � 1. In the limit ωq → 0 (ε → 0), we recover the
ideal dynamics.

APPENDIX H: ERRORS DUE TO NONZERO
QUBIT-LEVEL SPLITTING

In this Appendix, we analyze errors induced by a nonzero
qubit-level splitting (ωq/ωc > 0). In the case of longitudinal
spin-resonator coupling, we show that controlled phase gates
can be implemented (as described in the main text for
ωq = 0), even in the presence of nonzero and inhomogeneous
qubit-level splittings (ωq > 0), when applying either fast local
single-qubit gates (to correct the effect of known ωq 
= 0)
or standard spin-echo techniques (to compensate unknown
detunings); see Appendix H 1. Therefore, for longitudinal
spin-resonator coupling, our approach yields a high-fidelity
hot gate, that is independent of the qubit-level splitting
ωq/ωc � 0. As detailed in Appendix H 2, this is not the case
for transversal coupling, where ωq 
= 0 causes second-order
errors, which, however, are suppressed in certain decoherence-
free subspaces. Thus, as opposed to the limiting regime where
ωq = 0, the distinction between longitudinal and transversal
spin-resonator coupling indeed becomes meaningful.

052335-10



HIGH-FIDELITY HOT GATES FOR GENERIC SPIN- . . . PHYSICAL REVIEW A 95, 052335 (2017)

The model. In the absence of other error sources
(κ = 
 = 0), the system’s dynamics is governed by the
Hamiltonian

H = H0 + V, (H1)

H0 = ωca
†a + gS ⊗ (a + a†), (H2)

V = ωq

2
Sz, (H3)

with Sz = ∑
i σ

z
i andS = ∑

i,α ηα
i σ α

i . Below, we will set Sα =
Sα (α = x,z) interchangeably. Also, note that Sx,Sz as defined
here refer to the usual spin operators multiplied by 2.

1. Longitudinal spin-resonator coupling

Controlled phase gate. Let us first focus on the case of
longitudinal spin-resonator coupling, where S = ∑

i σ
z
i = Sz

and accordingly [H0,V ] = 0. In this scenario, controlled phase
gates can be implemented (as described in the main text for
ωq = 0), even in the presence of nonzero qubit-level splittings
(ωq > 0), when applying either fast local single-qubit phase
gates (to correct the effect of known ωq 
= 0) or standard
spin-echo techniques (to compensate unknown detunings). By
flipping the qubits (for example) halfway the evolution and
at the end of the gate, the effect of V is canceled exactly.
Denoting such a global flip of all qubits around the axis
α = x,y,z as Uα(ϕ) = exp [−iϕ/2σα

1 ] . . . exp [−iϕ/2σα
N ] =

exp [−iϕ/2
∑

σα
i ], for two qubits the full evolution (in the

computational basis {|00〉,|10〉,|01〉,|11〉}), intertwined by
spin-echo pulses, reads as

U (2tm) = Ux(π )e−iH tmUx(π )e−iH tm (H4)

= diag(eiφ,1,1,eiφ), (H5)

with φ = 16mπμ2. The gate U (2tm) is independent of the
resonator mode and, as a consequence of the spin-echo π

pulses Ux(π ), independent of ωq ; accordingly, the qubit-
level splittings do not have to be necessarily small. When
complementing the propagator U (2tm) with local unitaries,
such that |0〉i → e−iφ/2|0〉i and |1〉i → eiφ/2|1〉i , we obtain

UCphase = Uz(−φ)Ux(π )e−iH tmUx(π )e−iH tm (H6)

= diag(1,1,1,e2iφ), (H7)

which yields a controlled phase gate for φ = π/2 (correspond-
ing to a gate time tmax = π/16geff), that is insensitive to the
qubit-level splittings ωq > 0.

For longitudinal spin-resonator coupling, Eq. (5) of the
main text simply reads as

e−iH tm = exp[i2πmμ2S̃2], (H8)

with (the generalized expression) S̃2 = S2 − (ωq/2geff)Sz,
where S = ∑

i ηiσ
z
i , while the operator Sz can also be

generalized to account for possible inhomogeneities in the
qubit-level splittings (with ωq,i = δiωq), i.e., Sz → ∑

δiσ
z
i .

This gate differs from the ideal one (exp [i2πmμ2S2]) only
by the local phases exp [−itm(ωq/2)Sz] and thus has the same
computational power.

2. Transversal spin-resonator coupling

Transversal spin-resonator coupling. In the following, we
turn to systems with transversal spin-resonator coupling,
where S = Sx = ∑

i σ
x
i . In this case, the theoretical treatment

is more involved as compared to our previous discussion on
longitudinal spin-resonator coupling because the ideal free
evolution does not commute with the perturbation ([H0,V ] 
=
0). We use perturbative techniques to derive an analytic
expression for the error ξq induced by nonzero qubit splittings
ωq > 0. For the sake of readability, here we restrict ourselves
to two qubits, while our analysis can be generalized readily to
more than two qubits.

Perturbative series. Up to second order in the perturbation
V , the unitary evolution operator associated with H is
approximately given by

U (t) ≈ e−iH0t

[
1 − i

∫ t

0
dτ Ṽ (τ )

−
∫ t

0
dτ2

∫ τ2

0
dτ1Ṽ (τ2)Ṽ (τ1)

]
, (H9)

with

Ṽ (τ ) = eiH0τV e−iH0τ . (H10)

Initially, the resonator mode is assumed to be in a thermal
state ρth = ρth(T ) = Z−1 exp [−βωca

†a]. Then, starting from
the initial state ρ(0) = �(0) ⊗ ρth, the system (comprising both
spin and resonator degrees of freedom) evolves as

ρ(t) = U (t)�(0)ρthU
†(t). (H11)

Inserting the perturbative expansion given in Eq. (H9), up to
second order in V we obtain

ρ(t) ≈ e−iH0t

{
ρ(0) − i

∫ t

0
dτ [Ṽ (τ ),ρ(0)]

+
∫ t

0
dτ

∫ t

0
dτ ′Ṽ (τ )ρ(0)Ṽ (τ ′)

−
∫ t

0
dτ2

∫ τ2

0
dτ1Ṽ (τ2)Ṽ (τ1)ρ(0)

−
∫ t

0
dτ2

∫ τ2

0
dτ1ρ(0)Ṽ (τ1)Ṽ (τ2)

}
eiH0t . (H12)

Eigensystem of unperturbed Hamiltonian. In the first step,
it it instructive to find the eigensystem of H0. Following the
same strategy as outlined in the main text, H0 can be written
as

H0 = D†(μSx)
[
ωca

†a − geffS
2
x

]
D(μSx), (H13)

where μ = g/ωc, geff = g2/ωc = μ2ωc and D(α) =
exp [αa† − α∗a] is a displacement operator. Accordingly, the
eigensystem of H0 is found to be

H0
˜|n,�σx〉 = En,s

˜|n,�σx〉, (H14)

where the eigenvectors are given by product states of spins
aligned along the transversal direction x and displaced res-
onator states with a displacement proportional to the total spin
projection s along x,

˜|n,�σx〉 = D†(μs)|n〉 ⊗ |�σx〉, (H15)
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with s = sx
1 + sx

2 , Sx |�σx〉 = (sx
1 + sx

2 )|�σx〉 and |n〉 denoting the
usual Fock states. The corresponding eigenenergies

En,s = nωc − s2geff (H16)

refer to manifolds with fixed resonator excitation number n =
0,1,2, . . . and two-qubit spin states with a resonator-induced
splitting of 4geff between the states {|↑x,↓x〉,|↓x,↑x〉} with
s2 = 0 and {|↑x,↑x〉,|↓x,↓x〉} with s2 = 4, respectively.

Perturbation in the interaction picture. In the following,
we focus on the perturbative regime where the perturbation
∼ωq is small compared to the resonator-induced splitting of
S2

x eigenstates, that is, ωq � 8geff = 8μ2ωc. Rewriting the
perturbation in the unperturbed eigenbasis yields

V =
∑
n,n′

∑
�σ,�σ ′

〈n′|D[μ(s ′ − s)]|n〉〈�σ ′
x |V |�σx〉 ˜|n′,�σ ′

x〉˜〈n,�σx |.

(H17)

Using the relation [62]

〈m|D[α]|n〉 =
√

n!

m!
αm−ne−|α|2/2L(m−n)

n (|α|2), (H18)

with L(m−n)
n denoting the associated Laguerre polynominals,

in the experimentally most relevant regime of weak spin-
resonator coupling (that is, μ � 1) we can neglect the off-
diagonal contributions where n 
= m since eigenstates with
different boson number are very weakly coupled (∼ωqμ

|n−m|)
and far off resonance (ωq � 8geff � ωc), with rapidly de-
caying contributions as the number difference increases. In
this limit, the perturbation in the interaction picture [compare
Eq. (H10)] reads as

Ṽ (τ ) ≈ Ṽq(τ ) ⊗
∑

n

χn(μ)|n〉〈n|, (H19)

Ṽq(τ ) = ωq

2
[ei4geffτQ + e−i4geffτQ†], (H20)

where

χn(μ) = 〈n|D[±2μ]|n〉 = e−2μ2
L(0)

n (4μ2). (H21)

Since the perturbation ∼Sz is purely off diagonal in the Sx

eigenbasis, the operator

Q = ∣∣↑x↓x

〉〈↓x↓x

∣∣ + ∣∣↓x↑x

〉〈↓x↓x

∣∣
+ ∣∣↑x↓x

〉〈↑x↑x

∣∣ + ∣∣↓x↑x

〉〈↑x↑x

∣∣ (H22)

describes only transitions from the s = ±2 subspace to the
s = 0 subspace (and vice versa for the Hermitian conjugate
operator Q†), which in the interaction picture underlying
Eq. (H20) rotate with the corresponding transition frequency
±4geff . While Eq. (H19) is purely off diagonal in spin space, in
the limit μ � 1 it is (approximately) diagonal in the excitation
number |n〉, as the coupling V between different n subspaces
is strongly detuned by the corresponding large energy splitting
∼ωc.

