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Abstract

Graph states are ubiquitous in quantum information with diverse applications ranging from quantum network
protocols to measurement based quantum computing. Here we consider the question whether one graph (source)
state can be transformed into another graph (target) state, using a specific set of quantum operations (LC+LPM+
CC): single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication
(CC) between sites holding the individual qubits.

We first show that deciding whether a graph state |G〉 can be transformed into another graph state |G′〉 using
LC + LPM + CC is NP-Complete, even if |G′〉 is restricted to be the GHZ-state. However, we also provide efficient
algorithms for two situations of practical interest:

1. |G〉 has Schmidt-rank width one and |G′〉 is a GHZ-state. The Schmidt-rank width is an entanglement measure
of quantum states, meaning this algorithm is efficient if the original state has little entanglement. Our
algorithm has runtime O(|V (G′)||V (G)|3), and is also efficient in practice even on small instances as further
showcased by a freely available software implementation.

2. |G〉 is in a certain class of states with unbounded Schmidt-rank width, and |G′〉 is a GHZ-state of a constant
size. Here the runtime is O(poly(|V (G)|)), showing that more efficient algorithms can in principle be found
even for states holding a large amount of entanglement, as long as the output state has constant size.

Our results make use of the insight that deciding whether a graph state |G〉 can be transformed to another graph
state |G′〉 is equivalent to a known decision problem in graph theory, namely the problem of deciding whether a
graph G′ is a vertex-minor of a graph G. We prove that the vertex-minor problem is NP-Complete by relating it
to a new decision problem on 4-regular graphs which we call the semi-ordered Eulerian tour (SOET) problem, and
show that a version of the Hamiltonian cycle problem can be reduced to SOET. The SOET problem and many of
the technical tools developed to obtain our results may be of independent interest.
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1 Introduction

A key concept in realizing quantum technologies is the preparation of specific resource states, which then enable
further quantum processing. For example, many quantum network protocols first ask to prepare a specific resource
state that is shared amongst the network nodes, followed by a subsequent measurement and exchange of classical
communication. The simplest instance of this concept is indeed quantum key distribution [22, 4], in which we first
produce a maximally entangled state, followed by random measurements. Similarly, measurement based quantum
computing [42] proceeds by first preparing the quantum device in a large resource state, followed by subsequent
measurements on the qubits.

An important class of such resource states are known as graph states. These states can be described by a simple
undirected and unweighted graph where the vertices correspond to the qubits of the state [30]. Apart from their
broad range of applications, an appealing feature of graph states is that they can be efficiently described classically.

Specifically, to describe a graph state on n qubits, only n(n−1)
2 bits are needed to specify the edges of the graph. This

is in sharp contrast to the 2n complex numbers required to describe a general quantum state [39]. It turns out that
for graph states, and indeed the more general class of stabilizer states, their evolution under Clifford operations and
Pauli measurement can be simulated efficiently on a classical computer [28].

Well known applications of graph states include cluster states [38] used in measurement based quantum computing,
where together with arbitrary single-qubit measurements, these states nevertheless do form a universal resource for
measurement-based quantum computation [42]. Graph states also arise as logical codewords of many error-correcting
codes [45]. In the domain of quantum networking, a specific class of graph states is of particular interest. Specifically,
these are states which are GHZ-like, i.e., they are equivalent to the GHZ state up to single-qubit Clifford operations.
GHZ-states have been shown to be useful for applications such as quantum secret sharing [36], anonymous transfer [13],
conference key agreement [43] and clock synchronization [32]. It turns out that graph states described by either a star
graph or a complete graph are precisely those GHZ-states [30].

Given the desire for graph states, we may thus ask how they can effectively be prepared, and transformed. We
consider the situation in which we already have a specific starting state (the source state), and we wish to transform
it to a desired target state, using an available set of operations. Motivated by the fact that on a quantum network or
distributed quantum processor, local operations are typically much faster and easier to implement, we consider the set
of operations consisting of single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM), and classical
communication (CC). Applications of an efficient algorithm that finds a series of operations to transform a source to a
target state includes the ability to make effective routing - in this context, state preparation - decisions, on a distributed
quantum processor or network. Here, fast decisions are essential since quantum memories are inherently noisy and the
source state will therefore become useless if too much time is spent on forming a decision. Such algorithms could also
be used as a design tool in the study of quantum repeater schemes [2], and the discovery of effective code switching
procedures in quantum error correction [27, 37].

To understand which graph states are related under LC + LPM + CC operations we introduced the notion of a qubit-
minor in [19]. A qubit-minor of a graph state |G〉 is another graph state |G′〉 such that |G〉 can be transformed to
|G′〉 using only single-qubit Clifford operations, single-qubit Pauli measurement and classical communication. It turns
out that the question of whether a graph state has a certain qubit-minor or not, can be completely phrased in graph
theoretical terms. In this setting the single-qubit Clifford operations correspond to a graph operation called a local
complementation. Consequently, the single-qubit Pauli measurements and classical communication correspond to local
complementations and vertex-deletions. In graph theory, a well studied notion is that of a vertex-minors of a graph,
which are exactly the graphs reachable by performing local complementations and vertex-deletions. Interestingly, we
show in [19] that the notion of qubit-minors are equivalent to vertex-minors, in the sense that |G′〉 is a qubit-minor of
|G〉 if and only if G′ is a vertex-minor of G.

Vertex-minors play an important role in algorithmic graph theory, together with the notion of rank-width, which is a
complexity measure of graphs. Specifically, one can efficiently decide membership of a graph in some set of graphs, if
this set is closed under taking vertex-minors and of fixed (bounded) rank-width [40]. An example of such a set is the set
of distance-hereditary graphs, which are in fact exactly the graphs with rank-width one [40]. Another example of a set
of graphs which is closed under taking vertex-minors are circle graphs, which are however of unbounded rank-width([41,
Proposition 6.3] and [14]). An appealing connection between the rank-width of graphs, and the entanglement in the
corresponding graph states was identified in [50], where it is shown that the rank-width corresponds to the Schmidt-
rank width of the graph state, which is an entanglement measure. Specifically, the higher rank-width a graph has,
the more entanglement there is in terms of this measure. Another interpretation of the Schmidt-rank width is that it
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captures how complex the quantum state is. One way to describe quantum states is by a technique called tree-tensor
networks and it was shown in [50] that the minimum dimension of the tensors needed to describe a state is in fact
given by the Schmidt-rank width.

In the domain of complexity theory, the rank-width and related measures such as the tree and clique-width [16, 5]
also form a measure of the inherent complexity of the underlying problem, and feature prominently in the study of
fixed-parameter tractable (FPT) algorithms [21]. Specifically, a problem is called fixed-parameter tractable in terms
of a parameter r, if any instance I of the problem of fixed r, is solvable in time f(r) · |I|O(1), where |I| is the size
of the instance and f is an arbitrary function of r [21]. In this work, the r is the rank-width, and for graphs of
constant rank-width the techniques of Courcelle [17] and its generalizations [15], can be used to obtain polynomial
time algorithms for problems such as Graph Coloring [24], or Hamiltonian Path [35]. While very appealing from a
complexity theory point of view, however, a direct application of these techniques does however not usually lead to
polynomial time algorithms that are also efficient in practice, since f(r) is often prohibitively large.

Since the problem of deciding whether a graph state |G′〉 is a qubit-minor of |G〉 (QUBITMINOR) is equivalent to
deciding if G′ is a vertex-minor of G (VERTEXMINOR) [19], an efficient algorithm for VERTEXMINOR, directly
provide an efficient algorithm for QUBITMINOR. This in turn can be used for fast decisions on how to transform
graph states in a quantum network or distributed quantum processor. However, not much was previously known
about the computational complexity of VERTEXMINOR and therefore if efficient algorithms exists. For a related but
slightly more restrictive minor-relation, namely pivot-minors it has been shown in [18] that checking whether a graph
G has a pivot-minor isomorphic to another graph G′ is NP-Complete. However the complexity of deciding whether
G′ is a vertex-minor of G was left as an open problem. What’s more, we emphasize that for our application we are
interested in preparing a specific target state G′ on a specific set of qubits, as qubits are generally not interchangeable
in the applications of our algorithm. As such, our question is not whether we can obtain a graph that is isomorphic
to G′, but rather whether we can prepare G′ on a specific set of vertices.

Evidently, for fixed rank-width, it is not difficult to apply the techniques of Courcelle [17], to obtain an FPT algorithm
for our problem that is efficient if both the size of G′, as well as the rank-width of G are bounded (as we have shown
in [19]). Indeed, a powerful method for deciding if a graph problem is fixed-parameter tractable is by Courcelle’s
theorem and its generalizations [15]. It turns out that also for our case, however, a direct implementation of Courcelle’s
theorem does not give an algorithm that is efficient in practice. In fact, in the case of VERTEXMINOR, this constant
factor obtained by applying the techniques of Courcelle in [19] can be shown to be1 a power of twos

f(r) = 22·
··
2r

(1)

where r is the rank-width of the input graph G and the height of the tower is 10 [19].

Results

In this paper we determine the computational complexity of VERTEXMINOR and therefore of QUBITMINOR. In
particular we prove that it is in general NP-Complete to decide whether a graph G′ is a vertex-minor of another graph
G. We however also give efficient algorithms for this problem whenever the input graphs belong to particular graph
classes. Any overview of the complexity of the problem for different classes of graphs considered in this paper can be
seen in fig. 2.

We point out that our results of NP-Completeness and the presented algorithms also apply to the more general class
of stabilizer states of relevance in quantum error correction. This is because any stabilizer state can be transformed
to some graph state using only single-qubit Clifford operations. Furthermore, given a stabilizer state on n qubits, a
graph state equivalent under single-qubit Clifford operations can be found efficiently in time O(n3) [49].

1. We show that the problem of deciding whether a graph G′ is a vertex-minor of another graph G is NP-Complete.
This implies that QUBITMINOR is also NP-Complete. The hardness part of the above completeness result is
obtained by considering a less general version of VERTEXMINOR where G′ is restricted to be a star graph,
which corresponds to transforming graph states to GHZ states. We call this problem STARVERTEXMINOR and
show that it is also NP-Complete, even when G is in a strict subclass of circle graphs. To show NP-Completeness
of STARVERTEXMINOR we introduce the concept of a semi-ordered Eulerian tour (SOET)2. This new graph-
theoretical structure might be of independent interest. We show that the problem of deciding whether a graph

1Far greater than the number of atoms in the universe.
2Pronounced as ”suit”.
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allows for a SOET (which we call the SOET problem) can be reduced to STARVERTEXMINOR. Furthermore,
we show that deciding whether a 3-regular graph is Hamiltonian (CubHam) can be reduced to SOET. Since the
CubHam has previously been shown to be NP-Complete, this implies that VERTEXMINOR is as well, since we
also show that VERTEXMINOR is in NP. As a key technical tool we also introduce a new class of graphs which
we call triangular-expanded graphs. These graphs allow us to relate Hamiltonian tours on 3-regular graphs to
certain Eulerian tours on 4-regular graphs and in turn to reduce CubHam to SOET.

2. We provide an efficient algorithm for STARVERTEXMINOR, which we prove to be correct if G is distance-
hereditary, or equivalently if G has rank-width one. The run-time of this algorithm is O(|V (G′)||V (G)|3),
where V (G) denotes the vertex-set of G. This algorithm can therefore be used to decide how to transform
graph states, with Schmidt-rank width one, to GHZ-states using single-qubit Clifford operations, single-qubit
Pauli measurements and classical communication. As mentioned above, a more general method to find efficient
algorithms for certain graph problems on graphs with bounded rank-width is by using Courcelle’s theorem [15].
Compared to the algorithm provided by a direct implementation of Courcelle’s theorem, see [19], our algorithm
presented here does not suffer from a huge constant factor in the runtime, as in eq. (1). In fact, we have
implemented our efficient algorithm and see that it typically takes for example 50 ms to run for the case when
|V (G)| = 50 on a standard desktop computer, see fig. 1. Furthermore, our algorithm is still efficient even if the
size of G′ is unbounded.

Distance-hereditary graphs, and therefore graphs with rank-width one, are exactly the graphs that can be reached
by adding leaves and performing twin-splits from a graph with one vertex [3]. To prove that our algorithm is
correct we also present some new interesting results relating vertex-minors, distance-hereditary graphs and leaves
and twins. For example we show that if v is a leaf or a twin in G but not a vertex in G′, then G′ is a vertex-minor
of G if and only if G′ is a vertex-minor of G \ v, where \v denotes vertex-deletion.
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Our alg.(max)
Brute(avg.)
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Figure 1: Average and maximal observed run-times for two algorithms that check if a star graph
on four vertices is a vertex-minor of a randomly generated connected graph G on vertices V .
Random connected distance-hereditary graphs are generated by starting from a single-vertex
graph and randomly adding leaves or performing twin-splits, see section 2.5.1, which generates
any connected distance-hereditary graph [3]. ”Our alg.” refers to the algorithm described in
section 4.1.1 and ”Brute” is the non-efficient algorithm described in [19]. The algorithm of [19]
based on the techniques of Courcelle [17] is not depicted here since the pre factor makes an
application impractical in practice whenever |V | < f(r) of eq. (1). For each size of V , 10
random graphs are generated for ”Brute” and 100 random graphs for ”Our alg.”, from which
the average ”(avg.)” and max ”(max)” runtime is computed. Both algorithms are implemented
in SAGE [47] and the tests were performed on an iMac with 3.2 GHz Intel Core i5 processor
with 8 GB of 1600 MHz RAM.

3. We call k−STARVERTEXMINOR the restriction of STARVERTEXMINOR where G′ is restricted to a star graph
having k vertices, corresponding to a GHZ-state (up to LC) on k qubits. We show that k−STARVERTEXMINOR
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is in P if G is a circle graph3. This means that STARVERTEXMINOR is fixed-parameter tractable in the size of
G′ on circle graphs. Interestingly the class of circle graphs has unbounded rank-width ([41, Proposition 6.3] and
[14]) and the corresponding graph states therefore have unbounded entanglement according to the Schmidt-rank
width.