Quasidecoherence-free subspace. In our numerical simula-
tions, the initial qubit states have been chosen to be aligned
along the z direction, defining the computational basis states
and corresponding to eigenstates of the perturbation V ∼ Sz.
Therefore, it is didactic to rewrite Ṽ (τ ) in the eigenbasis of Sz.

With |↑x〉 = (|↑z〉 + |↓z〉)/
√

2, and |↓x〉 = (|↑z〉 − |↓z〉)/
√

2,
we obtain

Q = ∣∣↑z↑z

〉〈↑z↑z

∣∣ − ∣∣↓z↓z

〉〈↓z↓z

∣∣
+ ∣∣↑z↑z

〉〈↓z↓z

∣∣ − ∣∣↓z↓z

〉〈↑z↑z

∣∣. (H23)

As can be seen readily from this expression, the subspace
{|↑z↓z〉,|↓z↑z〉} with Sz = 0 defines a decoherence-free sub-
space since Q and Q† [and therefore Ṽ (τ )] vanish on this
subspace, with Q|↑z↓z〉 = Q|↓z↑z〉 = 0. In the following, this
finding is elaborated in more detail: To do so, we first rewrite
Ṽ (τ ) as

Ṽ (τ ) = ωq

2
D†(μSx)eiωca

†aτ e−igeffτS2
x D(μSx)Sz

×D†(μSx)e−iωca
†aτ eigeffτS2

x D(μSx). (H24)

This expression is exact. Defining triplet and singlet states in
the spin eigenbasis of H0 as∣∣T x

+
〉 = ∣∣↑x↑x

〉
, (H25)∣∣T x

0

〉 = (∣∣↑x↓x

〉 + ∣∣↓x↑x

〉)
/
√

2, (H26)∣∣T x
−
〉 = ∣∣↓x↓x

〉
, (H27)∣∣Sx

〉 = (∣∣↑x↓x

〉 − ∣∣↓x↑x

〉)
/
√

2, (H28)

the (by definition) computational basis states (taken as initial
states in our numerical simulations) are given by∣∣↑z↑z

〉 = 1
2

[|T x
+〉 +

√
2
∣∣T x

0

〉 + |T x
−〉], (H29)∣∣↑z↓z

〉 = 1
2 [|T x

+〉 −
√

2|Sx〉 − |T x
−〉], (H30)∣∣↓z↑z

〉 = 1
2 [|T x

+〉 +
√

2|Sx〉 − |T x
−〉], (H31)∣∣↓z↓z

〉 = 1
2 [|T x

+〉 −
√

2|T x
0 〉 + |T x

−〉]. (H32)

For a general resonator state |cav〉, the first-order error term
will be proportional to

Ṽ (τ )|T x
+〉|cav〉 = ωq√

2
e4igeffτ

∣∣T x
0

〉
⊗ eiωca

†aτD†(2μ)e−iωca
†aτD(2μ)|cav〉,

(H33)

Ṽ (τ )
∣∣T x

0

〉|cav〉
= ωq√

2
e−4igeffτ [|T x

+〉 ⊗ D†(2μ)eiωca
†aτD(2μ)e−iωca

†aτ |cav〉

+ |T x
−〉 ⊗ D†(−2μ)eiωca

†aτD(−2μ)e−iωca
†aτ |cav〉],

(H34)

Ṽ (τ )|T x
−〉|cav〉 = ωq√

2
e4igeffτ

∣∣T x
0

〉
⊗eiωca

†aτD†(−2μ)e−iωca
†aτD(−2μ)|cav〉,

(H35)

Ṽ (τ )
∣∣Sx

〉|cav〉 = 0. (H36)
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In the spirit of our previous discussion [recall Eq. (H18) with
D†(α) = D(−α)], these exact statements can be simplified in
the limit μ � 1 as

eiωca
†aτD†(±2μ)e−iωca

†aτ

=
∑
n,n′

eiωcτ (n′−n)〈n′|D†(±2μ)|n〉|n′〉〈n| (H37)

≈
∑

n

χn(μ)|n〉〈n|, (H38)

yielding the approximate results [for a Fock state |cav〉 = |n〉]

Ṽ (τ )|T x
+〉|n〉 ≈ ωq√

2
e4igeffτ χ2

n (μ)
∣∣T x

0

〉|n〉, (H39)

Ṽ (τ )
∣∣T x

0

〉|n〉 ≈ ωq√
2
e−4igeffτ χ2

n (μ)[|T x
+〉 + |T x

−〉]|n〉, (H40)

Ṽ (τ )|T x
−〉|n〉 ≈ ωq√

2
e4igeffτ χ2

n (μ)
∣∣T x

0

〉|n〉. (H41)

With these (approximate) relations, one can readily verify
Ṽ (τ )|↑z↓z〉|n〉 ≈ 0 and Ṽ (τ )|↓z↑z〉|n〉 ≈ 0, in agreement
with our result based on Eq. (H23), while the subspace
{|↑z↑z〉,|↓z↓z〉} is directly affected by the perturbation Ṽ (τ ).
As long as transitions between different n subspaces can
be neglected, the bosonic part of the Hamiltonian can be
ignored and the free part of the Hamiltonian reduces to
H0 ≈ −geffS

2
x . Then, since the perturbation V = (ωq/2)Sz

leaves the subspace {|↑z↓z〉,|↓z↑z〉} invariant, V cannot induce
errors since it vanishes on this subspace. As a perspective,
this finding opens up the possibility to define a logical qubit
in the quasidecoherence-free subspace {|↑z↓z〉,|↓z↑z〉} as
|qubit〉 = α|↑z↓z〉 + β|↓z↑z〉, which is largely protected from
splitting-induced errors in the limit μ � 1 (provided that the
perturbative condition ωq � 8geff is still satisfied).

Splitting-induced error. Based on Eqs. (H12) and (H19), in
the following we derive an approximate analytic expression
for the splitting-induced error ξq . Taking the trace over the
resonator mode, for stroboscopic times tm = 2πm/ωc (where
the ideal evolution reduces to a pure spin gate, leaving the
resonator mode unaffected) the fidelity F with the target qubit
state |�tar〉 = exp [−iH0tm]|�(0)〉 is found to be

F(tm) = 1 − 〈�tar|�(2)(tm)|�tar〉, (H42)

where we have used that first-order terms vanish; moreover,
we have introduced the second-order contribution

�(2) = −Υ qe
−iH0tm

{∫ tm

0
dτ

∫ tm

0
dτ ′Ṽq(τ )�(0)Ṽq(τ ′)

−
∫ tm

0
dτ2

∫ τ2

0
dτ1Ṽq(τ2)Ṽq(τ1)�(0)

−
∫ tm

0
dτ2

∫ τ2

0
dτ1�(0)Ṽq(τ1)Ṽq(τ2)

}
eiH0tm ,

with �(0) = |�(0)〉〈�(0)| and the prefactor

Υ q = Υ q(μ,kBT ) = 1

Z

∑
n

e−βωcnχ2
n (μ). (H43)

The latter depends on both the spin-resonator coupling μ =
g/ωc and temperature T (with β = 1/kBT ) and can be readily
evaluated numerically. After some manipulations, we then

FIG. 10. The error ξq induced by a nonzero qubit splitting ωq > 0,
for S = Sx = ∑

i σ
x
i (transversal coupling), and for different initial

qubit states |�(0)〉 = |↑z↓z〉 (red circles) and |�(0)〉 = |↓z↓z〉 (black
squares); here, g/ωc = 1

8 and kBT /ωc = 1. Quadratic fits (cyan,
dashed-dotted lines) verify a quadratic error scaling ∼ω2

q , with
the numerical pre-factor αq depending on both the spin-resonator
coupling g and temperature T . Inset: the error ξq as a function of
the thermal occupation number n̄th for g/ωc = 1

8 (black squares) and

g/ωc = 1/(8
√

2) (blue circles) for |�(0)〉 = |↑z↓z〉 and ωq/ωc =
0.5%. Other numerical parameters: 
 = κ = 0.

arrive at an analytic expression for the error ξq = 1 − F(tmax)
at the (nominally) optimal time tmax = π/8geff . For |�(0)〉 ∈
{|↑z↑z〉,|↓z↓z〉}, it reads as explicitly

ξq = Υ q(μ,kBT )
ω2

q

16g2
eff

(H44)

= αq × (ωq/ωc)2, (H45)

showing a quadratic scaling with the splitting ∼ω2
q . In

the last step, we have introduced the prefactor αq =
Υ q(μ,kBT )/(16μ4).

Numerical results. As shown in Fig. 10, we have numer-
ically verified our analytical results (as discussed above): (i)
The error ξq scales quadratically with the qubit splitting, i.e.,
ξq ∼ (ωq/ωc)2, with (ii) a numerical prefactor αq depending
on both the spin-resonator coupling g and temperature T , and
(iii) (all other parameters equal) the error ξq is found to be
significantly smaller for initial states in the quasidecoherence-
free subspace {|↑z↓z〉,|↓z↑z〉} than for initial qubit states in
the orthogonal subspace {|↑z↑z〉,|↓z↓z〉}.

APPENDIX I: SAW-BASED SPIN-RESONATOR SYSTEM

Here, we provide further details on how to implement
experimental candidate systems governed by the class of
Hamiltonians given in Eq. (1), using quantum dots embedded
in high-quality surface acoustic wave (SAW) resonators
[46,47]. For similar considerations based on (for example)
transmission-line resonators or nanomechanical oscillators,
we refer to Refs. [29] and [50], respectively.
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Charge qubit. A single electron in a double quantum dot
(DQD) coupled to a SAW resonator can be described by

Hcharge = ε

2
σ z + tcσ

x + ωca
†a + gchσ

z ⊗ (a + a†), (I1)

where ε is the interdot detuning parameter, tc the tunnel
coupling between the dots, gch = eφ0F(kd) sin (kl/2) the bare
single-phonon coupling strength (assuming a sinelike mode
function of the piezoelectric potential, with a node tuned
between the two dots separated by a distance l), and the (or-
bital) Pauli operators are defined as σ z = |L〉〈L| − |R〉〈R| and
σx = |L〉〈R| + |R〉〈L|, respectively [46]. In our expression for
gch, e refers to the electron’s charge, and φ0 to the piezoelectric
potential associated with a single SAW phonon; the decay
of the SAW resonator mode into the bulk is captured by the
factorF(kd), where d is the distance between the DQD and the
surface and k = 2π/λc the wave number of the resonator mode
[46]. In the computational basis, where the dot Hamiltonian
Hdot = ε

2σ z + tcσ
x is diagonal, with the electronic eigenstates

|+〉 = cos θ |L〉 + sin θ |R〉, (I2)

|−〉 = − sin θ |L〉 + cos θ |R〉, (I3)

where the mixing angle is given by tan θ = 2tc/(ε + �), � =√
ε2 + 4t2

c , the spin-resonator Hamiltonian given in Eq. (I1)
can be rewritten as

Hcharge = �

2
Sz + ωca

†a + gxSx ⊗ (a + a†)

+gzSz ⊗ (a + a†), (I4)

where the Pauli operators in the logical qubit basis are Sz =
(|+〉〈+| − |−〉〈−|), Sx = (|+〉〈−| + |−〉〈+|) and

gx = gch
2tc

�
, (I5)

gz = −gch
ε

�
. (I6)

In the last step, we have made use of the rela-
tions 2 sin θ cos θ = sin (2θ ) = 2tc/� and cos2 θ − sin2 θ =
cos (2θ ) = ε/�. In the limit where δ,gch � ωc, with δ = � −
ωc, one can perform a rotating-wave approximation yielding
the standard Jaynes-Cummings Hamiltonian [35]. Finally, the
spin-resonator Hamiltonian given in Eq. (I4) belongs to the
general class of Hamiltonians defined in Eq. (1). In particular,
at the charge degeneracy point ε = 0, where sin θ = cos θ =
1/

√
2, the Hamiltonian given in Eq. (I4) reduces to

Hcharge = tcS
z + ωca

†a + gchS
x ⊗ (a + a†). (I7)

Accordingly, the (pseudo)spin-resonator coupling is maxi-
mized at this charge-degeneracy point, i.e., when there is no
bias between the two dots, and decreases as one moves away
from this point [29,32,35].

Coupling strength. Following Ref. [47], the single-phonon
coupling strength gch may be expressed as

gch

ωc

=ζch=
√

αeff

√
l2λ

V
, (I8)

where V is the mode volume associated with the resonator
mode and αeff = αK2c/vsεr is an effective fine-structure

constant, defined in terms of the fine-structure constant
α ∼ 1

137 , the (material-specific) electromechanical coupling
coefficient K2 (as a widely used measure to quantify the
piezoelectric coupling strength), the speed of light c, the SAW
speed of sound vs , and the relative dielectric constant εr . The
coupling parameter K2 describes piezoelectric stiffening and
may be expressed as K2 = e2

14/cε, where e14, c, and ε refer to
representative values of the piezoelectric, the elasticity, and the
dielectric tensor, respectively. Typical values for αeff/α range
from αeff/α ∼ 10 for GaAs up to αeff/α � 100 for strongly
piezoelectric materials such as LiNbO3 or ZnO, underlining
the potential of SAW-based systems to reach the ultrastrong
coupling regime [47]. For a typical SAW penetration length
∼0.3λ close to the surface, Eq. (I8) further simplifies to
gch/ωc ≈ (0.5–1.5)

√
l2/A, where A refers to the surface mode

area. When expressing αeff in terms of the fundamental
material parameters, Eq. (I8) can be rewritten as

gch

ωc

≈ ee14

εvs

√
1

ρvs

√
l2λ

V
. (I9)

This estimate also follows from the expression given above,
gch = eφ0F(kd) sin (kl/2), with φ0 ≈ (e14/ε)

√
h̄/2ρV ωc

[46], close to the surface F(kd) ∼ 1, and with sin (kl/2) ≈
kl/2 for kl/2 � 1 (in the spirit of circuit-QED setups).

Spin qubit. In the two-electron regime of a DQD, one can
couple the effective dipole moment of singlet-triplet subspace
to the resonator mode [27,46]. Within the two-level subspace
(all other levels are far detuned), the dynamics is described by

Hspin = �

2
σ z + ωca

†a + gxσ x ⊗ (a + a†)

+ gzσ z ⊗ (a + a†), (I10)

where σ z = |1〉〈1| − |0〉〈0|, σx = |1〉〈0| + |0〉〈1| and

gx = eφ0F(kd)ηgeoκ0κ1, (I11)

gz = eφ0F(kd)ηgeo
[
κ2

1 − κ2
0

]/
2. (I12)

Here, ηgeo = sin (kxR) − sin (kxL) accounts for the position-
ing of the DQD with respect to the piezoelectric mode
function. The coupling is reduced by the admixtures of the
qubit’s states {|0〉,|1〉} with the localized singlet κn = 〈n|S02〉.
Again, for � ≈ ωc and gα � ωc, we recover the prototypical
Jaynes-Cummings dynamics. Moreover, the spin-resonator
Hamiltonian given in Eq. (I10) belongs to the general class
of Hamiltonians defined in Eq. (1).

Hot gate. For such a spin qubit, a spin-resonator
coupling strength of gsp/2π ≡ gx/2π = (g0/2π )κ0κ1 ≈
3.2 MHz(gz/2π ≈ 0.64 MHz) has been predicted for typical
parameters in GaAs [46]. For a typical resonator frequency
ωc/2π ≈ 1.5 GHz, this amounts to a relative coupling strength
μsp = gsp/ωc ≈ 0.2% and an effective coupling geff/2π =
μspgsp/2π ≈ 65 kHz, which could be increased substantially
by additionally depositing a strongly piezoelectric material
such as LiNbO3 or ZnO on the GaAs substrate [46,47,63]. The
condition ωc � � can be satisfied by choosing the magnetic
gradient � between the dots appropriately, � � 0.1 μeV.
Recently, SAW resonators with quality factors approaching
∼106 have been realized experimentally [64]. Then, taking

052335-14



HIGH-FIDELITY HOT GATES FOR GENERIC SPIN- . . . PHYSICAL REVIEW A 95, 052335 (2017)

an optimistic quality factor of Q = 106, according to the
hot-gate requirement kBT � Q × geff , we find T � 3.1 K;
therefore, for spin qubits coupled to high-quality SAW res-
onators, our scheme can tolerate temperatures approaching the
Kelvin regime, where the thermal occupation number is much
larger than one. For example, for ωc/2π ≈ (1.0–1.5) GHz
and T ≈ 0.5 K, we have n̄th ≈ 6.5–10. The second require-
ment for small errors, 
 � geff , yields 
/2π � 65 kHz,
which may be satisfied in GaAs with recently demonstrated
echo techniques, where decoherence time scales T2 ≈ 1 ms
have been demonstrated [65]. Finally, with n̄th/Q ≈ 10/106

and 
/ωc ≈ 1 kHz/1.5 GHz, and using the relation ξ ≈
ακ (κ/ωc)n̄th + α

/ωc, we can estimate the overall gate
error as ξ ≈ 4 × 10−5 + 2.5 × 10−2 ≈ 2.5%, which is largely
limited by dephasing-induced errors (for the parameters
chosen here). Again, to counteract this source of error, a
strongly piezoelectric material such as LiNbO3 may be used on
the GaAs substrate. Alternatively, one could also investigate
silicon quantum dots: while this setup also requires a more
sophisticated heterostructure including some piezoelectric
layer, it should benefit from prolonged dephasing times T �

2 >

100 μs [58], which is not longer than the dephasing time T2

quoted above for GaAs, but relaxes the need for dynamical
decoupling.

APPENDIX J: MICROSCOPIC DERIVATION OF THE
NOISE MODEL

In this appendix, we provide a microscopic derivation of the
master equation given in Eq. (7) of our paper. Here, we focus
on the relevant decoherence processes induced by coupling
between the resonator mode and its environment and restrict
ourselves to the regime of interest where ωq → 0. Our analysis
is built upon the master-equation formalism, a tool widely used
in quantum optics for studying the irreversible dynamics of a
quantum system coupled to a macroscopic environment. We
detail the assumptions of our approach and discuss in detail
the relevant approximations.

1. Model

We consider a generic linear coupling between the resonator
mode and a set of independent harmonic oscillators (repre-
senting, e.g., the modes of the free electromagnetic field), as
described by the following textbook system-bath Hamiltonian:

H = HS + HB︸ ︷︷ ︸
=H0

+ HI , (J1)

HS = ωca
†a + gS ⊗ (a + a†), (J2)

HB =
∫ ωc+�B

ωc−�B

dω ωb†ωbω, (J3)

HI =
∫ ωc+�B

ωc−�B

dω

√
κ(ω)

2π
(a†bω + ab†ω), (J4)

where bω refer to bosonic bath operators obeying standard
commutation relations with [bω,b

†
ω′ ] = δ(ω − ω′), etc., and

�B denotes the characteristic bandwidth of the bath [66–68].
Within a rotating-wave approximation, we have dropped all

FIG. 11. Schematic illustration of the hierarchy of frequency
scales assumed for the derivation of the quantum master equation.
Following the standard treatment [70], the reservoir spectral density
κ(ω)/2π is taken to be a flat function of ω within the frequency range
of interest [ωc − �B,ωc + �B ].

energy-nonconserving terms, which is valid if the system’s
characteristic frequency ωc is the largest frequency in the
problem [67]. The bandwidth �B is the frequency range over
which the system-bath coupling is valid; it is closely related
to the characteristic memory or correlation time of the bath
τc ∼ �−1

B , as can be readily seen from the relation∫ ωc+�B

ωc−�B

dω e−iωτ = 2�Be−iωcτ sinc(�Bτ ) (J5)

= 2πδ�B
(τ )e−iωcτ , (J6)

as it appears in the standard derivation of the master equation
presented below [if the spectral noise density κ(ω) and the ther-
mal occupation number n̄th(ω) are evaluated self-consistently
at ω = ωc]. Here, the function δ�B

(τ ) = π−1�Bsinc(�Bτ ) is a
well-known diffractionlike function with a maximal amplitude
�B/π at τ = 0 and a width of the order of τc ∼ 2π/�B [54].
Since the integral equals one, this function is an approximate
delta function which tends to δ(τ ) in the so-called white-noise
limit �B → ∞ (that is, τc → 0). Intuitively, δ�B

(τ ) can be
seen as a slowly varying function (on the ∼ω−1

c time scale)
that effectively acts as a delta function on time scales of the
system evolution (i.e., much slower than 1/�B ). Typically,
�B � ωc is assumed [66,67], but τc is still much shorter than
the relevant time scales of the system dynamics τsys (other than
the free rotation ωc), that is,

ωc � �B � τ−1
sys . (J7)

In this case, the bandwidth �B can be much larger than the
spin-resonator coupling strength g (which implies gτc � 1, as
required for the standard master-equation treatment discussed
below), but still much smaller than the characteristic frequency
ωc. The system-reservoir coupling is usually only valid within
a bandwidth 2�B � ωc around ωc [67]. Within this frequency
range the coupling strength may be approximated by a constant
value as κ(ω) ≈ κ(ωc), as schematically depicted in Fig. 11.