4. We show that any connected graph G′ on three vertices or less is a vertex-minor of any connected graph G if
and only if the vertices of G′ are also in G. An efficient algorithm for finding the transformation that takes the
former graph to the latter is also provided.

5. We also prove several technical results that may be interesting in their own right. An example of this is
theorem 4.4 which points out the interesting behavior of a certain class of graphs with respect to a bipartition
of their vertices. Another example would be theorem 2.8 where we show that any distance heredity graph one
more than four vertices has a foliage (the set of leaves, axils and twins in the graph) of size at least four.

Simple Graphs

Circle Graphs

Distance-
hereditary

NP-Complete

Unbounded rank-width

Rank-width 1

E�cient algorithm

Unbounded rank-width

Circle graphs represented
by Eulerian tours on
triangle-expanded graphs

FPT in terms of
size of star graph (G’)

Figure 2: An overview of the graph classes discussed in this paper and what the com-
putational complexity of solving STARVERTEXMINOR on these classes is. The sizes of
the sets in the figure are not exact, however their intersections and non-intersections are.
The definitions of these classes graphs are given in section 2.4 and section 2.5.1. We show
that the STARVERTEXMINOR is NP-Complete (result 1.) on graphs in a strict subclass
of circle graphs (red). The same therefore holds for any superclass and in particular for
circle graphs (dark blue). On the other hand we show that k−STARVERTEXMINOR is
in P on circle graphs (result 3.) On distance-hereditary graphs (green) we found an effi-
cient algorithm for STARVERTEXMINOR (result 2.) Finally it is still an open question if
k−STARVERTEXMINOR is NP-Complete on simple graphs (light blue) in general.

Overview

The paper is structured as follows. In section 2 we describe graph states and consider several notions of graph theory
we will need throughout the paper. We also introduce the VERTEXMINOR and STARVERTEXMINOR problems
and the notion of a semi-ordered Eulerian tour. We also prove a few technical results concerning distance hereditary
graphs, circle graphs and vertex-minors which we will need later. Result 1. above is given in section 3, result 2. in
section 4.1, result 3. in section 4.2 and result 4. in section 5.

3Not to be confused with cycle graph.
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2 Preliminaries

In this section we set our notation and recall various concepts which will be used throughout the rest of the paper. We
start by providing the definitions of graph states, qubit-minors and the relation to vertex-minors. We then recall the
definitions of local complementation and vertex deletion as operations on graphs and use these to state the problems
VERTEXMINOR and STARVERTEXMINOR which are the core objects of study in this paper. Furthermore, we
discuss circle graphs and their various characterizations and discuss how local complementation behaves on these
graphs. We also introduce the concept of semi-ordered Eulerian tours, which is a key technical concept for the results
later in this paper. Finally we discuss distance-hereditary graphs, which form a subclass of circle graphs. We discuss
how these graphs can be built up out of elementary pieces and prove some technical results which will be used
later.

2.1 Notation and definitions

Here we introduce some notation and vocabulary that will be used throughout this paper. We assume familiarity of
the general notation of quantum information theory, see [39] for more details.

Quantum operations
The Pauli matrices will be denoted as

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2)

The single-qubit Clifford group C consists of operations which leave the Pauli group P = 〈iI, X, Z〉 invariant. More
formally, C is the normalizer of the Pauli group, i.e.

C =
{
C ∈ U : (∀P ∈ P : CPC† ∈ P)

}
, (3)

where U is the single-qubit unitary operations.

Sequences and words
A sequence X = x1x2 . . . xk is an ordered, possibly empty, tuple of elements in some set X. We also call a sequence a
word and its elements letters. We write X ⊆ X, when all letters of X are in the set X. A sub-word X ′ of X, is a word
which can be obtained from X by iteratively deleting the first or last element of X. We denote the concatenation of
two words X1 = x1 . . . xk1 and X2 = y1 . . . yk2 as X1‖X2 = x1 . . . xk1y1 . . . yk2 . We also denote the ‘mirror image’ by

an overset tilde, e.g. if X = ab then X̃ = ba.

Sets
The set containing the natural numbers from 1 to n is denoted [n]. The symmetric difference X∆Y between two sets
X and Y is the set of elements of X and Y that occur in X or Y exclusively, i.e. X∆Y = (X ∪ Y ) \ (X ∩ Y ).

Graphs
A simple undirected graph G = (V,E) is a set of vertices V and a set of edges E. Edges are 2-element subsets of V
for simple undirected graphs. Importantly, we only consider labeled graphs, i.e. we consider a complete graph with
vertices {1, 2, 3} to be different from a complete graph with vertices {2, 3, 4}, even though these graphs are isomorphic.
The reason for considering labeled graphs is that these will be used to represent graph states on specific qubits, possibly
at different physical locations in the case of a quantum network. In a simple undirected graph, there are no multiple
edges or self-loops, in contrast with a multi-graph: An undirected multi-graph H = (V,E) is a set of vertices V and
a multi-set of edges E. For undirected multi-graphs, edges are unordered pairs of elements in V . We will often write
V (G) = V and E(G) = E to mean the vertex- and edge-set of the (multi-)graph G = (V,E).

Next we list some glossary about (multi-)graphs:

• If a vertex v ∈ V is an element of an edge e ∈ E, i.e. v ∈ e, then v and e are said to be incident to one another.

• Two vertices which are incident to a common edge are called adjacent.

• The set of all vertices adjacent to a given vertex v in a (multi-)graph G is called the neighborhood N
(G)
v of v. We

will sometimes just write Nv if it is clear which (multi-)graph is considered.

• The degree of a vertex v is the number of neighbors of v, i.e. |Nv|.
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• A k-regular (multi-)graph is a (multi-)graph such that every vertex in the (multi-)graph has degree k.

• A walk W = v1e1v2 . . . ekvk+1 is an alternating sequence of vertices and edges such that ei is incident to vi and
vi+1 for i ∈ [k].

• The vertices v1 and vk+1 are called the ends of W .

• If the ends of a walk are the same vertex, it is called closed.

• A trail is a walk which does not include any edge twice.

• A closed trail is called a tour.

• A path is a walk which does not include any vertex twice, apart from possibly the ends.

• A closed path is called a cycle.

• Two vertices u and v are called connected if there exist a path with u and v as ends.

• A (multi-)graph is called connected if any two vertices are connected in the (multi-)graph.

• G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E.

• An induced subgraph G[V ′] of G = (V,E) is a subgraph on a subset V ′ ⊆ V and with the edge-set

E′ = {(u, v) ∈ E : u, v ∈ V ′}. (4)

• A connected component of a (multi-)graph G = (V,E) is a connected induced subgraph G[V ′] such that no vertex
in V ′ is adjacent to a vertex in V \ V ′ in the (multi-)graph G.

• A cut-vertex v of a (multi-)graph G = (V,E) is a vertex such that G[V \ {v}] has strictly more connected
components than G

• The distance dG(v, w) between two vertices v, w in a (multi-)graph G is equal to the number of edges in the
shortest path that connects v and w.

• The complement GC of a graph G = (V,E) is a graph with vertex-set V C = V and edge-set

EC = {(u, v) ∈ V × V : (u, v) /∈ E ∧ u 6= v}. (5)

A graph G is assumed to be simple and undirected, unless specified and will be denoted as G, Gi, G
′, G̃ or similar. A

multi-graph is assumed to be undirected, unless specified and will be denoted as H, Hi, H
′, H̃ or similar. Furthermore,

3-regular simple graphs will be denoted as R, Ri, R
′ or similar and 4-regular multi-graphs as F , Fi, F

′ or similar. We
will denote the complete graph on a set of vertices V as KV and the star graph on a set of vertices V with center c by
SV,c. We will often not care about the choice of center, writing SV to mean any choice of star graph on the vertex set
V .

2.2 Graph states

A graph state is a multi-partite quantum state |G〉 which is described by a graph G, where the vertices of G correspond
to the qubits of |G〉. The graph state is formed by initializing each qubit v ∈ V (G) in the state |+〉v = 1√

2
(|0〉v + |1〉v)

and for each edge (u, v) ∈ E(G) applying a controlled phase gate between qubits u and v. Importantly, all the
controlled phase gates commute and are invariant under changing the control- and target-qubits of the gate. This
allows the edges describing these gates to be unordered and undirected. Formally, a graph state |G〉 is given as

|G〉 =
∏

(u,v)∈E(G)

C
(u,v)
Z

 ⊗
v∈V (G)

|+〉v

 , (6)

where C
(u,v)
Z is a controlled phase gate between qubit u and v, i.e.

C
(u,v)
Z = |0〉 〈0|u ⊗ Iv + |1〉 〈1|u ⊗ Zv (7)

and Zv is the Pauli-Z matrix acting on qubit v.

8



Any graph state is also a stabilizer state [30]. The GHZ states are an important class of stabilizer states given as

|GHZ〉k =
1√
2

(
|0〉⊗k + |1〉⊗k

)
. (8)

It is easy to verify that any graph state given by a star or complete graph, i.e. |SV,c〉 or |KV 〉, can be turned into a
GHZ state on the qubits V using only single-qubit Clifford operations.

In the next section we discuss local complementations and vertex-deletions on graph states. It turns out that single-
qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC): LC+LPM+
CC, which take graph states to graph states, can be completely characterized by local complementations and vertex-
deletions on the corresponding graphs. More concretely, any sequence of single-qubit Clifford operations, mapping
graph states to graph states, can be described as some sequence of local complementations on the corresponding graph.
Moreover, measuring qubit v of a graph state |G〉 in the Pauli-X, Pauli-Y or Pauli-Z basis, gives a stabilizer state
that is single-qubit Clifford equivalent to |Xv(G)〉, |Yv(G)〉, |Zv(G)〉 respectively. The operations Xv, Yv and Zv are
graph operations consisting of sequences of local complementations together with the deletion of vertex v, which we
define in definition 2.6. As mentioned the post-measurement state of for example a Pauli-X measurement on qubit
v is only single-qubit Clifford equivalent to the graph state |Xv(G)〉. The single-qubit Clifford operations that take
the post-measurement state to |Xv(G)〉 depend on the outcome of the measurement of the qubit v and act on qubits
adjacent to v [30]. This means classical communication is required to announce the measurement result at the vertex
v to its neighboring vertices.

In [19] we introduced to notion of a qubit-minor which captures exactly which graph states can be reached from some
initial graph state under LC + LPM + CC. Formally we define a qubit-minor as:

Definition 2.1 (Qubit-minor). Assume |G〉 and |G′〉 are graph states on the sets of qubits V and U respectively.
|G′〉 is called a qubit-minor of |G〉 if there exists a sequence of single-qubit Clifford operations (LC), single-qubit Pauli
measurements (LPM) and classical communication (CC) that takes |G〉 to |G′〉, i.e.

|G〉 LC−−−−−−→
LPM+CC

|G′〉 ⊗ |junk〉V \U . (9)

If |G′〉 is a qubit-minor of |G〉, we denote this as

|G′〉 < |G〉 . (10)

�
In [19] we have shown that the notion of qubit-minors for graph states is equivalent to the notion of vertex-minors
for graphs. We will define and discuss vertex-minors in section 2.3.1, however we formally state the relation between
vertex-minors here. For a proof see [19].

Theorem 2.1 (Theorem 2.2 in [19]). Let |G〉 and |G′〉 be two graph states such that no vertex in G′ has degree zero.
Then |G′〉 is a qubit-minor of |G〉 if and only if G′ is a vertex-minor of G, i.e.

|G′〉 < |G〉 ⇔ G′ < G. (11)

�
Note that one can also include the case where G′ has vertices of degree zero. Let’s denote the vertices of G′ which
have degree zero as I. We then have that

|G′〉 < |G〉 ⇔ G′[V (G′) \ I] < G. (12)

Theorem 2.1 is very powerful since it allows us to consider graph states under LC + LPM + CC, purely in terms of
vertex-minors of graphs. We will therefore in the rest of this paper use the formalism of vertex-minors to study the
computational complexity of transforming graph states using LC + LPM + CC and provide efficient algorithms for
transforming graph state using LC + LPM + CC.
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2.3 Local complementations and vertex-deletions

Local complementation is a fundamental operation on graphs [10]. We have the following definition.

Definition 2.2 (Local complementation). A local complementation τv is a graph operation specified by a vertex v,
taking a graph G to τv(G) by replacing the induced subgraph on the neighborhood of v, i.e. G[Nv], by its complement.
The neighborhood of any vertex u in the graph τv(G) is therefore given by

N (τv(G))
u =

{
Nu∆(Nv \ {u}) if (u, v) ∈ E(G)

Nu else
, (13)

where ∆ denotes the symmetric difference between two sets. Given a sequence of vertices v = v1 . . . vk, we denote the
induced sequence of local complementations, acting on a graph G, as

τv(G) = τvk ◦ · · · ◦ τv1(G). (14)

�
Below we show a simple example of the action of local complementation on a graph (in particular we consider a local
complementation on the vertex labeled 2).

b

b

b b

1

2

3 4

τ2−→
b

b

b b

1

2

3 4

(15)

If two graphs G1 and G2 are related by a sequence of local complementations, i.e. ∃v : τv(G1) = G2, we call the two
graphs LC-equivalent and denote this as G1 ∼LC G2. Checking whether two graphs are LC-equivalent can be done in
time O(n4), where n is the size of the graphs, as shown in [11]. This result was used in [48] to find an efficient algorithm
for checking whether two graph states are equivalent under single-qubit Clifford operations, by proving that two graph
state are equivalent under single-qubit Cliffords if and only if their corresponding graphs are LC-equivalent.