2. Microscopic derivation of the master equation

Our analysis is based on the standard Born-Markov
framework, where correlations between the system and the
bath are neglected (on relevant time scales) since the bath is
considered to be very large and the effect of the interaction
with the (small) system is negligible. Within this standard
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Born-Markov approximation [54,69], in the interaction picture
the system’s dynamics is described by

˙̃ρ = −
∫ ∞

0
dτ TrB{[H̃I (t),[H̃I (t − τ ),ρ̃(t)ρB]]}, (J8)

with ρ̃ = eiH0t ρ(t)e−iH0t , H̃I (t) = eiH0tHI e
−iH0t , and ρB =

Z−1 exp [−βHB ] refers to a thermal state of the bath with
the standard thermal correlation functions [69]

TrB[b†ωbω′ρB] = n̄th(ω)δ(ω − ω′), (J9)

etc. Equation (J8) can equivalently be expressed as

˙̃ρ =
∫ ∞

0
dτ TrB{H̃I (t)ρ̃(t)ρBH̃I (t − τ )︸ ︷︷ ︸

©1

− H̃I (t)H̃I (t − τ )ρ̃(t)ρB + H.c.}. (J10)

In the interaction picture, the system-bath coupling reads as
explicitly

H̃I (t) =
∫ ωc+�B

ωc−�B

dω

√
κ(ω)

2π
{e−iωtbω[eiωct (a† + μS) − μS]

+ eiωtb†ω[e−iωct (a + μS) − μS]}, (J11)

where we have used the fact that the resonator annihilation
operators transform as

ã(t) = eiHStae−iHS t = e−iωct (a + μS) − μS, (J12)

while the bath operators transform simply as b̃ω(t) =
eiHBtbωe−iHB t = e−iωtbω. Next, let us single out one term
explicitly, but all other terms follow analogously. Using the
thermal correlation functions as stated in Eq. (J9), we then
obtain

TrB{©1 } =
∫ ωc+�B

ωc−�B

dω
κ(ω)

2π
n̄th(ω)e−iωτ

× [eiωct (a† + μS) − μS]ρ̃(t)

× [e−iωc(t−τ )(a + μS) − μS]

+
∫ ωc+�B

ωc−�B

dω
κ(ω)

2π
[n̄th(ω) + 1]eiωτ

× [e−iωct (a + μS) − μS]ρ̃(t)

× [eiωc(t−τ )(a† + μS) − μS], (J13)

and similar expressions for the remaining terms in Eq. (J8). In
the next step, we perform the integration over the past, using
the relation [71]∫ ∞

0
dτ e±i(ωc−ω)τ = πδ(ωc − ω) ± iP

1

ωc − ω
, (J14)

with P denoting Cauchy’s principal value, perform the inte-
gration over frequency, and within a rotating-wave approx-
imation [which is valid for the realistic parameter regime
μκ(ωc)n̄th(ωc)

√
n̄th(ωc) � ωc] drop all fast oscillating terms

∼ exp [±iωct]. After some simple manipulations, we then

arrive at the master equation

˙̃ρ = κ(ωc)[n̄th(ωc) + 1]D[a + μS]ρ̃

+ κ(ωc)n̄th(ωc)D[a† + μS]ρ̃

− i�c[(a† + μS)(a + μS),ρ̃]

+ γD[S]ρ̃ − i�S[S2,ρ̃]. (J15)

Here, we have introduced the decay rate

γ = μ2
∫ ωc+�B

ωc−�B

dω κ(ω)[2n̄th(ω) + 1]δ(ω − 0), (J16)

which derives from the terms in Eq. (J13) rotating at zero
frequency, and the Lamb-type energy shifts

�c = P

∫ ωc+�B

ωc−�B

dω
κ(ω)

2π

1

ωc − ω
, (J17)

�S = μ2P

∫ ωc+�B

ωc−�B

dω
κ(ω)

2π

1

ω
. (J18)

In accordance with the frequency regime (ωc � �B � τ−1
sys )

discussed above, we assume the bandwidth �B to be large,
but finite. In this case, the rate γ vanishes (γ = 0), as
the integration range does not cover the δ peak at ω = 0.
Physically, the regime where the lower limit of the relevant
frequency range ωc − �B does not extend all the way down to
zero frequency amounts to the existence of a lower-frequency
cutoff ωcut = ωc − �B . For example, such a lower-frequency
cutoff ωcut naturally arises in the context of a phonon bath
where the existence of ωcut ∼ λ−1

cut is due to finite device
dimensions (since a phonon wavelength λ larger than the de-
vice dimensions is not supported by this structure). Moreover,
phonons with a wavelength much larger than the resonator are
not able to resolve the resonator and simply represent a global
shift of the resonator structure as a whole (and therefore do
not linearly couple to the localized resonator mode). On the
contrary, in the limit of infinite bandwidth �B → ∞, the decay
rate γ (as well as the Lamb-type shifts �c,�S) will depend on
the relevant reservoir spectral density

κ(ω)/2π = g2(ω)DDOS(ω), (J19)

often abbreviated as J (ω) = κ(ω)/2π in the literature [72].
The spectral density J (ω) = ∑

k |gk|2δ(ω − ωk) encodes the
features of the environment relevant for the reduced system
description, and depends on both the environmental density
of the modes DDOS(ω) and on how strongly the system
couples to each mode ∼g(ω). For concreteness, let us
discuss two particular examples: (i) First, in quantum optical
systems typically J (ω) ∼ ωn for a positive integer n [70,71];
in particular, for coupling of a harmonic oscillator to the
electromagnetic field in three dimensions in free space the
spectral density scales as J (ω) ∼ ω3 [73]. In this case, even
in the absence of a lower-frequency cutoff ωcut, the rate γ

vanishes because κ(ω)n̄th(ω) ∼ ω2 → 0 in the limit ω → 0.
(ii) Second, a prominent phenomenological ansatz frequently
used in the literature is the so-called Caldeira-Leggett model,
where J (ω) ∼ ωα�1−α

cut e−ω/�cut for all α > 0 and some high-
frequency cutoff �cut [72]. Environments with 0 < α < 1 are
referred to as sub-Ohmic, while those corresponding to α = 1
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and α > 1 are called Ohmic and super-Ohmic, respectively
[72]. Within this Caldeira-Leggett model (and for �B → ∞),
the decay rate γ given in Eq. (J16) vanishes for super-Ohmic
spectral densities with α > 1 becomes a constant for α = 1
and diverges for α < 1 since n̄th(ω) ∼ kBT /ω for kBT � ω.

Here, we restrict our analysis to the regime where γ

vanishes, either because of the existence of a lower-frequency
cutoff ωcut > 0 or a spectral density with J (ω) ∼ ωα(α > 1),
as discussed above. Moreover, following the standard treat-
ment [54,74] we neglect the Lamb shift �S ∼ μ2 (typically,
it is assumed that the Cauchy principal part of an integral of
the spectral density is very small compared to the real part
expressions [69,75]), yielding the master equation

˙̃ρ = κ(ωc)[n̄th(ωc) + 1]D[a + μS]ρ̃

+ κ(ωc)n̄th(ωc)D[a† + μS]ρ̃

− i�c[(a† + μS)(a + μS),ρ̃], (J20)

which (due to the interaction-mediated hybridization of spin
and resonator degrees of freedom ∼g) displays correlated
decay terms of both resonator and spin degrees of freedom, that
are proportional to the effective rate ∼κ(ω)n̄th(ω) evaluated
at the (large) characteristic system frequency ωc. Using the
relation

e−iHS t (a + μS)eiHSt = eiωct (a + μS), (J21)

the corresponding master equation in the Schrödinger picture
is found to be

ρ̇ = κ(ωc)[n̄th(ωc) + 1]D[a + μS]ρ

+ κ(ωc)n̄th(ωc)D[a† + μS]ρ

− i[HS,ρ] − i�c[(a† + μS)(a + μS),ρ]. (J22)

In what follows, we restrict our analysis to the experimentally
most relevant regime of weak spin-resonator coupling where
μ = g/ωc � 1. Within the corresponding approximation of
independent rates of variation [54], the interactions with the
environment are treated separately for spin and resonator
degrees of freedom; in other words, they can approximately
be treated as independent entities and the terms (rates of
variation) due to internal and dissipative dynamics are added
independently. While for ultrastrong coupling the qubit-
resonator system needs to be treated as a whole when studying
its interaction with the environment [74], yielding irreversible
dynamics through jumps between dressed states (rather than
bare states), in the weak coupling regime we recover standard
(quantum optical) dissipators, i.e.,

ρ̇ = −i[HS,ρ] + κ[n̄th + 1]D[a]ρ + κn̄thD[a†]ρ. (J23)

In the last step, we have set κ ≡ κ(ωc), n̄th ≡ n̄th(ωc) and
dropped the energy shift �c which may be incorporated into a
renormalized cavity frequency ωc → ωc + �c.