Notable about local complementation is its action on star and complete graphs. For a vertex set V and c ∈ V we
have that τc(SV,c) = KV and for any v ∈ V we have τv(KV ) = SV,v. This means all star graphs on a vertex set V
are equivalent to each other under local complementation and also to the complete graph on V . Moreover, no other
graph is equivalent to the star or complete graph.

Another operation which we will make use of is the pivot.

Definition 2.3 (Pivot). A pivot ρe is a graph operation specified by an edge e = (u, v), taking a graph G to ρe(G)
such that

ρe(G) = τv ◦ τu ◦ τv(G). (16)

�
The pivot can simply be specified by an undirected edge since

τv ◦ τu ◦ τv(G) = τu ◦ τv ◦ τu(G) if (u, v) ∈ E(G) (17)

as shown in [8].

It will be useful to be able to specify a pivot simply by a vertex v. We therefore also introduce the following definition:

Definition 2.4. The graph operation ρv is specified by a vertex, taking a graph G to ρv(G) such that

ρv(G) =

{
ρev (G) if |Nv| > 0

G if |Nv| = 0
(18)

where ev is an edge incident on v chosen in some consistent way. For example we could assume that the vertices of G
are ordered and that ev = (v,min(Nv)). The specific choice will not matter but importantly ev only depends on G and
v, and the same therefore holds for ρv(G). �
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Another fundamental operation on a graph is that of vertex-deletion, which relates to measuring a qubit of a graph
state in the standard basis [30]. We denote the deletion of vertex v from the graph G as G \ v = G[V (G) \ {v}]. It
turns out that given a sequence of local complementations and vertex-deletions, acting on some graph, one can always
perform the vertex-deletions at the end of the sequence and arrive at the same graph. This fact follows inductively
from the following lemma.

Lemma 2.1. Let G = (V,E) be a graph and v, u ∈ V be vertices such that v 6= u, then

τv(G \ u) = τv(G) \ u. (19)

�

Proof. Note first that it is important that v 6= u since the operation τv(G \ u) is otherwise undefined. To prove that
the graphs G1 = τv(G \ u) and G2 = τv(G) \ u are equal, we show that the neighborhoods of any vertex in the graphs

are the same, i.e. N
(G1)
w = N

(G2)
w for all w ∈ V (G) \ u. The local complementation only changes the neighborhoods

for vertices which are adjacent to v, so for any vertex w 6= u which is not adjacent to v, we have that

N (G1)
w = N (G2)

w = N (G)
w \ {u}. (20)

On the other hand, for a vertex w which is adjacent to v, its neighborhood becomes

N (G1)
w =

(
N (G)
w \ {u}

)
∆
((
N (G)
v \ {u}

)
\ {w}

)
=
(
N (G)
w ∆

(
N (G)
v \ {w}

))
\ {u} = N (G2)

w (21)

by the definition of a local complementation.

2.3.1 Vertex-minors

Using the two operations local complementation and vertex-deletion, we can formulate the notion of a vertex-minor
of a graph.

Definition 2.5 (Vertex-minor). A graph G′ is called a vertex-minor of G if and only if there exist a sequence of local
complementations and vertex-deletions that takes G to G′. Since vertex-deletions can always be performed last in such
a sequence (see lemma 2.1), an equivalent definition is the following: A graph G′ is called a vertex-minor of G if and
only if there exist a sequence of local complementations v such that τv(G)[V (G′)] = G. If G′ is a vertex-minor of G
we write this as

G′ < G (22)

and if G′ is not a vertex-minor of G then
G′ ≮ G. (23)

�
Vertex-minors were first studied in [8] but by the name of l-reductions. Note that if G1 and G2 are two LC-equivalent
graphs, then G′ < G1 if and only if G′ < G2. It is interesting to consider under which conditions a graph G′ is a
vertex-minor of another graph G. As theorem 2.2 below states, to decide whether G′ < G it is sufficient to check

whether G′ is LC-equivalent to at least one out of 3|V (G)|−|V (G′)| graphs. To formally state the theorem we introduce
the following three operations.

Definition 2.6. The graph operations Xv, Yv and Zv, specified with a vertex v, act on a graph G by transforming it
to

Xv(G) = ρv(G) \ v, Yv(G) = τv(G) \ v, Zv(G) = G \ v (24)

When we need to specify which edge incident on v the pivot of Xv acts on, we write X
(u)
v (G) = ρ(u,v)(G) \ v. �

The three graph operations Xv, Yv and Zv correspond to how Pauli-X, -Y and -Z measurements act on graph states
(as proven in [30]). As mentioned in section 2.2, measuring qubit v of a graph state |G〉 in the Pauli-X, -Y or -Z
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basis gives a stabilizer state which is single-qubit Clifford equivalent to |Xv(G)〉, |Yv(G)〉 and |Zv(G)〉 respectively.
Equations (25) to (27) shows examples of how these operations can act on graphs.

Z6


b

b

b

b

bb

b

3

4

5

6

1

2
0

 = b

b

b

b

bb

3

4

51

2
0 (25)

Y5

 b

b b

1

4
2

3

b

b
5

 =
b

b b

1

4
2

3

b
(26)

X
(2)
1


b

b b

b bb

1 2

5 64

3
 =

b

b

b bb

2

5 64

3

(27)

The operation X
(u)
v is the most complicated one, so we will here quickly describe what happens to a graph when X

(u)
v

is applied. One can check that after the operation X
(u)
v , the vertex u will have the neighbors that v previously had,

except v itself. Furthermore, some edges between vertices in (Nv ∪Nu) \ {u, v} will be complemented, i.e. removed if
present or added if not. To know which of these edges gets complemented, let’s introduce the following three sets

Vvu = Nv ∩Nu, Vv = Nv \ (Nu ∪ {u}), Vu = Nu \ (Nv ∪ {v}) (28)

which form a partition of (Nv ∪Nu) \ {u, v}. In eq. (27), these sets are V12 = {3}, V1 = {4} and V2 = {5, 6}. An edge
(w1, w2) between vertices in (Nv ∪Nu) \ {u, v} gets complemented if and only if w1 and w2 belong to different sets of
the partition (Vvu, Vv, Vu). All other edges in the graph, i.e. edges containing a vertex not in Nv∪Nv, will be unchanged.

It turns out that the three operations {Xv, Yv, Zv} are sufficient to check whether some graph is a vertex-minor of
another graph. This is formalized in the following theorem we proved in [19].

Theorem 2.2 (Theorem 3.1 in [19]). Let G and G′ be two graphs and let u = (v1, . . . , vl), where l = |V (G) \ V (G′)|
be an ordered tuple such that each element of V (G) \ V (G′) occurs exactly once in u. Furthermore, let Pu denote the
set of graph operations

Pu = {Pvl ◦ · · · ◦ Pv1 : Pv ∈ {Xv, Yv, Zv}} (29)

Then we have that
G′ < G ⇔ ∃P ∈ Pu : G′ ∼LC P (G). (30)

�
Note that in [19] we indexed Pu simply with the set associated to the word u since the statement is independent of
the ordering of the elements of u. A direct corollary of the above theorem is therefore:

Corollary 2.2.1. Let G and G′ be two graphs. Furthermore, let u and u′ be two ordered tuples such that each element
of V (G) \ V (G′) occurs exactly once in both u and u′. Then we have that

∃P ∈ Pu : G′ ∼LC P (G) ⇔ ∃P ∈ Pu′ : G′ ∼LC P (G). (31)

�

Proof. This follows directly from theorem 2.2 since both sides in eq. (31) are true if and only if G′ < G.

Note that theorem 2.2 does not give an efficient method to check if G′ is a vertex-minor of G, since the set Pu is of
exponential size for all u. To study this problem further we formally define the vertex-minor problem.
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Problem 2.1 (VERTEXMINOR). Given a graph G and a graph G′ defined on a subset of V (G), decide whether G′

is a vertex-minor of G. �
Note again that we deal with labeled graphs here. We will often consider the special case where G′ is a star graph
SV ′ defined on a subset V ′ of V (G). Remember that a graph state described by a star graph is single-qubit Clifford
equivalent to a GHZ-state. Thus checking if SV ′ is a vertex-minor of G is equivalent to checking if |G〉 can be
transformed to GHZ-state on the qubits V ′ by only using LC + LPM + CC. We will give this problem a separate
name.

Problem 2.2 (STARVERTEXMINOR). Given a graph G and a vertex subset V ′ of V (G), decide whether SV ′ is a
vertex-minor of G. �
Note that we have not specified which star graph on V ′ we use. This is not ambiguous since all star graphs on V ′ are
equivalent under local complementation. In the rest of the text we will often leave the choice of star graph open.

2.4 Circle graphs

Here we introduce circle graphs and representations of these under the action of local complementations. Circle graphs
are graphs with edges represented as intersections of chords on a circle. These graphs are also sometimes called
alternance graphs since they can be described by a double occurrence word such that the edges of the graph are the
given by the alternances induced by this word. We will make use of the latter description here, which was introduced
by Bouchet in [7] and also described in [12]. This description is also related to yet another way to represent circle
graphs, as Eulerian tours of 4-regular multi-graphs, introduced by Kotzig in [34]. For an overview and the history of
circle graphs see for example the book by Golumbic [26].

2.4.1 Double occurrence words

Let us first define double occurrence words and equivalence classes of these. This will allow us to define circle
graphs.

Definition 2.7 (Double occurrence word). A double occurrence word X is a word with letters in some set V , such
that each element in V occur exactly twice in X. Given a double occurrence word X we will write V (X) = V for its
set of letters. �

Definition 2.8 (Equivalence class of double occurrence words). We say that a double occurrence word Y is equivalent

to another X, i.e. Y ∼ X, if Y is equal to X, the mirror X̃ or any cyclic permutation of X or X̃. We denote by
dX = {Y : Y ∼X} the equivalence class of X, i.e. the set of words equivalent to X. �
Next we define alternances of these equivalence classes, which will represent the edges of an alternance graph.

Definition 2.9 (Alternance). An alternance (u, v) of the equivalence class dX is a pair of distinct elements u, v ∈ V
such that a double occurrence word of the form . . . u . . . v . . . u . . . v . . . is in dX . �
Note that if (u, v) is an alternance of dX then so is (v, u), since the mirror of any word in dX is also in dX .

Definition 2.10 (Alternance graph). The alternance graph A(X) of a double occurrence word X is a graph with
vertices V (X) and edges given exactly by the alternances of dX , i.e.

E(A(X)) = {(u, v) ∈ V (X)× V (X) : (u, v) is an alternance of dX} (32)

�
Note that since A(X) only depends on the equivalence class of X, the alternance graphs A(X) and A(Y ) are equal
if X ∼ Y . Now we can formally define4 circle graphs.

Definition 2.11 (Circle graph). A graph G which is the alternance graph of some double occurrence word X is called
a circle graph. �

4Circle graphs are usually defined as graphs which edges are represented by intersections of chords on a circle. However, the definition
in terms of alternances of double occurrence words turn out to be equivalent [12].
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2.4.2 Eulerian tours on 4-regular multi-graphs

There is yet another way to represent circle graphs, closely related to double occurrence words, as Eulerian tours of
4-regular multi-graphs.

Definition 2.12 (Eulerian tour). Let F be a connected 4-regular multi-graph. An Eulerian tour U on F is a tour that
visits each edge in F exactly once. �
Any 4-regular multi-graph is Eulerian, i.e. has a Eulerian tour, since each vertex has even degree [6].

Furthermore, any Eulerian tour on a 4-regular multi-graph F traverses each vertex exactly twice, except for the vertex
which is both the start and the end of the tour. Such a Eulerian tour induces therefore a double occurrence word, the
letters of which are the vertices of F , and consequently a circle graph as described in the following definition.

Definition 2.13 (Induced double occurrence word). Let F be a connected 4-regular multi-graph on k vertices V (F ).
Let U be a Eulerian tour on F of the form

U = x1e1x2 . . . x2k−1e2k−1x2ke2kx1. (33)

with xi ∈ V . Note that every element of V occurs exactly twice in U . From a Eulerian tour U as in eq. (33) we define
an induced double occurrence word as

m(U) = x1x2 . . . x2k−1x2k. (34)

To denote the alternance graph given by the double occurrence word induced by a Eulerian tour, we will write A(U) ≡
A(m(U)). �
Similarly to double occurrence words, we also introduce equivalence classes of Eulerian tours under cyclic permutation
or reversal of the tour.

Definition 2.14 (Equivalence class of Eulerian tours). Let F be a connected 4-regular multi-graph and U be an
Eulerian tour on F . We say that an Eulerian tour U ′ on F is equivalent to U , i.e. U ∼ U ′, if U ′ is equal to U , the
reversal Ũ or any cyclic permutation of U or Ũ . We denote by tU the equivalence class of U , i.e. the set of Eulerian
tours on F which are equivalent to U . �
It is clear that if the Eulerian tours U and U ′ on a 4-regular multi-graph F are equivalent, then so are the double
occurrence words m(U) and m(U ′). Furthermore, as for double occurrence words, two equivalent Eulerian tours on a
connected 4-regular multi-graph induce the same alternance graph.

2.4.3 Local complementations on circle graphs

We will now introduce an operation τ̃v on double occurrence words that will be the equivalent of performing a local
complementation on the corresponding alternance graph.

Definition 2.15 (τ̃v). Let X be a double occurrence word and v be an element in V (X). We can then always find
sub-words A, B and C not containing v, such that X = AvBvC. Note that some of the sub-words A, B and C are
possibly empty. The operation τ̃v acting on a double occurrence word is then defined as

τ̃(AvBvC) = AvB̃vC. (35)

If v = (v1, . . . , vl) is a sequence of elements of V (X) we use the notation τ̃v(X) = τ̃vl ◦ · · · ◦ τ̃v1(X). �
The operation τ̃v in the above definition maps equivalence classes to equivalence classes, as defined in definition 2.8.