Note that the approximate replacement of the correlated dis-
sipators by uncorrelated ones, that is, D[a + μS]ρ → D[a]ρ
and D[a† + μS]ρ → D[a†]ρ, gives rise to a conservative
error estimate for our hot gate. As can be shown analytically
(compare Appendix L), the rethermalization-induced error ξκ

induced by independent decay terms as given in Eq. (J23) is
twice as large as the one due to correlated decay terms. This
statement has also been verified numerically; compare Table I.

TABLE I. Comparison of the rethermalization-induced error
ξκ (%) for two different master equations, namely, Eq. (J23) (uncor-
related noise model) and ρ̇ = −i[HS,ρ] + κ[n̄th + 1]D[a + μS]ρ +
κn̄thD[a† + μS]ρ (correlated noise model). The error found for the
uncorrelated noise model (as used in the main text) is about twice
as large as the one found for the correlated one, and may therefore
be seen as a conservative estimate. Note that Fig. 4(c) of the main
text is partially based on the first row (uncorrelated noise model).
Other numerical parameters: μ = g/ωc = 1

16 , 
 = 0, kBT /ωc = 2,
and ωq = 0.

κ/ωcn̄th(10−3) 0 0.5 1 1.5 2 2.5

ξκ (%) for uncorrelated noise 0.0 0.21 0.41 0.61 0.81 1.01
ξκ (%) for correlated noise 0.0 0.10 0.20 0.30 0.40 0.50

While Eq. (J23) is not rigorous (given the approximations
made throughout its derivation), this type of noise model
(with independent rather than correlated decay terms, and
complemented by additional dissipators for the qubits) has
been used widely to describe a great variety of relevant
spin-resonator systems (in the regime of weak spin-resonator
coupling for values up to μ = g/ωc � 4% [76]), ranging,
e.g., from superconducting qubits [25,76] as well as quantum
dots coupled to transmission line resonators [31,37], to
NV-center spins [49] or carbon nanotubes [77] coupled to
nanomechanical oscillators. For example, in Refs. [31,37] very
good agreement with experimental results has been achieved
for μ ∼ 1%.

We conclude this discussion with a final remark on low-
frequency noise: As shown above, the existence of a low-
frequency cutoff does exclude low-frequency contributions
to resonator-mediated dephasing of the spins (since γ = 0).
Still, low-frequency noise (deriving for example from ambient
nuclear spins [1]) may still couple directly to the qubits. In
our model, this type of noise is captured by the dephasing
rate 
, which may, however, be mitigated efficiently by simple
spin-echo techniques.

APPENDIX K: ADDITIONAL NUMERICAL RESULTS

Here, we provide further detailed results based on the
numerical simulation of the master equation given in Eq. (7).
Just as in the main text, for all simulations shown below the
initial state of the spin-resonator system has been chosen
as ρ(0) = |⇑⇓〉〈⇑⇓| ⊗ ρth(T ), with the cavity mode in the
thermal state ρth(T ) = Z−1 exp [−βωca

†a]. Apart from the
state fidelityF , we also quantify the logarithmic negativity EN
(which ranges between 0 for separable states to at maximum
1 for two maximally entangled qubits) in order to quantify the
entanglement between the two qubits.

Periodic recurrences. First, as displayed in Fig. 12,
we observe periodic recurrences of the maximally entan-
gling dynamics: For example, for g/ωc = 1

4 (as used in
Fig. 12), ideally, apart from F = 1 at (ωc/2π )t = 1, we
find F = 1 again at (ωc/2π )t = 5 since Ux

id(m = 5, 1
4 ) =

exp [iπσ x
1 σx

2 ]Ux
id(1, 1

4 ) = −Ux
id(1, 1

4 ). This statement holds
provided that dephasing is negligible on the relevant time
scale; compare the dashed curve in Fig. 12 which accounts
for dephasing of the qubits.
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FIG. 12. Fidelity F for the two-qubit state ρqubits with the target
state |�tar〉 = (|⇑⇓〉 + i|⇓⇑〉)/√2 for 
/ωc = 0 (blue solid line)
and 
/ωc = 1% (red dashed line). For sufficiently low noise, at
ωct = 2π and ωct = 5 × 2π the fidelity with the maximally entan-
gled state |�tar〉 reaches the maximal value F = 1. Numerical pa-
rameters: ωq/ωc = 0, kBT /ωc = 2 (n̄th ≈ 1.54), g/ωc = 1

4 , κ/ωc =
Q−1 = 10−5.

Nonzero level splitting. While our analytical treatment has
assumed ωq = 0, in Fig. 13 we provide exemplary numerical
results that explicitly account for a nonzero qubit-level splitting
ωq > 0, showing that the proposed protocol can tolerate
nonzero level splittings of the qubits ωq/ωc � 0.1, without
a severe reduction in the fidelity of the protocol. Again, this
numerical finding is corroborated in Fig. 14. Here, it is shown
explicitly that a strong entanglement reduction is observed

FIG. 13. Fidelity F = 〈�tar|ρqubits|�tar〉 for the two-qubit state
ρqubits = Trcav[ρ] with the target state |�tar〉 = (|⇑⇓〉 + i|⇓⇑〉)/√2
for both ωq/ωc = 0 (solid blue line) and ωq/ωc = 0.1 (dashed
red line); here, g/ωc = 1

16 < 0.1. Other numerical parameters:
kBT /ωc = 2 (n̄th ≈ 1.54), Q = 105, and 
/ωc = 0.

FIG. 14. Logarithmic negativity EN for kBT /ωc = 1 and differ-
ent cavity quality factors: Q = 105 (solid blue), Q = 102 (dashed-
dotted blue), and Q = 10 (dashed magenta). A clear reduction of the
maximum entanglement is observed, if the quality factor Q is too low
to satisfy the hot-gate requirement given in Eq. (8). Here, we have
g/ωc × g/kBT = 1

16 = 6.25 × 10−2. The red (dotted) curve refers to
Q = 102 and ωq/ωc = 0.2. Other numerical parameters: g/ωc = 1

4
and 
/ωc = 0.

once condition (8) is violated. Conversely, within the range
of parameter values satisfying Eq. (8), the results are rather
insensitive to the particular parameter values.

Rethermalization-induced errors. As illustrated in Fig. 15,
we have numerically checked that (for small infidelities)

FIG. 15. Error as a function of the effective rethermalization rate
κn̄th for g/ωc = 1

16 (red squares), g/ωc = 1/(8
√

2) (blue stars) and
g/ωc = 1

8 (green triangles), and kBT /ωc = 2(n̄th ≈ 1.54), within the
relevant small-error regime (κeff/geff � 1). The dashed-dotted lines
in cyan refer to linear fits, demonstrating a linear error scaling in the
small error regime (κeff/geff � 1), which is independent of μ = g/ωc.
Accordingly, the error is larger for higher temperatures, but all
temperature-related effects are approximately captured by the thermal
occupation number n̄th. Other numerical parameters: 
 = 0 and
ωq = 0.
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FIG. 16. Total error ξ as a function of both the effective
rethermalization rate ∼κ/ωcn̄th ∼ n̄th/Q and the spin dephasing rate
∼
/ωc for g/ωc = 1

16 , kBT /ωc = 4, and ωq = 0.

the rethermalization-induced error ξκ scales linearly with
the effective rethermalization rate κeff = κn̄th. Notably, as
evidenced in Fig. 15, the error is found to be independent of the
spin-resonator coupling g. As demonstrated in in Appendix L,
this numerical result can be corroborated analytically within a
perturbative framework.

Full error analysis. Similar to Fig. 4(c) in the main text,
in Fig. 16 we provide numerical results that fully account for
higher-order, correlated errors (beyond the linear error approx-
imation). Here, we have chosen a temperature kBT /ωc = 4, a
factor 2 larger than the one used in Fig. 4(c) in the main text.
Still, if the rethermalization-induced error is scaled in terms of
the effective decay rate κeff = κn̄th, we obtain (approximately)
the same total error ξ , independently of the temperature kBT ,
showing that the effective decay rate κeff = κn̄th captures well

any temperature-related effects. This is evidenced numerically
in Fig. 16 which approximately coincides with the results
displayed in Fig. 4(c) in the main text and is in line with
our simple error estimate for rethermalization-induced errors;
compare Eq. (10) in the main text.

Timing errors. Finally, we consider errors (infidelities)
due to limited timing accuracies. To do so, we take the
average fidelity of our protocol F̄ within a certain timing
window �t centered around the stroboscopic time tmax for
which maximum fidelity (minimal infidelity) is achieved; for
example, in quantum dot systems timing accuracies �t of
a few picoseconds have been demonstrated experimentally
[78]. For g/2π = 10 MHz and ωc/2π = 160 MHz (that is,
μ = g/ωc = 1

16 ) as used in the main text, the pulse time
lies in the microsecond regime (tmax = π/8geff ≈ 0.2 μs), for
which �t ≈ 1 ps is feasible; for this relatively long pulse,
the relative time jitter is well below the percent level, i.e.,
(ωc/2π )�t ≈ 10−4. Based on our numerical simulations, we
make the following observations: (i) As demonstrated in
Fig. 17, we find an average error scaling linearly with ∼n̄th, that
is ξ̄ = 1 − F̄ ∼ n̄th. (ii) More precisely, the error expressions
given in the main text can be generalized to

ξ̄ = ᾱκ

κ

ωc

n̄th + ᾱ





ωc

+ β̄κ + β̄
. (K1)

Here, the unit-less quantities ᾱγ ,β̄γ for γ = κ,
 depend on
the timing window �t . For example, for g/ωc = 1

16 and
(ωc/2π )�t = 5%, we then extract ᾱκ ≈ 4.03, β̄κ ≈ 2.2 ×
10−4, ᾱ
 ≈ 24.22, and β̄
 ≈ 5.1 × 10−4. (iii) As shown in
Fig. 17, for the experimentally most relevant regime where
(ωc/2π )�t � 1 (such that the timing window covers a small
range of the oscillations only), this error is found to decrease
for a smaller spin-resonator coupling strength g/ωc because
larger values of g/ωc imply larger oscillation amplitudes
within the relevant range over which we have to average;
compare the center and right plots in Fig. 17. Therefore, for the
experimentally most relevant regime where (ωc/2π )�t � 1
and g/ωc � 1

16 , the effects of time jitter should be negligible.