That is, if X ∼ Y and v ∈ V (X), then τ̃v(X) ∼ τ̃v(Y ). For example, assume that Y is the mirror of X, i.e. Y = X̃.
Then we see that

τ̃v(X) = AvB̃vC ∼ ÃvB̃vC = C̃vBvÃ = τ̃v(Y ). (36)

The case when Y is a obtained by a cyclic permutation of X can be checked similarly.

In [12] it was shown that the alternance graph of A(τ̃v(X), where X is a double occurrence word and v ∈ V (X), is
the same as the graph obtained by performing a local complementation at v, i.e.

τv(A(X)) = A(τ̃v(X)). (37)
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Similar to the above we can also define an operation τ̄v on Eulerian tours U on 4-regular multi-graphs which also has
the effect of a local complementation on the graph A(U).

Definition 2.16 (τ̄v). Let F be a connected 4-regular multi-graph. Let U be a Eulerian tour on F and v be a vertex
in V . Let Pv be the first subtrail of U that starts and ends at v, i.e. U = U1PvU2, from some U1 and U2. We define
τ̄v(U) to be the Eulerian tour obtained by traversing U1, the reversal of Pv and then U2, i.e. τ̄v(U) = U1P̃vU2. When
v = v1 . . . vl is a sequence of vertices in V we write τ̄v(U) ≡ τ̄vl ◦ · · · ◦ τ̄v1(U). �
Note in particular that τ̄v(U), where U is an Eulerian tour on F , is also a Eulerian tour on F .

We have now defined τ -operations on circle graphs, τ̃ -operations on double occurrence words and τ̄ -operations on
Eulerian tours of 4-regular multi-graphs. They are given similar names since they are in some sense the same operation
but in different representations of circle graphs. To see this note that

m(τ̄v(U)) = m(U1P̃vU2) = τ̃v(m(U)) (38)

where U = U1PvU2 as in definition 2.16. From eq. (37) and the shorthand A(U) = A(m(U)) we also have that

A(τ̄v(U)) = A(τ̃v(m(U))) = τv(A(U)). (39)

The operation τ̄v on Eulerian tours of 4-regular multi-graphs was introduced by Kotzig in [33], where he called it a
κ-transformation.

As stated by Bouchet in [12], Kotzig [33] proved that any two Eulerian tours of a 4-regular multi-graph are related by
a sequence of κ-transformations.

Theorem 2.3 (Proposition 4.1 in [12], [33]). Let U and U ′ be Eulerian tours on the same connected 4-regular multi-
graph. Then there exist a sequence v such that τv(U) ∼ U ′. �

2.4.4 Vertex-deletion on circle graphs

When we are considering vertex-minors of circle graphs, it is useful to have an operation on the double occurrence word
that corresponds to the deletion of a vertex in the corresponding alternance graph. Let X = AvBvC be a double
occurrence word and v be an element in V (X). We will denote by X \ v the deletion of the element v, i.e.

X \ v ≡ (AvBvC) \ v = ABC. (40)

The resulting word ABC is also a double occurrence word and furthermore we have that

A(X) \ v = A(X \ v). (41)

If W = {w1, w2 . . . , wl} is a subset of V , we will write X \W as the deletion of all elements in W , i.e.

X \W = (. . . ((X \ w1) \ w2) . . . ) \ wl. (42)

Connected to this we can also define an induced double occurrence sub-word m[W ] = X \ (V \W ). The reason for
calling this an induced double occurrence sub-word stems from its relation to induced subgraphs of the alternance
graph as

A(X)[W ] = A(X[W ]). (43)

2.4.5 Vertex-minors of circle graphs

Since we now have expressions for local complementation and vertex deletion on circle graphs in terms of double
occurrence words, we can consider vertex-minors of circle graphs completely in terms of double occurrence words.
More precisely we have the following theorem.

Theorem 2.4. Let G be a circle graph such that G = A(X) for some double occurrence word X. Then G′ is a
vertex-minor of G if and only if there exist a sequence v of elements in V (G) = V (X) such that

G′ = A(τ̃v(X)[V (G′)]). (44)

�
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Proof. By using eq. (43) and eq. (39) on the right hand side of eq. (44) we have that

A
(
τ̃v(X)[V (G′)]

)
= A

(
τ̃v(X)

)
[V (G′)] = τv(A(X))[V (G′)] (45)

Since G′ is a vertex-minor of G = A(X) if and only if there exist a sequence v of elements in V (G) such that

G′ = τv(G)[V (G′)] (46)

the theorem follows.

We can also consider vertex minors of circle graphs in terms of their representations as Eulerian tours on connected
4-regular multi-graphs, which we will use in section 3 to prove that VERTEXMINOR is NP-Complete. Theorem 2.3,
together with eq. (39), implies that connected 4-regular multi-graphs describe equivalence classes of circle graphs under
local complementations. Bouchet pointed out this fact in [12]. We formalize this here as a theorem together with a
formal proof:

Theorem 2.5. Let U be an Eulerian tour of a connected 4-regular multi-graph F with vertices V . Then (1) any graph
LC-equivalent to A(U) is an alternance graph of some Eulerian tour of F and (2) any alternance graph of a Eulerian
tour of F is a graph LC-equivalent to A(U). �

Proof. We start by proving (1), so let us therefore assume that G is a graph LC-equivalent to A(U). This means, by
definition, that there exist a sequence v of vertices in V such that G = τv(A(U)). By using eq. (39) we have that

G = A(τ̄v(U)). (47)

which shows that G is an alternance graph induced by a Eulerian tour of F , since τ̄v(U) is a Eulerian tour on F .
To prove (2), assume that U ′ is a Eulerian tour of F . We will now prove that the alternance graph of U ′, A(U ′), is
LC-equivalent to A(U). By theorem 2.3, we know that there exist a sequence of τ̄v-transformations that relates U and
U ′, i.e. there exist a sequence v such that

τ̄v(U) ∼ U ′. (48)

Since these Eulerian tours are equivalent, their induced alternance graphs are equal, i.e.

A(τ̄v(U)) = A(U ′). (49)

Finally, using eq. (39) on the above equation gives

τv(A(U)) = A(U ′) (50)

which shows that A(U) and A(U ′) are indeed LC-equivalent.

Similarly to theorem 2.4 we can decide if a circle graph has a certain vertex-minor by considering Eulerian tours of a
4-regular graph, which is captured in the following theorem.

Theorem 2.6. Let F be a connected 4-regular multi-graph and let G be a circle graph such that A(U) for some
Eulerian tour U on F . Then G′ is a vertex-minor of G if and only if there exist a Eulerian tour U ′ on F such that

G′ = A(m(U ′)[V (G′)]). (51)

�

Proof. Lets first assume that G′ is a vertex-minor of G. This means that there exists a sequence v such that G′ =
τv(G)[V (G′)]. Since G = A(U) we have that

G′ = τv

(
A(U)

)
[V (G′)] (52)

= A
(
τ̄v(U)

)
[V (G′)] (53)

= A
(
m(τ̄v(U))[V (G′)]

)
(54)
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where we used eq. (39) in the first step and eq. (43) in the second. We therefore see that U ′ = τ̄v(U) is a Eulerian
tour on F satisfying eq. (51).

To prove the converse let us assume that there exist a Eulerian tour U ′ on F satisfying eq. (51). From theorem 2.3 we
know that there exist a sequence v such that U ′ = τ̄v(U). We can then replace U ′ by τ̄v(U) in eq. (51) such that

G′ = A
(
m(τ̄v(U))[V (G′)]

)
(55)

= A
(
m(τ̄v(U))

)
[V (G′)] (56)

= τv

(
A(U)

)
[V (G′)] (57)

where we again made use of eq. (43) and eq. (39). From eq. (57) we see that G′ is indeed a vertex-minor of G, see
definition 2.5, since G = A(U).

2.4.6 Semi-Ordered Eulerian tours

From the previous sections we have seen that circle graphs and their vertex-minors can be described by Eulerian
tours on connected 4-regular multi-graphs. As discussed in section 2.2, the question of whether a given graph G has
vertex-minors on the subset V ′ ⊆ V (G) in the form of star or complete graphs is of importance in quantum information
theory, since it corresponds to transforming the graph state |G〉 to a GHZ-state on the qubits V ′. A natural question
is therefore: Given a set of vertices V ′, what property should a connected 4-regular multi-graph F satisfy, such that
SV ′ is a vertex-minor of A(U), for some Eulerian tour U on F . As we will see in this section, a necessary and sufficient
condition is that F allows for what we call a semi-ordered Eulerian tour (SOET) with respect to V ′.

The existence of a SOET on a four regular graph F with respect to some vertex set V ′ will therefore be a key technical
tool when considering STARVERTEXMINOR on circle graphs, as described in section 3. We formally define a SOET
as follows.

Definition 2.17 (SOET). Let F be a 4-regular multi-graph and let V ′ ⊆ V (F ) be a subset of its vertices. Fur-
thermore, let s = s1s2 . . . sk be a word with letters in V ′ such that each element of V ′ occurs exactly once in s
and where k = |V ′|. A semi-ordered Eulerian tour U with respect to V ′ is a Eulerian tour such that m(U) =
X0s1X1s2 . . . skXks1Y 1s2 . . . skY k for some s and where X0,X1, . . . ,Xk,Y 1, . . . ,Y k are words (possibly empty)
with letters in V \ V ′. This can also be stated as m(U)[V ′] = ss, for some s. �
Note that the multi-graph F is not assumed to be simple, so multi-edges and self-loops are allowed. A SOET is a
Eulerian tour on F that traverses the elements of V ′ in some order once and then again in the same order. The
particular order in which the SOET traverses V ′ will not be important here, only that it traverses V ′ in the same
order twice. An example of a graph that allows for a SOET with respect to the set V ′ = {a, b, c, d} can be seen in
fig. 3a. A SOET for this graph is for example m(U) = abcdaebced. The graph in fig. 3b on the other hand does not
allow for any SOET with respect to the set V ′ = {a, b, c, d}.

bb

b b

b

a b

d c

e

(a)

bb

b b
a b

d c

b e

(b)

Figure 3: Examples of two 4-regular multi-graphs. The graph in fig. 3a allows for a SOET with
respect to the set {a, b, c, d} but the graph in fig. 3b does not.

We also formally define the SOET-decision problem, which takes a 4-regular multi-graph F and a subset V ′ of the
vertices as input and asks to decide whether or not the graph F allows for a Semi-Ordered Eulerian Tour with respect
to the vertex set V ′.
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Problem 2.3 (SOET). Let F be a 4-regular multi-graph and let V ′ be a subset V (F ). Decide whether there exists a
SOET U on F with respect to the set V ′. �
As mentioned, the reason for introducing the notion of a SOET is that a 4-regular multi-graph F allows for a SOET
with respect to a subset V ′ ⊆ V (F ) if and only if a star graph on V ′ is a vertex-minor of an alternance graph
A(U) induced by a Eulerian tour U on F . This is captured in the following theorem, formulated as a corollary of
theorem 2.6.

Corollary 2.6.1. Let F be a connected 4-regular multi-graph and let G be a circle graph given by the alternance graph
of a Eulerian tour U on F , i.e. G = A(U). Then SV ′ is a vertex-minor of G if and only if F allows for a SOET (see
definition 2.17) with respect to V ′. �

Proof. Note first that SV ′ ≤ G if and only if KV ′ ≤ G, since SV ′ and KV ′ are LC equivalent. From theorem 2.6 we
know that KV ′ is a vertex-minor of G if and only if there exist an Eulerian tour U ′ on F such that

KV ′ = A(m(U ′)[V ′]). (58)

It is easy to verify that A(X) is a complete graph on V ′ if and only if X = s1s2 . . . sks1s2 . . . sk where s = s1s2 . . . sk is
a word with letters in V ′ such that each element of V ′ occur exactly once in s. The result then follows, since m(U ′)[V ′]
is of this form if and only if U ′ is a SOET with respect to V ′.

One can see that the existence of a SOET on a 4-regular multi-graph F with respect to V ′, imparts an ordering on
the subset of vertices V ′. We will in particular be interested in vertices in V ′ that are ‘consecutive’ with respect to
the SOET. Consecutiveness is defined as follows.

Definition 2.18 (Consecutive vertices). Let F be a 4-regular graph and U a SOET on F with respect to a subset
V ′ ⊆ V (F ). Two vertices u, v ∈ V ′ are called consecutive in U if there exist a sub-word uXv or vXu of m(U) such
that no letter of X is in V ′. �
We also define the notion of a “maximal sub-word” associated with two consecutive vertices.

Definition 2.19 (Maximal sub-words). Let F be a 4-regular multi-graph and U a SOET on F with respect to a subset
V ′ ⊆ V (F ). The double occurrence word induced by U is then of the form m(U) = X0s1X1s2 . . . skXks1Y 1s2 . . . skY k,
where k = |V ′|, s1, . . . , sk ∈ V ′ and X0, . . . , Xk, Y1, . . . , Yk are words (possibly empty) with letters in V (F ) \ V ′. For
i ∈ [k − 1], we call Xi and Y i the two maximal sub-words associated with the consecutive vertices si and si+1.
Furthermore, we call Xk and Y kX0 the two maximal sub-words associated with the consecutive vertices sk and s1.
Given two consecutive vertices u and v, we will denote their two maximal sub-words as X and X ′, Y and Y ′ or
similar. �

2.5 Leaves, twins and axils

In this section we will consider certain vertices called leaves, twins and axils. First we will prove that such vertices can
in many cases be removed when considering the vertex-minor problem, which can simplify the problem significantly.
We capture this in theorem 2.7. This motivates us to consider distance-hereditary graphs, since it turns out that these
are exactly the graphs that can be reached from a single-vertex graph by adding leaves or performing twin-splittings.
We will leverage these properties in section 4.1 to find an efficient algorithm for STARVERTEXMINOR when the
input graph is distance hereditary. We define and consider distance-hereditary graphs in section 2.5.1.

Let us first formally define leaves, twins and axils.