FIG. 17. Timing errors. Left: total average error ξ̄ as a function of the thermal occupation number n̄th for timing windows (ωc/2π )�t = 5%
(circles) and (ωc/2π )�t = 10% (squares); here, g/ωc = 1

16 (red symbols) and g/ωc = 1
8 (blue symbols, upper curve). All curves can be fit

very well to linear error models (see black dashed lines). Center: set of underlying (temperature-dependent) simulations for both g/ωc = 1
16

(terminating at ωct/2π = 16.5) and g/ωc = 1
8 (terminating at ωct/2π = 4.5). Note that larger amplitudes are observed for larger values of

μ = g/ωc. Other numerical parameters: Q = 105, 
 = 0, and ωq = 0. Right: same analysis as done in Fig. 15 for g/ωc = 1
8 (triangles) and

g/ωc = 1
16 (squares). The black curves account for a finite timing accuracy (ωc/2π )�t = 5%, showing that the detrimental effects of time

jitter are less pronounced for smaller values of μ = g/ωc.
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APPENDIX L: ANALYTICAL EXPRESSION FOR
RETHERMALIZATION-INDUCED ERRORS

In this Appendix, we derive an analytical expression for
rethermalization-induced errors. In particular, we show that
this expression is independent of the spin-resonator coupling
strength g.

Our analysis starts out from the master equation

ρ̇ = −i[H,ρ] +
∑
j=1,2

D[Lj ]ρ, (L1)

where the Hamiltonian H = ωca
†a + gS ⊗ (a + a†) refers

to the ideal (noise-free) dynamics and the jump-operators
L1 = √

κ1a, L2 = √
κ2a

† with κ1 = κ(n̄th + 1) and κ2 = κn̄th

describe rethermalization of the resonator mode with a rate
κ = ωc/Q that is enhanced by the thermal occupation number
n̄th. It is convenient to move to an interaction picture, defined by
ρ̃(t) = exp [iH t]ρ(t) exp [−iH t]. In this interaction picture,
the system’s dynamics is described by

˙̃ρ =
∑
j=1,2

D[L̃j ]ρ̃, (L2)

with time-dependent jump operators L̃j = exp [iH t]
Lj exp [−iH t]. Using the exact relation exp [−iH t] =
U exp [−iωcta

†a]U †Usp(t), with the polaron transformation
U = exp [μS(a − a†)] and the pure spin (entangling) gate

Usp(t) = exp [iμ2ωctS2], the time-dependent jump operators
L̃j take on a simple form

L̃1(τ ) = √
κ1[e−iωcτ a + (e−iωcτ − 1)μS],

(L3)
L̃2(τ ) = √

κ2[eiωcτ a† + (eiωcτ − 1)μS].

The formal solution to Eq. (L2) reads as

ρ̃(t) = ρ̃(0) +
∑

j

∫ t

0
dτ D[L̃j (τ )]ρ̃(τ ), (L4)

where in the interaction picture the zeroth-order solution
ρ̃0(t) = ρ̃(0) = ρ(0) stays inert, and accounts for the ideal
(noise-free) dynamics only in the laboratory frame, ρ0(t) =
exp [−iH t]ρ̃0(t) exp [iH t] = exp [−iH t]ρ(0) exp [iH t]. To
obtain the first-order correction ρ̃1(t) within a perturbative
framework, we reinsert the zeroth-order solution into the
dissipator of Eq. (L4), i.e., effectively we take ρ̃(τ ) → ρ(0),
which yields ρ̃(t) ≈ ρ(0) + ρ̃1(t), with

ρ̃1(t) =
∑

j

∫ t

0
dτ D[L̃j (τ )]ρ(0). (L5)

Inserting the expressions given in Eq. (L3) into Eq. (L5) and
performing the integration, with

∫ t

0 dτ |1 − e±iωcτ |2 = 2[t −
sin (ωct)

ωc
] and

∫ t

0 dτ (1 − e±iωcτ ) = t ± i e±iωc t−1
ωc

, one arrives at

ρ̃1(t) = κ1tD[a]ρ(0) + κ2tD[a†]ρ(0) + 2(κ1 + κ2)μ2

[
t − sin (ωct)

ωc

]
D[S]ρ(0)

+
[
κ1μ

(
t − i

e−iωct − 1

ωc

){
aρ(0)S − 1

2
{aS,ρ(0)}

}
+ H.c.

]

+
[
κ2μ

(
t + i

eiωct − 1

ωc

){
a†ρ(0)S − 1

2

{
a†S,ρ(0)

}} + H.c.

]
, (L6)

which, for stroboscopic times tm = 2πm/ωc (with m integer), simplifies to

ρ̃1(tm) = κ1tmD[a]ρ(0) + κ2tmD[a†]ρ(0) + 2(κ1 + κ2)μ2tmD[S]ρ(0)

+ [
κ1μtm

{
aρ(0)S − 1

2 {aS,ρ(0)}} + H.c.
] + [

κ2μtm
{
a†ρ(0)S − 1

2 {a†S,ρ(0)}} + H.c.
]
.

Next, we perform a transformation back to the laboratory frame, with ρ(t) = exp [−iH t]ρ̃(t) exp [iH t]. As discussed in the main
text, for stroboscopic times the ideal evolution simplifies to exp [−iH tm] = exp [iμ22πmS2] = exp (−iφgp) exp [i4πmμ2σx

1 σx
2 ].

The ideal (noise-free) evolution is given by ρid(tm) = exp [−iH tm]ρ(0) exp [iH tm] = �id(tm) ⊗ ρth, where �id(tm) =
exp [i4πmμ2σx

1 σx
2 ]�(0) exp [−i4πmμ2σx

1 σx
2 ] is the ideal qubit’s state at time tm, starting from the initial state ρ(0) = �(0) ⊗ ρth.

Then, the system’s density matrix at time tm is approximately given by

ρ(tm) = ρid(tm) + κ1tmD[a]ρid(tm) + κ2tmD[a†]ρid(tm) + 2(κ1 + κ2)μ2tmD[S]ρid(tm)

+ [
κ1μtm

{
aρid(tm)S − 1

2 {aS,ρid(tm)}} + κ2μtm
{
a†ρ(0)S − 1

2

{
a†S,ρ(0)

}} + H.c.
]
.

Note that, in the limit κi → 0, one retrieves the ideal result
ρ(tm) = ρid(tm). Next, we trace out the resonator mode.
Assuming the state of the resonator mode to be diagonal in
the occupation number basis (in particular, this holds for a
thermal state ρth), none of the cross terms contribute to the
partial trace, and for stroboscopic times tm the state of the
qubits is given by

�(tm) = �id(tm) + 2κ(2n̄th + 1)tmμ2D[S]�id(tm). (L7)

As expected naively, the error term scales with ∼κn̄thtm, but
it is further reduced by the factor μ2 = (g/ωc)2. Equation
(L7) holds for stroboscopic times tm = 2πm/ωc, with m

integer. If mμ2 = 1
16 , the ideal evolution exp [−iH tm] =

exp (−iφgp) exp [i π
4 σx

1 σx
2 ] equals a maximally entangling

gate, which (for an initial pure state like |�〉0 = |⇓⇓〉) yields
the desired ideal qubit target state |�tar〉 = exp [i π

4 σx
1 σx

2 ]|�〉0.
Then, in the presence of noise, at the nominally ideal time
tmax = π/8μ2ωc = π/8geff the qubit’s density matrix reads
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FIG. 18. FidelityF close to the ideal time tmax for g/ωc = 1
16 . The

different curves refer to Q = 105, kBT /ωc = 2, i.e., n̄th ≈ 1.54 (blue
solid, top curve), Q = 105, kBT /ωc = 4, i.e., n̄th ≈ 3.52 (red solid),
and Q = 104, kBT /ωc = 4 (red dashed dotted). The error ξ = 1 − F
can be estimated well with the formula ξk ≈ 4n̄th/Q, giving (for ex-
ample)F ≈ 1–4 × 3.52/104 ≈ 0.9986. Other numerical parameters:

 = 0 and ωq = 0.

as

�(tmax) = |�tar〉〈�tar| + π

4

κ

ωc

(2n̄th + 1)D[S]|�tar〉〈�tar|.
(L8)

Therefore, to first order rethermalization-induced noise leads
to dephasing dynamics in the eigenbasis ofS with a single such
phase flip. Since neither the desired target state |�tar〉 nor the
initial state |�〉0 is an eigenstate of S, the system loses fidelity
with a probability π

4
κ
ωc

(2n̄th + 1); notably, this expression is
independent of the spin-resonator coupling strength g.

For the fidelity with the maximally entangled target state,
we then obtain

F = 〈�tar|�(tmax)|�tar〉 = 1 − π

2

κ

ωc

(2n̄th + 1), (L9)

with a thermalization-induced error term given by

ξκ = π (κ/ωc)n̄th + π

2
Q−1. (L10)

This analytical result is in good agreement with our numerical
findings [from which we have deduced ξκ ≈ ακ (κ/ωc)n̄th,
with ακ ≈ 4], showing (i) a linear scaling with the effective
rethermalization rate ∼κn̄th, (ii) with a prefactor ακ = π (close
to ∼4) that is independent of the spin-resonator coupling
strength g, and (iii) a constant offset ∼Q−1 which is negligible
for realistic quality factors Q ≈ 105–106. The latter is due
to photon or phonon emission with a rate ∼κ = ωc/Q at
T → 0. As illustrated further in Fig. 18 with a closeup of
the fidelity F(t) around the optimal point tmax, the error ξκ

can be estimated well with this simple formula, where all
temperature-related effects are captured by the simple linear
expression in the thermal occupation number n̄th.