Definition 2.20 (Leaves and axils). A leaf is vertex with degree one. An axil is the unique neighbor of a leaf. �

Definition 2.21 (Twin). A twin is a vertex v such that there exist a different vertex u with the same neighborhood,
i.e. v is a twin if and only if

∃u ∈ V \ {v} :
(
Nv \ {u} = Nu \ {v}

)
. (59)

A vertex u as in eq. (59) is called a twin-partner of v and v, u form a twin-pair. If v and u are adjacent, they form a
true twin-pair and otherwise a false twin-pair. �
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Definition 2.22 (Foliage). The foliage of a graph G is the set of leaves, axils and twins in a graph G and is denoted

T (G) = {v ∈ V (G) : v is a leaf, axil or twin} (60)

�
We are now ready to prove the following theorem which can be used to simplify some instances of VERTEXMINOR,
in particular when considering distance-hereditary graphs, see section 2.5.1.

Theorem 2.7. Let G and G′ be graphs and v be a vertex in G but not in G′. Then the following is true:

• If v is a leaf or a twin, then G′ is a vertex-minor of G if and only if G′ is a vertex-minor of G \ v, i.e.

G′ < G ⇔ G′ < (G \ v). (61)

• If v is an axil, then G′ is a vertex-minor of G if and only if G′ is a vertex-minor of τw ◦ τv(G) \ v, where w is
the leaf associated to v, i.e.

G′ < G ⇔ G′ < (τw ◦ τv(G) \ v). (62)

�

Proof. Firstly, if G′ is a vertex-minor of G \ v, then clearly G′ is also a vertex-minor of G.

This means we only need to prove the other direction. Assume therefore that G′ is a vertex-minor of G. We start by
proving the case where v is a leaf in G. The cases where v is an axil or a twin in G then follow by a short argument.

Hence assume that v is a leaf in V \V ′, where V = V (G) and V ′ = V (G′). Furthermore, let u be a sequence of vertices
such that each element of V \ V ′ occurs exactly once in u. Since G′ is a vertex-minor of G, we know by theorem 2.2
that there exists some sequence of operations P ∈ Pu, such that P (G) ∼LC G′. Let us denote the i-th operation in P
as P (i), such that P = P (n−k) ◦ · · · ◦ P (1), where n = |G| and k = |G′|. Remember that each operation P (i) deletes
the i-th vertex of u from the graph. Furthermore, let’s denote the sequence of operations from i through j in P as

P ji = P (j) ◦ . . . P (i+1) ◦ P (i). (63)

By corollary 2.2.1 we know that such a P exist for all orderings u of the vertices in V \ V ′. Without loss of generality
we can assume that v is the first element in u. This means that P (1) is either Zv, Yv or Xv. We will now treat all
three these cases separately.

If P (1) is Zv or Yv, then since v is a leaf we have that

P (1)(G) = G \ v. (64)

Then it is easy to see that G′ is also a vertex-minor of G \ v, since

G′ ∼LC P (G) = Pn−k2 ◦ P (1)(G) = Pn−k2 (G \ v) (65)

If P (1) is Xv then the axil of v cannot be in V \ V ′, since the operation Xv on a leaf disconnects the axil from its
neighbors. Lets denote the axil of v by w and assume again w.l.o.g. that the ordering of V \ V ′ is such that w is the
second element of u. Since w is a disconnected vertex after P (1), any of the three operations {Xw, Yw, Zw} act the
same, i.e. deleting w. So the action of Xv followed by P (2) ∈ {Xw, Yw, Zw} is the same as deleting both v and w or
in other words

P 2
1 (G) = Zw(G \ v) (66)

It is again clear that G′ is then a vertex-minor of G \ v, since

G ∼LC P (G) = Pn−k3 ◦ P 2
1 (G) = Pn−k3 ◦ Zw(G \ v) (67)

with a satisfying sequence taking G \ v to an LC-equivalent graph of G′ being (Zw, P
(3), . . . , P (n−k)). This proves the

theorem when v is a leaf.
Now assume that v is a twin in G. To prove that the theorem also hold for twins, we first show that a twin can
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always be transformed into a leaf by local complementations. Assume that v and w are false twins, and denote one of
their common neighbors as n.5 Then the graph G̃ = τw ◦ τn(G) is a graph where v is a leaf and w is an axil. Since
LC-equivalent graphs have the same vertex-minors, G′ is also a vertex-minor of G̃. From what we showed above and
that v is a leaf, G′ is also a vertex-minor of G̃ \ v. Finally, G′ is then also a vertex-minor of

τn ◦ τw(G̃ \ v) = τn ◦ τw ◦ τw ◦ τn(G) \ v = G \ v (68)

where we used lemma 2.1. An almost identical argument can be made for the case where v and w are true twins by
considering the graph G̃ = τw(G).

Now assume v is an axil in G. If v is an axil in G and v /∈ G′, then v is a leaf in the graph G̃ = τw ◦ τv(G), where w is
the leaf of v in G. Since by assumption G′ < G, we know that G′ < G̃ and from the cases of leaves we have that also
G′ < G̃ \ v, since v is a leaf in G̃. This completes the proof.

2.5.1 Distance-hereditary graphs

In this section we introduce distance-hereditary graphs. As shown by Bouchet in [9], distance-hereditary graphs are
exactly the graphs with rank-width one. These graphs have nice properties which we make use of in section 4.1.

Definition 2.23 (Distance-hereditary). A graph G is distance-hereditary if and only if, for each connected induced
subgraph G[A] and for any two vertices u, v ∈ A the distance between u and v is the same in G and in G[A], i.e.

dG(u, v) = dG[A](u, v). (69)

�
The simplest example of a graph which is not distance-hereditary is the five-cycle C5. To see this pick two vertices
which have distance two in C5 and denote their unique common neighbor by v. The distance between the same
vertices in the connected induced subgraph C5[V \ v] is three and thus not the same as in C5. It turns out that
distance-hereditary graphs are exactly the graphs which do not contain a vertex-minor isomorphic to C5 [12]. We also
note that distance-hereditary graphs form a strict subclass of circle graphs [12].

In [3] an equivalent property of distance-hereditary is shown: A graph is distance-hereditary if and only if it can be
obtained from a single-vertex graph using the following three operations:

• Add a leaf : Let u be a vertex in a graph G. Add the vertex v and the edge (u, v) to G.

• False twin-split : Let u be a vertex in a graph G. Add the vertex v and the edges {(v, x) : x ∈ Nu}.
• True twin-split : Let u be a vertex in a graph G. Add the vertex v and the edges {(v, x) : x ∈ {u} ∪Nu}.

Note that this implies that a distance-hereditary graph always has at least one leaf or twin, i.e. the foliage is non-
empty. This fact will be a critical element of the algorithm presented in section 4.1

In the rest of this section we prove some properties of the foliage for distance-hereditary graphs, which we make use
of in section 4.1 to find an efficient algorithm for VERTEXMINOR on distance-hereditary graphs. First we show that
the twin relation is in fact transitive. This is a technical lemma we will use in later theorems.

Lemma 2.2. Let G be a graph and let u be a vertex of G that is a twin and has twin-partners {t1, t2, . . . , tk}. Then
all vertices in u ∪ {t1, t2, . . . , tk} are pairwise twins. �

Proof. Since u and ti form a twin-pair, for i ∈ {1, 2, . . . , k}, we have that

Nu \ {ti} = Nti \ {u} (70)

which implies that
Nti = (Nu \ {ti}) ∪ {u}. (71)

5Note that twins always have at least one common neighbor, except for the graph K2 where the twins are anyway also leaves.
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Thus, we have that

Nti \ {tj} = ((Nu \ {ti}) ∪ {u}) \ {tj} (72)

= ((Nu \ {tj})︸ ︷︷ ︸
Ntj
\{u}

∪{u}) \ {ti} (73)

= Ntj \ {ti}. (74)

This shows that, for i 6= j, ti and tj form a twin-pair.

Next we prove that adding leaves to a graph G or performing (true or false) twin-splits never decreases the size of the
foliage T (G).

Lemma 2.3. Assume G is a connected, distance-hereditary graph. Let G′ be a graph formed by doing a twin-split on
G or adding a leaf to G. Then

|T (G′)| ≥ |T (G)|, (75)

where T (G) is the foliage of G. �

Proof. To prove this, let us first consider the case when |G| ≤ 2. Since G is connected it is necessary the case that
G = K1 or G = K2:

• If G = K1, then G′ = K2 and |T (G′)| = 2 ≥ 0 = |T (G)|.
• If G = K2, then G′ = K3 or G′ = P3 and |T (G′)| = 3 ≥ 2 = |T (G)|.

Let’s now consider the case when |G| > 2. We consider the two cases when G′ is formed by adding a leaf and performing
a twin-split separately:

• Assume G′ is formed by adding a leaf v to G, making u an axil of G′.Note first that if u /∈ T (G), then |T (G)|
can only increase since no vertex in T (G) was affected. Let’s therefore assume that u ∈ T (G). There are then
three possibilities: (1) u is a leaf, (2) u is an axil but not a twin and (3) u is a twin. We consider these three
cases separately:

– (1) Assume u is a leaf in G. Then the axil of u in G, is not in T (G′), but both u and v are. Therefore
|T (G)| = |T (G′)|.

– (2) Assume u is an axil but not a twin in G. Then u is also an axil in G′ and we have that |T (G′)| =
|T (G)| = 1.

– (3) Assume u is a twin in G.

* Assume there is only one twin-pair containing u in G. Then the twin-partner of u in G, is not in T (G′),
but both u and v are. Therefore |T (G′)| = |T (G)|.

* Assume there is more than one twin-pair containing u in G. Then the twin-partners of u are all pairwise
twins, by lemma 2.2, and will still be in G′. Therefore |T (G′)| = |T (G)|+ 1.

• Assume G′ is formed by twin-splitting u in G, creating v and making v and u a twin-pair. Note first that if
u /∈ T (G), then |T (G)| can only increase since no vertex in T (G) was affected. Let’s therefore assume that
u ∈ T (G). There are then three possibilities: (1) u is a leaf, (2) u is an axil but not a twin and (3) u is a twin.
We consider these three cases separately:

– (1) Assume u is a leaf in G. Then the axil of u in G is either still an axil in G′ or not, depending on if u
and v are true or false twins. In either case, |T (G′)| ≥ |T (G)| since v ∈ T (G′).

– (2) Assume u is an axil but not a twin in G. Note that all leaves with u as an axil in G are also twins.
These vertices are also twins in G′ since they are all now also adjacent to v. Thus, |T (G′)| = |T (G)|+ 1.

– (3) Assume u is a twin in G.

* Assume there is only one twin-pair in G containing u. Then the twin-partner of u in G, may or may
not still be a twin-partner of u in G′ depending on whether the considered twin-pairs are true or false.
Therefore the size of T (G) either remains the same or increases by one since again v ∈ T (G′).

21



* Assume there are more than one twin-pair in G containing u. Then the twin-partners of u are all
pairwise twins, by lemma 2.2, and will still be in G′. Therefore |T (G′)| = |T (G)|+ 1.

We now make use of the above theorem to prove that the foliage has a certain minimum size.

Theorem 2.8. Assume G is a connected, distance-hereditary graph and 2 ≤ k ≤ 4, then

|G| ≥ k ⇒ |T (G)| ≥ k. (76)

�

Proof. First we explicitly check that the graphs on 2, 3 and 4 vertices has T (G) = 2, T (G) = 3 and T (G) = 4,
respectively.6 Then by lemma 2.3 and the fact that all distance-hereditary graphs can be built up by twin-splits and
adding leaves [9], the result follows.

We point out that the theorem does not hold for k > 4. Consider for example a path graph Pk on more than four
vertices. It is easy to see that size of the foliage in this case is |Pk| = 4.

Finally we show that an interesting property regarding the foliage, in relation to cut-vertices.7

Corollary 2.8.1. Assume that G is a connected distance-hereditary graph and that v ∈ G is a cut-vertex. Denote the
connected components of G \ v by G1, G2, . . . , Gk, where k is the number of connected components of G \ v. Then for
any 1 ≤ i ≤ k, there exist a vertex u ∈ Gi such that u ∈ T (G). �

Proof. Pick an arbitrary connected component Gi with vertices Vi. If Gi is just a single vertex, then this vertex is
necessarily a leaf in G and is therefore in T (G). Now assume that |Gi| > 1, then by using theorem 2.8, we have that
there exist at least one twin-pair not containing v or a leaf which is not v in G[{v}∪Vi]. This proves the corollary.

3 Complexity

In this section we will consider the time-complexity of VERTEXMINOR. In particular we will show that even a
highly restrictive version of the vertex-minor problem is NP-Hard, namely when G′ is a star graph and G is in a strict
subclass of circle graphs. Since we also prove that VERTEXMINOR is in NP this then proves that VERTEXMINOR is
NP-Complete.

3.1 VERTEXMINOR is in NP

We begin by arguing that the vertex-minor problem is in NP. Given graphs G and G′ such that G′ < G, a witness to
this relation would be a sequence of local complementations and vertex deletions that takes G to G′. It is not a priori
clear that this sequence is polynomial in length w.r.t. to the number of vertices of G. However from theorem 2.2 one
can argue that whenever there is such a sequence, there is also a sequence of polynomial length. This leads to the
following theorem.

Theorem 3.1. The decision problem VERTEXMINOR is in NP. �

Proof. Let G and G′ be graphs, on n and k vertices respectively. Furthermore, let u be a sequence such that each
element of V (G)\V (G′) occur exactly once in u. If G′ < G then, by theorem 2.2, there exists a sequence of operations
P ∈ Pu, as specified in eq. (29), such that P (G) ∼LC G′. Furthermore, the sequence of operations P consists of
O(n− k) local complementations and vertex-deletions. A witness to the instance (G,G′) will then be the sequence of
operations P . On the other hand, if G′ ≮ G, then by theorem 2.2, there exist no P ∈ Pu such that P (G) ∼LC G′.