Correlated noise model. An analog analysis to the one
presented above can be performed for a master equation with
correlated (rather than uncorrelated) noise. In this case, as

shown in Appendix J 2, the jump operators are given by
L1 = √

κ1(a + μS), L2 = √
κ2(a† + μS), which take on a

simple form in the interaction picture, namely,

L̃1(τ ) = √
κ1e

−iωcτ (a + μS), (L11)

L̃2(τ ) = √
κ2e

iωcτ (a† + μS), (L12)

as compared to Eq. (L3) within the uncorrelated noise model
discussed above. Then, following the same steps as above,
the integration

∫ t

0 dτ |1 − e±iωcτ |2 = 2(t − sin (ωct)
ωc

) is simply

replaced by
∫ t

0 dτ = t ; accordingly, in this scenario, the
prefactor of the spin dephasing term D[S]ρ(0) simplifies to
∼(κ1 + κ2)μ2t , which for stroboscopic times tm = 2πm/ωc is
exactly a factor of 2 smaller than the corresponding rate in
Eq. (L6) for the uncorrelated noise model. In summary, along
the lines of our previous analysis, for a correlated noise model,
Eqs. (L7) and (L10) should be replaced by

�(tm) = �id(tm) + κ(2n̄th + 1)tmμ2D[S]�id(tm) (L13)

and

ξκ = π

2
(κ/ωc)n̄th + π

4
Q−1, (L14)

respectively, showing that for uncorrelated spin-resonator
noise the rethermalization-induced error is approximately
twice as large as for correlated spin-resonator noise; also
compare the numerical results presented in Table I.

APPENDIX M: ANALYTICAL MODEL FOR
DEPHASING-INDUCED ERRORS

In this Appendix, we provide an analytical model
for dephasing-induced errors. Neglecting rethermalization-
induced errors for the moment, here we consider the following
master equation:

ρ̇ = −i[Hid,ρ]︸ ︷︷ ︸
L0ρ

+ γφ

[
D

[
σ z

1

]
ρ + D

[
σ z

2

]
ρ
]︸ ︷︷ ︸

L1ρ

, (M1)

where Hid = ωca
†a + g(σ z

1 + σ z
2 ) ⊗ (a + a†) describes the

ideal (error-free), coherent evolution for longitudinal coupling
between the qubits and the resonator mode, and γφ is the
pure dephasing rate. Since the superoperators L0 and L1 as
defined in Eq. (M1) commute, that is, [L0,L1] = 0 (since
[Hid,D[σ z

i ]X] = D[σ z
i ][Hid,X] for any operator X), the full

evolution simplifies to

ρ(t) = eL1t eL0t ρ(0) = eL1t ρid(t), (M2)

where we have defined the ideal target state at time t as
ρid(t) = exp [L0t]ρ(0), which, starting from the initial state
ρ(0), exclusively accounts for the ideal (error-free), coherent
evolution. For small infidelities (γφt � 1), the deviation from
the ideal dynamics �ρ = ρ − ρid is approximately given by

�ρ(t) ≈ γφt
∑

i

D
[
σ z

i

]
ρid(t), (M3)

showing that (in the regime of interest where γφt � 1) the
dominant dephasing-induced errors are linearly proportional
to ∼γφtg ∼ γφ/geff = γφ/μ2ωc, as expected; here, tg ∼ geff is
the relevant gate time which has to be short compared to γ −1

φ .
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In what follows, for completeness we derive the same
result within a quantum jump approach. Equation (M1) can
be rewritten as

ρ̇ = −iHρ + iρH † + J ρ, (M4)

where H = Hid − iγφ and J ρ = γφ

∑
i σ

z
i ρσ z

i . The formal
solution to Eq. (M4) reads as

ρ(t) = e−iH tρ(0)eiH †t +
∫ t

0
dτ e−iH (t−τ )J ρ(τ )eiH †(t−τ ).

(M5)
Defining the ideal target state at time t as

ρid(t) = e−iHid(t−τ )ρ(τ )eiHid(t−τ ), (M6)

the exact solution given in Eq. (M5) can be iterated, giving an
illustrative expansion in terms of the jumps J . It reads as

ρ(t) = U(t)ρ(0) +
∫ t

0
dτ1U(t − τ1)JU(τ1)ρ(0)

+
∫ t

0
dτ2

∫ τ2

0
dτ1U(t − τ2)JU(τ2 − τ1)

×JU(τ1)ρ(0) + · · · .

Here, the nth-order term comprises n jumps J with free
evolution U(t)ρ = e−iH tρeiH †t between the jumps. Up to
second order in J we then find

ρ(t) = U(t)ρ(0) + e−2γφtγφt
∑

i

σ z
i ρid(t)σ z

i (M7)

+ 1

2
e−2γφtγ 2

φ t2
∑
i,j

σ z
i σ z

j ρid(t)σ z
j σ z

i + · · · .

For the regime of interest where γφt � 1, we then obtain again
the result given in Eq. (M3), where the dominant error term
scales linearly with ∼γφt .

APPENDIX N: RELAXATION-INDUCED ERRORS

In this Appendix, we address in detail errors induced
by relaxation processes, typically characterized by the time
scale T1. First, we discuss typical relaxation time scales for
different physical platforms, with particular emphasis on their
dependence on both temperature T and qubit-level splitting ωq .
We conclude that interlevel scattering processes typically play
a minor role as compared to pure dephasing-induced errors,
even in our regime of interest with elevated temperatures
of a few Kelvin and small qubit-level splittings. Second,
for completeness, we numerically verify the expected linear
error scaling ∼T −1

1 and, using the fundamental relation
T −1

2 = 1/2T1 + 1/Tφ [79], with T −1
2 (T −1

φ ) referring to the
decoherence (pure-dephasing) rate, give an upper bound on
decoherence-induced errors.

1. Experimental relaxation time scales

Let us first discuss spin qubits in quantum dots where deco-
herence predominantly results from spin-orbit interaction and
hyperfine interaction with nuclear spins [60,80]. Thereafter, we
discuss yet another candidate system for the implementation of
the proposed hot gate, consisting of nitrogen-vacancy centers

coupled to the vibrational mode of a diamond mechanical
nanoresonator via strain [52,81,82].

(i) Single-electron spin qubits. For single-electron spins in
GaAs quantum dots the inter-Zeeman level spin scattering is
typically dominated by spin-orbit interaction in combination
with the emission of single piezoelectric phonons, while
other relaxation processes are usually negligible [60,80].
At low temperatures, the corresponding phonon-mediated
spin relaxation rate γ1 shows a well-known, pronounced
dependence on magnetic field B, namely,

γ1 = T −1
1 = A(gsμBB)5/ω4

0, (N1)

where A is a material-specific constant reflecting the effective-
ness of the spin-phonon coupling strength, ωq = gsμBB is the
Zeeman splitting (with the g factor gs and Bohr magneton μB),
and ω0 refers to the quantum dot single-particle level spacing;
compare Refs. [60,80] and references therein. As usual, for el-
evated temperatures kBT � ωq this relaxation rate is enhanced
by a (bosonic) thermal occupation factor n̄th(ωq) ≈ kBT /ωq

(describing stimulated emission of phonons), yielding a linear
scaling with temperature, that is an effective relaxation rate
γ1 ∼ ω4

q × kBT for temperatures much larger than the Zeeman
splitting (kBT � ωq) [83]. Both the strong dependence on the
magnetic field B and the linear dependence on temperature
∼T have been confirmed experimentally [60,83], showing
extremely long relaxation times of T1 > 1 s at B = 1 T and
T = 120 mK [84], and T1 > 20 ms at B = 4 T and T = 1 K
[83]. For very small magnetic fields B, this expression for
T1 diverges (γ1 → 0) because it accounts for single-phonon
processes only (with single phonons in resonance with the
Zeeman energy ωq , as required by energy conservation)
and Kramers theorem does not allow for spin-orbit-induced
spin relaxation in the absence of a magnetic field [60,80].
When accounting for two-phonon processes, however, T1

does converge to a finite value [80]. As shown theoretically
in Refs. [85,86], the corresponding two-phonon spin-flip
rate becomes the dominating (phonon-mediated) scattering
mechanism for sufficiently small magnetic fields �0.4 T,
with a corresponding two-phonon-mediated scattering rate
of ∼1 kHz (T1 ∼ 1 ms) for T ≈ 4 K in GaAs, reaching very
long relaxation times of T1 ∼ 1 s for T ≈ 1 K and sufficiently
small magnetic fields of B � 0.1 T. Similarly, experiments
on the relaxation rate from the two-electron triplet to singlet
states as a function of the singlet-triplet energy splitting �EST

(referred to as ωq in our analysis) show relaxation times well
below 1 ms as �EST approaches zero [87], due to a vanishing
phonon density of states; compare Fig. 21 in Ref. [60].
Finally, near zero magnetic field (ωq = 0), in GaAs energy
relaxation is known to be dominated by direct hyperfine-
mediated electron-nuclear flip flops [60]. For a (relatively
small) magnetic field B � Bn ≈ 3 mT (with Bn denoting the
effective nuclear magnetic field caused by ambient nuclear
spins), however, this mechanism is suppressed efficiently by
the mismatch between nuclear and electron Zeeman energies
[84], effectively leaving the hyperfine interaction as the
well-known, dominating pure-dephasing mechanism for the
electron spin qubit [60]. Therefore, as soon as the qubit-level
splitting ωq = gsμBB exceeds the typical hyperfine energy
scale in GaAs ghf/2π ≈ 25 MHz, one reaches a regime, where
T1 processes can be neglected compared to pure dephasing
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∼T �
2 (even at temperatures of a few Kelvin), while easily

satisfying the inequality ghf � ωq � ωc for typical resonator
frequencies ωc/2π ∼ GHz, as required for the implementation
of the proposed hot gate. The prospects for a faithful
implementation of the proposed hot gate are potentially even
more promising when switching to materials such as Si and
Ge where both hyperfine interactions with the ambient nuclei
(since these materials can be grown nuclear-spin free) and
piezoelectric electron-phonon coupling (due to bulk inversion
symmetry) are absent [79,80]; note that the latter typically
dominates spin relaxation in GaAs-based systems [60,85,86].
In fact, silicon-based experiments have demonstrated T1 ∼ 3 s
at B = 1.85 T and T = 0.15 K [88], suggesting (according
to the usual thermal enhancement) T1 ∼ 0.3 s for T ≈ 1 K,
which is still much longer than the spin-dephasing time scale
T �

2 ∼ 100 μs quoted in the main text and agrees with the
common wisdom that spin lifetimes are orders of magnitude
longer than the ones reported for GaAs [79,89]; compare our
subsequent discussion on singlet-triplet qubits.

(ii) Singlet-triplet spin qubits. For singlet-triplet qubits in
silicon relaxation times of T1 ∼ 10 ms have been demonstrated
at zero magnetic field for cryostat temperatures T ∼ 15 mK
[89], which exceeds the B = 0 lifetimes measured in com-
parable GaAs setups by about two orders of magnitude. As
discussed in detail in Appendix D 2, in this system the qubit
splitting ωq is set by the well-controlled exchange splitting
J , which can be tuned to very small values. For example,
in Ref. [89] ωq/2π ≈ 16 MHz, which is much smaller than
any relevant resonator frequency ωc. As argued in Ref. [89],
the measured lifetimes of T1 ∼ 10 ms (at B = 0) are limited
by the (small) hyperfine interaction in natural (i.e., not puri-
fied) silicon with ghf ∼ 3 neV. Since the effective relaxation
rate at elevated temperatures is determined by integrated
autocorrelation functions of the bath operators [yielding, for
example, the thermal enhancement factor n̄th(ωq) ≈ kBT /ωq

when coupling to a bosonic bath, as discussed above],
very long lifetimes of T1 ∼ 10 ms (at B = 0) can still be
expected, even at higher temperatures T ∼ K, because the
autocorrelation functions of the relevant nuclear spin bath
operators do not show a bosonic thermal enhancement factor;
conversely, due to their extremely small magnetic moment,
nuclear spins can be treated as an infinite temperature bath,
even at ultralow temperatures ∼100 mK and strong magnetic
fields [90]. Therefore, singlet-triplet qubits in silicon should
be well suited for the implementation of the proposed hot
gate, with tunable qubits splittings much smaller than relevant
resonator frequencies (ωq � ωc) and relaxation times T1 much
longer than T �

2 , even at elevated temperatures of a few Kelvin.
(iii) NV centers. Since for nitrogen-vacancy (NV) centers

in diamond the spin T1 time can be several seconds or longer
[91–93], even at temperatures of a few Kelvin, it is common
practice to neglect the spin decay; compare for example
Ref. [52], which may serve as a potential platform for a proof-
of-principle implementation of the proposed hot gate. The
electronic ground state of the negatively charged NV center is
a spin S = 1 triplet with spin states |ms = 0, ± 1〉, where the
levels | ± 1〉 are split off from |0〉 by the zero-field splitting
D/2π = 2.88 GHz. In the absence of an external magnetic
field, the states | ± 1〉 are degenerate. As discussed in detail
in Refs. [52,81,82], such an electronic spin can be coupled to

the motion of a mechanical resonator through lattice strain,
with perpendicular strain mixing the | ± 1〉 states, which is
otherwise a dipole-forbidden transition (�ms = 2) [52,81,82].
If the system is prepared in the | ± 1〉 subspace, the state |0〉
remains unpopulated and the effect of parallel strain plays
no role [52], yielding an effective qubit with qubit splitting
ωq = 2γNVB (with γNV/2π = 2.8 MHz/G), that is coupled to
the mechanical resonator mode of frequency ωc � ωq . Then,
in the absence of an external magnetic field (ωq = 0), the
effective Hamiltonian Heff for this spin-resonator system takes
on the desired form, that is, Heff = ωca

†a − g⊥σx ⊗ (a + a†),
where σx = | + 1〉〈−1| + H.c. and g⊥ is the transverse single-
phonon strain-coupling strength [81]. At first sight, in this
setup the spin-resonator coupling g⊥ is static and not easily
tunable; hence, while it does not provide a universal two-qubit
primitive, it can nevertheless be used to generate entanglement
at elevated temperatures. The spin-resonator coupling may,
however, effectively be switched on and off by making use
of the hyperfine coupling to adjacent single nuclear spins
where quantum information can be stored with qubit memory
lifetimes exceeding 1 s [94].

2. Error scaling

To quantitatively capture the effect of relaxation-induced
errors, we have analyzed the master equation

ρ̇ = −i[H,ρ] + γ1

∑
i

D[σ−
i ]ρ, (N2)

where the first term refers to the ideal, coherent dynamics and
the second term describes single-spin relaxation with a rate
γ1 = T −1

1 ; incoherent excitation processes could be included
as well, with additional terms of the same form with the
appropriate replacement σ−

i → σ+
i , but are omitted here for

clarity. Along the lines of our analysis for dephasing-induced
errors, the relaxation-induced error is expected to scale linearly
with the relaxation rate as ξγ ∼ γ1/geff , that is,

ξγ ≈ αγ

γ1

ωc

, (N3)

with the prefactor αγ = cγ /μ2, where μ = g/ωc. As shown
in Fig. 19, based on numerical simulations of Eq. (N2), this
linear error scaling has been verified numerically, yielding
the numerical prefactor cγ ≈ 0.38, that is, αγ ≈ 0.38/μ2.
This numerical prefactor coincides very well with the value
obtained for the dephasing-induced error ∼
 [when properly
accounting for the factor of four in our definition 
 = 2/T �

2 ;
compare the corresponding master equation (7) in the main
text]; recall ξ
 ≈ α

/ωc = 4α
γφ/ωc, with 4α
 ≈ 0.4/μ2

and γφ ≡ 
/4 (to match with our definition of γ1). Accord-
ingly, in the typical scenario where T �

2 � T1 (as discussed
in the previous subsection), indeed relaxation-induced errors
(as well as similar incoherent excitation processes) can be
safely neglected. In the opposite regime, where pure-dephasing
processes are negligible (such that the decoherence time scale
reaches its fundamental upper limit T2 � 2T1, i.e., the qubit
coherence is limited by spin flips), the total error ξdec induced
by qubit decoherence is simply given by ξdec ≈ ξγ ≈ αγ γ1/ωc.
Finally, in the worst-case regime where the pure-dephasing
rate and the relaxation rate are comparable (γφ ≈ γ1), the total
error due to qubit decoherence amounts to ξdec = ξγ + ξ
 ≈
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FIG. 19. Relaxation-induced error ξγ for g/ωc = 1
8 (blue circles),

g/ωc = 1/(8
√

2) (black squares), and g/ωc = 1
16 (red diamonds).

Other numerical parameters: kBT /ωc = 0.01, κ = 0, 
 = 0, and
ωq = 0.

2αγ γ1/ωc ≈ 2α

/ωc, i.e., just a factor of 2 larger than the
decoherence-induced error considered in the main text.

APPENDIX O: AVERAGE GATE FIDELITY

The average gate fidelity F̄ is a useful measure in order
to quantify how well the completely positive, trace-preserving
quantum operation M (in the presence of noise) approximates
a given unitary gate Uid, which represents the ideal (noise-free)
evolution. Formally, it is defined as

F̄ =
∫

dψ〈ψ |U †
idM(|ψ〉〈ψ |)Uid|ψ〉, (O1)

where the integral runs over the uniform (Haar) measure dψ

on state space, with
∫

dψ = 1 [95]. As shown in Ref. [95], F̄

may be reexpressed as

F̄ = dFent + 1

d + 1
, (O2)

where d is the dimension of the Hilbert space (d = 4 for two
qubits) and the entanglement fidelity Fent is the fidelity of
the state obtained when M acts on one-half of a maximally
entangled state with the state obtained from the action of the
ideal evolution; it is given by

Fent = 1

d3

∑
P∈G

tr[P †U †
idM(P )Uid]. (O3)

Here, G is a set of d × d unitary operators, forming a basis
for a qudit, i.e., tr[P †

j Pk] = δjkd, j,k = 1, . . . ,d2. For two
qubits we may take the set of Pauli matrices modulo phase,
comprising in total 16 operators G = {1,σ α

i ,σ α
1 σ

β

2 }, with i =
1,2, α = x,y,z. Experimentally, F̄ may be determined using
standard state tomography [95].

Errors. The average gate error (infidelity) is defined as Ē =
1 − F̄ . As follows directly from Eq. (O2), it is related to the
entanglement infidelity Eent = 1 − Fent via Ē = d/(d + 1) ×
Eent; thus, for two qubits Ē = (4/5)Eent.

FIG. 20. Total average gate error Ē (in percent) as a function
of both the effective rethermalization rate ∼κ/ωcn̄th ∼ n̄th/Q and
the spin dephasing rate ∼
/ωc for g/ωc = 1

4 (top) and g/ωc = 1
8

(bottom). Other numerical parameters: kBT /ωc = 2 and ωq = 0.

Numerical results. Numerical results for the average gate
error Ē are presented in Fig. 20. Here, the map M(P ) is given
implicitly as M(P ) = tra[eLtmaxP ⊗ ρth], where the superop-
erator L• = −i[H,•] + Lnoise• is the Liouvillian associated
with the master equation given in Eq. (7) in the main text, which
includes undesired processes due to rethermalization of the
cavity mode and dephasing of the spins. Broadly speaking, our
numerical results for the (average) gate error Ē are comparable
to the ones obtained for the state infidelity ξ = 1 − F , as
discussed in the main text. First, comparison of our results
for g/ωc = 1

4 and 1
8 shows that rethermalization-induced

errors are approximately independent of the spin-resonator
coupling g; for example, for 
 = 0 and κ/ωcn̄th = 2.5 × 10−3

we find Ēκ ≈ 0.82% for both g/ωc = 1
4 and 1

8 , respectively.
Second, as expected, the dephasing-induced error scales as
Ē
 ∼ 1/g2 ∼ 1/μ2; for example, as shown in Fig. 20, for
κ = 0 and 
/ωc = 1.5 × 10−3, we find Ē
 ≈ 0.376% and
Ē
 ≈ 1.49% ≈ 4 × 0.376% for g/ωc = 1

4 and 1
8 , respectively.
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