6The number of non-isomorphic graphs on 2, 3 and 4 vertices are 1, 2 and 6, respectively.
7A cut-vertex is a vertex such that when it is deleted, the number of connected components increases.
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Given (G,G′) and a sequence of operations P , a verifier can therefore perform the following protocol to check if (G,G′)
is a yes-instance of STARVERTEXMINOR.

1. Compute P (G).

2. Decide if P (G) ∼LC G′ using Bouchet’s algorithm for checking if two graphs are LC-equivalent [11].

3. Output yes if Bouchet’s algorithm outputs TRUE and no otherwise.

The verifier will therefore output yes if P is such that P (G) ∼LC G′ and no if G′ ≮ G, since then P (G) �LC G′ for
any P . Computing P (G) can be done in time O(n2(n − k)), since each local complementation can be performed in
time O(n2) [11]. Furthermore, checking whether P (G) and G′ are LC-equivalent can be done in time O(k4) using
Bouchet’s algorithm [11]. Thus the verifier will output yes or no in time O(n2(n− k)) +O(k4).

3.2 VERTEXMINOR is NP-Complete

Next we will argue that the problem VERTEXMINOR is also NP-Hard and hence that it is NP-Complete. We will do
this through a sequence of three reductions.

• First we will reduce STARVERTEXMINOR to VERTEXMINOR. This is done in theorem 3.2.

• Secondly we will reduce a new problem, which we call the SOET problem, for Semi-Ordered Eulerian Tour, to
STARVERTEXMINOR. This is done in section 3.2.1

• Finally we will reduce the problem of deciding whether a 3-regular (or cubic) graph has a Hamiltonian cycle or
not (CubHam), which is a known NP-complete problem [25], to the SOET problem. This is the most complicated
part of the reduction and is done in several steps in section 3.2.2.

The reductions between these problems are summarized in fig. 4. Eventually we will have the following theorem, which
can be considered the main theorem of this section.

VM SVM CubHamSOET

k-DPP

Figure 4: The different decision problems considered and how they can be reduced to each
other. An solid arrow between problem A and B means that any instance of A can be reduced
to B in polynomial time. A dashed line means that a subclass of instances of the A can be
reduced to B in polynomial time. VERTEXMINOR (VM) and STARVERTEXMINOR (SVM)
are presented in section 2.3.1, SOET in section 2.4.6, CubHam in section 3.2 and k−DPP (k-
Disjoint Paths Problem) in section 4.2. The dashed line from STARVERTEXMINOR to SOET
is restricted to circle graphs. The dashed line from SOET to CubHam is restricted to triangle-
expanded graphs Λ(R) where the SOET is with respect to V (R). Finally the dashed line from
SOET to k−DPP is for SOET problems where the SOET is with respect to a set of size k.

Theorem 3.2. VERTEXMINOR is NP-Complete �

Proof. Note first that STARVERTEXMINOR trivially reduces to VERTEXMINOR. This is so since every yes(no)-
instance of STARVERTEXMINOR is also an yes(no)instance of VERTEXMINOR. From theorem 3.3 we see that
we can reduce the SOET problem to STARVERTEXMINOR and finally from corollary 3.4.1 we see that we can re-
duce CubHam to the SOET problem. Since CubHam is a known NP-Complete problem this implies that VERTEXMINOR is
NP-Hard. From theorem 3.1 we have that VERTEXMINOR is in NP and hence it is NP-Complete.
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Now we will detail every step in the above reduction. We begin with proving that the SOET decision problem reduces
to STARVERTEXMINOR.

3.2.1 Reducing the SOET problem to STARVERTEXMINOR

In this section we show that the SOET problem reduces to STARVERTEXMINOR. For this we will make use of the
properties of circle graphs, discussed in section 2. In corollary 2.6.1 we showed that a 4-regular multi-graph F allows
for a SOET with respect to a subset of its vertices V ′ ⊆ V (F ) if and only if an alternance graph A(U) (which is a
circle graph), induced by some Eulerian tour on F , has SV ′ as a vertex-minor.

Since circle graphs are a subset of all simple graphs we can then decide whether a 4-regular graph F allows for a
SOET with respect to some subset V ′ of it’s vertices by constructing the circle graph induced by an Eulerian tour on
F and checking whether it has a star-vertex minor on the vertex set V ′. This leads to the following theorem.

Theorem 3.3. The decision problem SOET reduces to STARVERTEXMINOR. �

Proof. Let (F, V ′) be an instance of SOET, where F is a 4-regular multi-graph and V ′ a subset of the vertex set of F .
Also let G be a circle graph induced by any Eulerian tour U on F . From corollary 2.6.1 we see that G has SV ′ as a
vertex-minor if and only if F allows for a SOET with respect to the vertex set V ′. Since an Eulerian tour U can be
found in polynomial time [23] and since G can be efficiently constructed given U , this concludes the reduction.

3.2.2 Reducing CubHam to the SOET problem

In this section we will prove that the SOET problem, as defined in problem 2.3, is NP-Complete by reducing the
problem of deciding if a 3-regular graph is Hamiltonian (CubHam), a well-known NP-Complete problem [25], to
the SOET problem (it is in NP by theorem 3.3 and theorem 3.1). For completeness we include the definition of a
Hamiltonian graph.

Definition 3.1 (Hamiltonian). A graph is said to be Hamiltonian if it contains a Hamiltonian cycle. A Hamiltonian
cycle is a cycle that visits each vertex in the graph exactly once. �
We can use this to formally define the CubHam problem.

Problem 3.1 (CubHam). Let R be a 3-regular graph. Decide whether R is Hamiltonian. �
The reduction of CubHam to the SOET problem is done by going though the following steps.

1. Introduce the notion of a (4-regular) triangular-expansion Λ(R) of a 3-regular graph. This is done in definition 3.2.

2. Argue that given a 3-regular graph R, its triangular-expansion can be constructed efficiently. This is done in
lemma 3.1.

3. Introduce the notions of skip and true skip that capture an essential behavior of SOETs on triangular-expansions
of 3-regular graphs. This is done in section 3.2.4.

4. Prove that if a 3-regular graph R is Hamiltonian then the triangular-expansion Λ(R) of R allows for a SOET with
respect to the set V (R). This is done in lemma 3.3.

5. Prove that if the triangular-expansion Λ(R) of a 3-regular graph R allows for a special kind of SOET, called a
HAMSOET with respect to R (HAMSOETs are defined in definition 3.4, but can be thought of as SOETs with
no true skips), then the 3-regular graph R is Hamiltonian. This is done in lemma 3.4.

6. Prove that if the triangular-expansion Λ(R) of a 3-regular graph R allows for a SOET with respect to V (R) then
it also allows for a HAMSOET with respect to R. This is done in lemma 3.5.

Performing all these steps will lead to the following theorems.

Theorem 3.4. Let R be a 3-regular graph and Λ(R) be its triangular-expansion as defined in definition 3.2. R is
Hamiltonian if and only if Λ(R) allows for a SOET with respect to V (R). �
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Proof. Let R be a 3-regular graph and let Λ(R) be its triangular-expansion as defined in definition 3.2. If R is
Hamiltonian then lemma 3.3 guarantees that Λ(R) allows for a SOET with respect to the vertices V (R). In the other
direction, if Λ(R) allows for a SOET with respect to the vertices V (R) then we can see from lemma 3.4 that it also
allows for a HAMSOET. The existence of a HAMSOET on Λ(R) then implies, via lemma 3.4 that R has a Hamiltonian
cycle and hence that it is Hamiltonian. This proves the theorem.

Corollary 3.4.1. The SOET problem is NP-Complete. �

Proof. The Hamiltonian cycle problem (CubHam) is NP-Complete on 3-regular graphs [25]. We will reduce this
problem to the SOET problem. Let R be an instance of CubHam, i.e. a 3-regular graph. From this 3-regular graph
we can construct its triangular-expansion Λ(R). In lemma 3.1 it is argued that this construction can be performed in
O(|V (R)|) time. We can then use theorem 3.4 to see that R is Hamiltonian if and only if Λ(R) allows for a SOET with
respect to the vertex set V (R). Hence there exists an efficient reduction of CubHam to the SOET problem. This means
that the SOET problem is NP-Hard. Furthermore, the SOET problem is in NP since it can be efficiently reduced to
STARVERTEXMINOR by theorem 3.3, which is in NP by theorem 3.1. Hence the SOET problem is NP-Complete.

Corollary 3.4.2. The SOET problem is NP-Complete on graphs which are triangular-expansions of planar 3-regular
triply-connected graphs, i.e. graphs in the set

{Λ(R) : R is planar, 3-regular and triply-connected}. (77)

�

Proof. The proof is the same as the proof of corollary 3.4.1 but using the fact that CubHam is NP-Complete on planar
triply-connected graphs.

3.2.3 triangular-expansions

It now remains to prove lemmas 3.3 to 3.5. These lemmas will relate Hamiltonian cycles on 3-regular graphs and
SOETs on 4-regular multi-graphs by using a mapping from 3-regular graphs to 4-regular multi-graphs. We call this
mapping ‘triangular-expansion’. We have the following definition.

Definition 3.2 (Triangular-expansion). Let R be a 3-regular graph. A triangular-expansion Λ(R) of a 3-regular graph
R is constructed from R by performing the following two steps:

1. Replace each vertex v in R with the subgraph below

b

v

b

b by z

x

→ b b

b bb

b

v v(z)v(y)

v(x)

ṽ(z)ṽ(y)

b

b by z

x

, (78)

where x, y and z are the neighbors of v. We will denote this triangle subgraph associated to the vertex v with
Tv, i.e. Tv = G[{v, v(x), v(y), v(z), ṽ(y), ṽ(z)}].

2. Double every edge that is incident on two subgraphs Tv, Tv′ .

�
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The graph Λ(R) will be called a triangular-expansion of R. A multi-graph F that is the triangular-expansion of some
3-regular graph R will also be referred to as a triangular-expanded graph. Note that the triangular-expansion is not
uniquely defined, since for each vertex v ∈ R there is a choice how to orient the triangle with respect to the neighbors
of v. Furthermore, the number of vertices in Λ(R) is 6 · |V (R)| and the number of edges is 2 · |E(R)|+ 9 · |V (R)|. In
fig. 5 we show an example of a 3-regular graph and its triangular-expansion.

For a given triangle subgraph Tv in a triangular-expanded graph, we will refer to the vertices adjacent to other
triangle subgraphs Tx, Ty, Tz as ’outer vertices’ and label them according to the triangle subgraph they are adjacent
to. Concretely we label the vertex in Tv that is adjacent to Tw as v(w), the index signifies which triangle subgraph it
connects to.

a b b

bb

b

cd

Λ−→

b b

b bb

b

a

b b

b bb

b

bb

bb b

b

bb

bb b

b

b

cd

a(d) a(c)

a(b)

ã(c)ã(d)

d(a) d(b)

d(c) c(d)

c(a) c(b)

b(c)b(d)

b(a)

b̃(d) b̃(c)

d̃(a) d̃(b) c̃(b)c̃(a)

,

Figure 5: Figure showing the complete graph on vertices V = {a, b, c, d} and its associated
triangular-expansion Λ(KV ).

In the following lemma we argue that this construction can be made efficiently in the size of R.

Lemma 3.1. Let R be a 3-regular graph. We can construct its triangular-expansion in O(|V (R)|2) time. �

Proof. Let R be a 3-regular graph. Without loss of generality assume some labeling on the vertices of R, i.e.
V (R) = {v1, . . . , vk} where k = |V (R)|. We begin by constructing the vertex set V (Λ(R)) off the triangular-expansion
Λ(R) of R.

For each i ∈ [k] construct the set Vi = {vi, ṽ(vj)
i , ṽ

(vj′ )

i , v
(vj)
i , vi

(vj′ ), v(vĵ)} where vi ∈ V (R) and vj , vj′ , vĵ are the three
unique neighbors of vi in R. Constructing this set takes O(|V (R)|) as we must search the set of edges E(R) of R
to find the neighbors of vi and we have that |E(R)| = O(|V (R)|) since R is 3-regular. Thus constructing the set
V (Λ(R)) = ∪i∈[k]Vi takes O(|V (R)|2) time.

Now we construct the edge multi-set E(Λ(R)) of the triangular-expansion of R. For each i ∈ [k] we define the multi-set

Ei = {(vi, ṽ(vj)
i ),(vi, ṽ

(vj′ )

i ), (vi, v
(vj)
i ), (vi, v

(vj′ )

i ), (ṽ
(vj)
i , ṽ

(vj′ )

i ), (v
(vj)
i , ṽ

(vj)
i ), (v

(vj′ )

i , ṽ
(vj′ )

i ), (79)

(v
(vĵ)

i , ṽ
(vj)
i ), (v

(vĵ)

i , ṽ
(vj′ )

i ), (v
(vj)
i , v

(vi)
j ), (v

(vj′ )

i , v
(vi)
j′ ), (v

(vĵ)

i , v
(vi)

ĵ
)}. (80)

This multi-set can be constructed in constant time. Hence the multi-set E(Λ(R)) = ∪i∈[k]Ei can be constructed in
O(|V (R)|) time. It is easy to check that the multi-graph defined by the vertex set Λ(R) and edge multi-set E(Λ(R))
is indeed the triangular-expansion of R. This completes the lemma.
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3.2.4 Skips and true skips

A key insight in the behavior of the SOET problem on triangular-expanded graphs is the notion of skips. The word
skip stems from the fact that since any SOET U on the triangular-expansion Λ(R) of a 3-regular graph is a Eulerian
tour, it must traverse any triangle subgraph Tv of Λ(R) exactly three times. However in order for U to be a valid
SOET with respect to V (R) it must traverse the vertex v exactly two of those three times. This means it must skip
the vertex v exactly once while traversing Tv.

We state a more formal definition of a (true) skip in terms of maximal sub-words (see definition 2.19).

Definition 3.3 (Skip). Let R be a 3-regular graph and let Λ(R) be its triangular-expansion. Let U be a SOET on Λ(R)
with respect to V (R). Let X be a maximal sub-word of m(U) (definition 2.19) associated to vertices u, v ∈ V (R). We

say the sub-trail described by X makes a skip at a vertex w ∈ V (R) \ {u, v} if x
(w)
1 w(x1) and x

(w)
2 w(x2) are sub-words

of X (up to reflection), where x1, x2 ∈ V (R). Furthermore, if x1 6= x2 then we say that the trail described by X makes
a true skip at w or sometimes that Tw contains a true skip. �
Note that since X is a maximal sub-word associated to u, v and w /∈ {u, v}, w cannot be a letter of X. As stated
above, there is always exactly one maximal sub-word describing a sub-trail of a SOET that makes a skip at a certain
triangle subgraph, as formalized in the following lemma. One can think of this lemma as giving necessary conditions
for the existence of a SOET with respect to V (R) on the triangular-expansion of a 3-regular graph R

Lemma 3.2. Let R be a 3-regular graph and let Λ(R) be its triangular-expansion. Let U be a Eulerian tour on Λ(R).
Let w ∈ V (R) and let Tw be its triangle subgraph in Λ(R). If U is a SOET on Λ(R) with respect to V (R) then here
exist exactly one maximal sub-trail of U that makes a skip at w. �

Proof. We will prove this by showing that there are exactly three maximal sub-trails of U that traverse vertices in Tw
and that exactly one of these makes a skip at w. Note first that the Eulerian tour U will enter and exit the triangle
subgraph Tw exactly three times, since there are six edges incident to Tw. Hence there exists exactly three distinct

edge-disjoint sub-trails, t1, t2 and t3 of U that exit and enter Tw, i.e. the last vertices they traverse in Tw will be x
(w)
i ,

where xi for i ∈ [3] are the neighbors of w in R. Note that t1, t2 and t3 each contain at least one vertex in Tw and
they jointly traverse all edges in Tw (Since U is a Eulerian tour).

Now consider the vertex w. The Eulerian tour U traverses this vertex exactly twice. There are now two options for
the trails t1, t2, t3. Either (1) one of the trails contains the vertex w exactly twice or (2) there are exactly two trails
that contain the vertex w exactly once.

Now assume U is a SOET with respect to V (R). If option (1) is true the tour U traverses the vertex w twice in
succession before traversing any other vertex in the set V ′. This is in contradiction with the assumption that U is a
SOET. Hence if U is a SOET we must have that option (2) is true, that is, exactly two of the sub-trails t1, t2 and t3
must contain w.

Lets assume without loss of generality that w ∈ t2 and w ∈ t3. Hence we have that w 6∈ t1 and thus t1 induces a
sub-word m(t1) not containing w. The word m(t1) can be extended to a maximal sub-word X not associated to w
but describing a sub-trail traversing vertices in Tw. Therefore by definition 3.3 X describes a sub-trail making a skip
at w. Furthermore, m(t2) has an overlap with two maximal sub-words associated with y1, w and w, y2, respectively
for some y1, y2 ∈ V (R). Similarly for m(t3) and the vertices z1, w and w, z2. Thus, the maximal sub-words that have
an overlap with m(t2) or m(t3) do not make a skip at w.

Finally, there is no other maximal sub-word describing a sub-trail that traverses a vertex in Tw. The reason for this
is that t1, t2 and t3 jointly traverse all edges in Tw, so any maximal sub-trail traversing a vertex in Tw must have an
overlap with t1, t2 or t3. The lemma then follows since we found exactly one maximal sub-word describing a sub-trail
of U making a skip at w, i.e. the unique one that has an overlap with t1.
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3.2.5 Equivalence between SOET’s and Hamiltonian cycles

Now that we have defined the triangular-expansion Λ(R) of a 3-regular graph R and discussed skips we can finally
make the central argument of the reduction given in corollary 3.4.1. We begin by proving that if a 3-regular graph
is Hamiltonian then its corresponding triangular-expansion Λ(R) allows for a SOET w.r.t. the vertex set V (R). We
have the following lemma.

Lemma 3.3. Let R be a 3-regular graph and Λ(R) be a triangular-expansion as defined in definition 3.2. If R is
Hamiltonian, then Λ(R) allows for a SOET with respect to V (R). �

Proof. Let R be Hamiltonian. This means there exists a Hamiltonian cycle M on R. We will prove that there exists
a SOET U with respect to V (R) on the triangular-expansion Λ(R) of R by constructing, from the cycle M on R, a
tour U that visits every vertex v ∈ V (R) twice in the same order. We will then argue that this tour can always be
lifted to a Eulerian tour and hence can be made into a SOET.

Note first that M induces an ordering on the vertices of R which without of loss of generality we will take to be
v1, . . . vk where k = |V (R)|. Note that for all i ∈ [k − 1] the vertices vi and vi+1 are adjacent in R and so are vk and
v1. Now consider, for each i ∈ [k − 1] the triangle subgraphs Tvi , Tvi+1 and Tv̂ in the triangular-expansion Λ(R) of
R where v̂i is the unique vertex adjacent to vi in R that is not vi+1 or vi−1. There are now three cases, depending

on the orientation of the triangle subgraph Tvi . Either (1) vi is adjacent to v
(vi−1)
i and v

(vi+1)
i or (2) vi is adjacent to

v
(vi−1)
i and v

(v̂i)
i or (3) vi is adjacent to v

(vi+1)
i and v

(v̂i)
i .

For case (1), i.e. vi is adjacent to v
(vi−1)
i and v

(vi+1)
i in Tvi , we can define two edge-disjoint trails on the triangular-

expansion Λ(R) by their description as words Xi,X
′
i on the vertices of Λ(R).

Xi = v
(vi−1)
i ṽ

(vi−1)
i v

(v̂i)
i ṽ

(vi+1)
i viv

(vi+1)
i v

(vi)
i+1 , (81)

X ′i = v
(vi−1)
i viṽ

(vi−1)
i ṽ

(vi+1)
i v

(vi+1)
i v

(vi)
i+1 . (82)

An illustration of the trails described by these words is given in fig. 6a. We can similarly define two edge-disjoint trails
for the cases (2) and (3). We will abuse notation and refer to the words as Xi and X ′i in all three cases. Importantly,

for all three these cases the trails described by Xi,X
′
i are edge-disjoint and both begin at v

(vi−1)
i and end at v

(vi+1)
i .

We can extend this definition to trails U0, U
′
0 also for the case of the adjacent vertices vk and v1. Note now that

the walk U described by the word W = X0X1 . . .Xk−1X
′
0X
′
1 . . .Xk−1 is a tour and moreover that it traverses the

vertices in V (R) twice in the order v1, . . . vk.

The tour U described by the word W above visits every vertex in V (R) such that W [V (R)] = v1 . . . vkv1 . . . vk.
However it is not yet a Eulerian tour, since it has not traversed all edges in Λ(R). Note that the edges not traversed
by U are precisely the triangular-expansions of the edges in R not traversed by the Hamiltonian cycle M . We can
easily construct a Eulerian tour out of U by looping over all elements of the word X and whenever we encounter a

vertex v
(v̂i)
i for all i ∈ [k], where v̂i is defined as above, we check whether U already traverses the edges (v

(v̂i)
i , v̂

(vi)
i ).

If so we continue the loop and if not we insert the trail (v
(v̂i)
i , v̂

(vi)
i )v̂(vi)(v

(v̂i)
i , v̂

(vi)
i )v

(v̂i)
i into U at this position. This

procedure is illustrated in fig. 6b. Now U is Eulerian and hence a SOET. This completes the proof.

28



b b

b bb

b

vi v
(vi−1)
iv

(vi+1)
i

v
(v̂i)
i

ṽ
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Figure 6: The trails used in the proof of lemma 3.3 to construct a SOET on a triangular-
expanded graph Λ(R) from a Hamiltonian cycle on R. Figure 6a shows the trails described
by the words Xi (solid red) and X ′i (dashed green), defined in eqs. (81) and (82). Figure 6b
shows how these trails can be extended to form a Eulerian tour and therefore a SOET with
respect to V (R). The dotted gray lines show edges of Λ(R) which are not used by the trails.

Next we define a special type of SOET on triangular-expanded graphs, which we call HAMSOETs. These special
SOETs on a triangular-expanded graph Λ(R), are closely related to Hamiltonian cycles on R.

Definition 3.4 (HAMSOET). Let R be a 3-regular graph and Λ(R) its triangular-expansion. Furthermore, let U be
a SOET on Λ(R) with respect to V (R). U is called a HAMSOET with respect to R if, for all vertices u, v ∈ V (R) we
have that if u and v are consecutive with respect to the SOET U they are also adjacent in the graph R. �
Next we prove that if the triangular-expansion of a 3-regular graph R allows for a HAMSOET with respect to R then
the 3-regular graph R is Hamiltonian.

Lemma 3.4. Let R be a 3-regular graph and let Λ(R) be its triangular-expansion. If Λ(R) allows for a HAMSOET with
respect to R, then R is Hamiltonian. �

Proof. This follows by the definition of a HAMSOET. A HAMSOET U will induce a double occurrence word of the
form

m(U) = X0s1X1s2 . . . skXks1X
′
1s2 . . . skX

′
k. (83)

where s1, . . . sk ∈ V (R) with k = |V (R)| and where Xi and X ′i are maximal sub-words associated to si, si+1 ∈ V (R).
Now consider the induced double occurrence word m(U)[V (R)]. We have

m(U)[V (R)] = s1 . . . sks1 . . . sk. (84)

Consider now the sub-word s1 . . . sk of m(U)[V (R)] . This sub-word describes a Hamiltonian cycle on R. To see this,
note that each vertex in V (R) occurs exactly once in s1s2 . . . sk. Furthermore, since si and si+1 are consecutive in U ,
they are adjacent in R for all i ∈ [k − 1], by definition of a HAMSOET. Finally, the same also holds for sk and s1.
Hence the tour on R described by s1 . . . sk visits each vertex in R exactly once and is hence a Hamiltonian cycle.

We would like to prove that for any 3-regular graph R the existence of a SOET on its triangular-expansion Λ(R) im-
plies the existence of a Hamiltonian cycle on R. So far we have proven this only when Λ(R) allows for a HAMSOET.
However, a priori not all SOETs on triangular-expansions Λ(R) have to be HAMSOETs. The reason for this is that
consecutive vertices in a SOET are not necessarily adjacent in R, since a SOET can contain true skips.

In the following lemma we will prove that consecutive vertices in a SOET are actually adjacent in R, except for two
special cases. These special cases can be remedied since we show that for these cases we can always find a different
SOET which is actually a HAMSOET.
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The arguments proven below are understood the easiest when one reproduces the visual aids given in figs. 8 and 9 as
one follows the arguments. We have the following lemma.

Lemma 3.5. Let R be a 3-regular graph and Λ(R) be its triangular-expansion. If Λ(R) allows for a SOET with respect
to V (R), then Λ(R) allows for a HAMSOET with respect to V (R). �

Proof. To prove this lemma we will go through the following steps

Step 1 Note that if two vertices u, v in V (R) (R being a 3-regular graph) are not adjacent in R but are consecutive
in a SOET U with respect to V (R) on Λ(R), then the sub-trails of U described by the maximal sub-words
associated to u and v must make a non-zero number of true skips in Λ(R)

Step 2 Argue by contradiction that this non-zero number of true skips can never be greater than one. This argument
leverages lemma 3.6 which states that if a sub-trail of a SOET U with respect to V (R) makes true skips at triangle
subgraphs Tw1

, Tw2
for w1, w2 ∈ V (R) and w1, w2 are adjacent in R then w1, w2 must actually be consecutive in

the SOET U and lemma 3.7 which, in a slightly different initial situation than lemma 3.6, also concludes that
two vertices must be consecutive in a SOET U with respect to V (R).

Step 3 Argue by contradiction that there are only two possible ways for the sub-trails described by the maximal
sub-words associated to u and v to make one true skip each. This argument also leverages lemmas 3.6 and 3.7.

Step 4 Argue that if a triangular-expansion of a 3-regular graph R allows for a SOET U as in Step 3, then it also
allows for a SOET U ′ that is a HAMSOET.

Details of step 1

Let R be such that Λ(R) allows for a SOET with respect to V (R). Let U be any such SOET. If U is also a
HAMSOET then we are directly done, therefore assume that U is not a HAMSOET. Since U is not a HAMSOET there
must exist at least two vertices u, v ∈ V (R) which are consecutive in U , but not adjacent in R. By definition, since
u and v are consecutive and U is a SOET, there must exist exactly two different maximal sub-words X,X ′ of m(U),
associated to u and v. Since u and v are not adjacent in R, the trails described by X, X ′ must each traverse vertices
in at least one (but possibly more) triangle subgraph that is not Tu or Tv. Since X and X ′ are maximal sub-words,
they can not contain any vertex in V (R) as a letter and hence the sub-trails described by X,X ′ must each make true
skips (see definition 3.3) at at least one triangle subgraph.

Assume w.l.o.g. that the sub-trail described by X makes true skips at the triangle subgraphs Ts1 , Ts2 , . . . Tsr , in this
order, and similarly for X ′ and Ts′1 , . . . Ts′r′ . The true skips that the sub-trail described by X makes, must be at

different triangle subgraphs than the ones for X ′, since there can only be exactly one skip per triangle subgraph, due
to lemma 3.2. The triangle subgraphs Ts1 , Ts2 , . . . Tsr , Ts′1 , . . . Ts′r′ are therefore pairwise different. We will call this

situation a rr′-skip, which is illustrated in fig. 7. Note that by assumption, r and r′ are both greater than zero. We
will first show that the case where either r or r′ are greater than one can never occur if U is a SOET.
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Figure 7: This figure is a visual aid for Step 1 of lemma 3.5. A simplified visualization of a
triangular-expansion Λ(R) of a 3-regular graph R is used. In the figure triangle subgraphs are
shown in gray with only their outer vertices (circles) and vertices in V (R) (diamonds) shown.
Also shown are the sub-trails, of a SOET U , described by maximal sub-words X and X ′

associated to vertices u, v making true skips at triangle subgraphs Ts1 , . . . , Tsr and Ts′1 , . . . , Ts′r
respectively. These sub-trails always begin and end at a vertex in V (R) but their path inside
triangle subgraphs is not shown explicitly. Dashed lines are used to indicate that the sub-trails
also traverse unspecified further parts of the graph Λ(R).

Details of step 2

As a visual aid for the following argument, refer to fig. 8. We will make an argument by contradiction. Therefore let r
be strictly greater than one. Consider the sub-trail described by the sub-word X defined above. By assumption this
sub-trail makes true skips at at least two adjacent triangle subgraphs. Take these to be Ts1 and Ts2 . As we will prove
in lemma 3.6, if two adjacent triangle subgraphs Ts1 , Ts2 contain true skips, then s1 and s2 must be consecutive in the

SOET U and that there is some maximal sub-word Y of m(U) associated to s1, s2 that contains the sub-word s
(s2)
1 s

(s1)
2 .

This implies that (by definition of SOET) there is some other maximal sub-word Y ′ of m(U) associated to s1 and s2.

This sub-word Y ′ cannot contain the sub-word s
(s2)
1 s

(s1)
2 , as s

(s2)
1 s

(s1)
2 already appears in both the maximal sub-word

X and the maximal sub-word Y .

This implies the sub-trail described by Y ′ must make a nonzero number of true skips at triangle subgraphs Tŝ1 , . . . , Tŝk
in that order. Now consider the triangle subgraphs Ts1 and Tŝ1 . As we will prove below, lemma 3.7 applied to the
triangle subgraphs Ts1 , Tŝ1 implies that the vertices s1 and ŝ1 must be consecutive in U . Call the maximal sub-word
of m(U) associated to these vertices W 0. Moreover, by lemma 3.7 this maximal sub-word contains the sub-word

s
(ŝ1)
1 ŝ

(s1)
1 . Similarly we can see that the vertices s2 and ŝk must be consecutive in U . Call the maximal sub-word of

m(U) associated to these vertices W k. By lemma 3.7 this maximal sub-word contains the sub-word s
(ŝk+1)
2 ŝ

(s2)
k+1.

By applying lemma 3.6 again to all triangle subgraph pairs Tŝi , Tŝi+1
for i ∈ [k − 1] we come to the conclusion that

ŝi, ŝi+1 for i ∈ [k − 1] must be consecutive in U . Call the maximal sub-word of m(U) associated to these vertices

W i. By lemma 3.7 these maximal sub-words contain the sub-word ŝ
(ŝi+1)
i ŝ

(ŝi)
i+1. This implies that U must traverse the

vertices s1, ŝ1, . . . , ŝk, s2, s1, ŝ1, . . . , ŝk, s2 in order. Since by construction {s1, s2, ŝ1, . . . , ŝk} 6= V (R) we have that U is
not a valid SOET on V (R) (this can be seen by noting that e.g. Ts′1 already contains a true skip, hence s′1 can not be
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part of the set). Hence by contradiction we must have r ≤ 1. We can make the same argument for r′ yielding r′ ≤ 1.
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Figure 8: This figure is a visual aid for Step 2 of lemma 3.5. A simplified visualization of
a triangular-expansion Λ(R) of a 3-regular graph R is used. In the figure triangle subgraphs
are shown in gray with only their outer vertices (circles) and the vertices in V (R) (diamonds)
shown. Also shown are sub-trail of a SOET U labeled by the maximal sub-words that describe
them. These sub-trails always begin and end at a vertex in V (R) but their path inside tri-
angle subgraphs is not shown explicitly. Dashed lines are used to indicate that the sub-trails
also traverse unspecified further parts of the graph Λ(R). In this argument a contradiction is
arrived at by first assuming the that the SOET U has a sub-trail described by the maximal
sub-word X associated to the vertices u, v makes true skips at triangle subgraphs Ts1 , Ts2 .
Using lemma 3.6 it is shown that the maximal sub-word Y must exist (associated to ver-
tices s1, s2). This then means that the maximal sub-word Y ′ must exist (also associated to
s1, s2). The sub-trail described by this sub-word must make true skips at triangle subgraphs
Tw1 , . . . , Twk

. Using lemma 3.6 and lemma 3.7 it is then concluded that the SOET U must
visit the vertices s1, w1, . . . wk, s2, s1 consecutively which means U is not a valid SOET (since
{s1, w1, . . . , wk, s2} 6= V (R)). This is a contradiction.

Details of step 3

As a visual aid for the following argument, refer to fig. 9. Now let r = r′ = 1. This means the sub-trails described
by the maximal sub-words X and X ′ associated to the vertices u and v make exactly one true skip each at triangle
subgraphs triangle subgraphs Ts1 , Ts′1 respectively. We will now argue that there are essentially only two ways that a
SOET U with the above properties can exist on Λ(R). This argument will again go in steps:

Step 3.1 Argue that the SOET U must have a maximal sub-word associated to the vertex s1 and some other vertex
x that describes a trail traversing the edge connecting the triangle subgraphs Tu and Ts1 .

Step 3.2 Argue that this sub-trail must make a true skip at the triangle subgraph Tu. Note that this is equivalent to
arguing x 6= u.

Step 3.3 Apply the same sequence of arguments for the vertices s1 and v and also for the vertices s′1 and u and s′1
and v.

Step 3.4 Conclude from the fact that the SOET U can only make a single true skip at the triangle subgraphs Tu and
Tv that s1 and s′1 must be consecutive in U and moreover that the maximal sub-words Z,Z ′ associated to s1

and s′2 must make true skips at Tu and Tv respectively.
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Details of step 3.1

Consider the second edge connecting the triangle subgraphs Tu and Ts1 . This is the edge (u(s1), s
(u)
1 ). Since

the SOET U is Eulerian it must traverse this edge. Note also that Ts1 already contains a true skip (made
by the sub-trail described by X). This means, by lemma 3.2 that any sub-trail of U crossing the edge

(u(s1), s
(u)
1 ) connecting Tu, Ts1 must traverse the vertex s1. Let Z be the maximal sub-word describing the

sub-trail starting at s1 and containing the sub-word u(s1)s
(u)
1 . This maximal sub-word is (by definition)

associated to two vertices in V (R). One of these vertices is s1 and will label the other one x.

We will now argue that x 6= u and hence that the sub-trail described by Z makes a true skip at Tu. We do
this by contradiction in the following argument.

Details of step 3.2

For this part of the argument assume that x = u. This means that u is consecutive to both s1 and v. This
means there must be some other maximal sub-word Z ′ associated to s1 and u. Note that this sub-word
cannot contain the sub-word u(s1)s

(u)
1 as it is already contained in the maximal sub-words Z and X ′.

Now consider the unique third vertex that is adjacent to u in R (the vertex adjacent to u which is not s1 or
s′1). Let us label this vertex w.

Since Ts′1 already contains a true skip (which implies Z ′ cannot connect to u by making a true skip at Ts′1)

the sub-trail described by the maximal sub-word Z ′ must make a true skip at w. Now consider the maximal
sub-word Y of m(U) that that describes a sub-trail traversing the unused edge between Ts′1 and Tu, i.e. Y

contains the sub-word u(s′1)s′
(u)
1 . This sub-trail must be associated to s′1 (since Ts′1 already contains a true

skip) and can not not be associated to u since u is already consecutive with two vertices in V (R). This
means the sub-trail described by the maximal sub-word Y must make a true skip at the triangle subgraph

Tu. Since the sub-word u(s1)s
(u)
1 is already contained in Z and X ′ the maximal sub-word Y must contain

the sub-word u(w)w(u). Since Tw already contains a true skip this implies that w must be associated to the
maximal sub-word Y and hence that w and s′1 are consecutive. This means there must be a second maximal
sub-word Y ′ associated to w and s′1.

Since both edges connecting Tu and Tw have already been traversed by, the sub-trail described by the maximal
sub-word Y ′ must make true skips on some triangle subgraphs Tŝ1 , . . . , Tŝk .
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ŝk

X X ′

Y

Y ′
Z ′

Z

W 0

W 1

W k−1

W k

Y ′

Y ′

Z ′

X ′X

Y

(b)

Figure 9: This figure is a visual aid for Steps 3.1 and 3.2 of lemma 3.5. A simplified visualization
of a triangular-expansion Λ(R) of a 3-regular graph R is used. In the figure triangle subgraphs
are shown in gray with only their outer vertices (circles) and vertices in V (R) (diamonds)
shown. Also shown are sub-trail of a SOET U labeled by the maximal sub-words that describe
them. These sub-trails always begin and end at a vertex in V (R) but their path inside triangle
subgraphs is not shown explicitly. Dashed lines are used to indicate that the sub-trails also
traverse unspecified further parts of the graph Λ(R). In Step 3.2 of lemma 3.5 it is argued
that if the subtrail described by the maximal sub-word X ′ associated to vertices u, v makes a
true skip at the triangle subgraph Ts1 then the sub-trail described by the maximal sub-word
Z associated to s1 and another vertex x must make a true skip at the triangle subgraph Tu (or
equivalently that x 6= u). This is done by contradiction so it is assumed (as seen in both (a)
and (b)) that x = u. This implies the existence of the maximal sub-word Z ′ which must make
a true skip at Tw where w is the unique neighbor of u s.t. w 6= s1, s

′
1. This in turn implies

that s′1 and w must be consecutive and connected by a sub-trail described by the maximal
sub-word labeled Y in both (a) and (b). This means another sub-trail connecting s′1 and w
must exist, which described by a maximal sub-word Y ′. This sub-word makes true skips at
triangle subgraphs ŝ1, . . . ŝk. There are now 2 options. Either, as shown in (a) we have that
v = ŝ1 or we have, as shown in (b) that v 6= ŝ1. In the first case (a) lemma 3.7 is applied to
conclude that v must be consecutive to s1, s

′
1 and u leading to a contradiction. In the second

case (b) lemma 3.6 and lemma 3.7 are used to show that any SOET U must traverse the vertices
s′1, w, ŝk, . . . , ŝ1, s

′
1 in order leading to a contradiction.

There are now two possibilities. Either (1) we have that ŝ1 = v (see fig. 9a) or (2) that ŝ1 6= v (see fig. 9b).
We will now consider both of these cases:

1. If ŝ1 = v we can apply lemma 3.7 to the vertices v and s1 to conclude that ŝ1 = v implies that v and s1

are consecutive. Call the maximal sub-word connecting them W . We now have that the vertices u, v
and s1 are pairwise consecutive to each other. Since {u, v, s1} is a strict subset of V (R), U cannot be
a a SOET which is a contradiction.

2. Now assume that v 6= ŝ1. By lemma 3.7 we can now conclude that w and ŝk must be consecutive and
that s′1 and ŝ1 6= v must be consecutive. We have to perform one last construction to prove the lemma.
This construction is visualized in fig. 9b. Call the maximal sub-words associated to these vertex pairs
w and ŝk and s′1 and ŝ1 W k and W 0 respectively. We can again use lemma 3.6 to conclude that ŝi is
consecutive to ŝi+1 for all i ∈ [k−1]. Call the maximal sub-words associated to the vertices ŝi and ŝi+1
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W i. This implies that U must traverse the vertices s′1, ŝ1, . . . , ŝk, w, s
′
1, ŝ1, . . . , ŝk, w in order. Since by

construction {s′1, sw, ŝ1, . . . , ŝk} 6= V (R) we have that U is not a valid SOET on V (R) (this can be seen
by noting that e.g. Tu already contains a true skip, hence u can not be part of the set).

Hence in both cases we arrive at a contradiction. This means by contradiction that x 6= u and thus that the
sub-trail described by Z makes a true skip at Tu.

Details of step 3.3

Now similarly to Step 3.1 consider the edge connecting Ts1 and Tv. We can again argue that there must
exist a maximal sub-word Z ′ associated to the vertex s1 and some other vertex x′ that describes a sub-trail
that traverses this edge. By the same argument as Step 3.2 we can conclude that x′ 6= v and thus that Z ′

describes a sub-trail making a true skip at Tv.

We can make the same argument for the vertex s′1 establishing the existence of maximal sub-words Ẑ, Ẑ ′ that
describe sub-trails making true skips at Tu and Tv respectively.

Details of step 3.4

Note that the sub-trails described by Z and Ẑ make true skips at the triangle subgraph Tu. Since Tu, by
lemma 3.2 can only contain a single true skip and since Z, Ẑ are maximal sub-words we must have that
Z ∼ Ẑ and thus that the vertices s1 and s′1 are consecutive with respect to the SOET U . However since we
must also conclude that Z ′ ∼ Ẑ′ we have that s1 and s′1 are consecutive and have two maximal sub-words
associated to them. Since there are no further constraints on U imposed by the the fact that the sub-words
X,X′ associated to the vertices v, u make true skips. Therefore SOETs with this type of behavior are in fact
allowed. These SOETs can also be found explicitly, as can be sen in fig. 10. If a SOET U has this type of
behavior (u and v are not adjacent in R but are consecutive in the SOET U on Λ(R)) we say that the SOET
U has a valid 11-skip. Next we show that if a SOET U has a valid 11-skip, and thus is not a HAMSOET, it
can always be turned into a HAMSOET by applying a fixed set of local complementation.

Details of step 4

We now show that a SOET with valid 11-skips can be turned into a HAMSOET. The two possibilities for a SOET with
a valid 11-skip are shown in fig. 10. Note that these possibilities have the same ‘local’ structure, the only difference is
how the rest of the SOET U is connected to the valid 11-skip. We first show the procedure that should be applied if
the 11-skip is of the form in fig. 10a.
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Figure 10: This figure is a visual aid for Step 4 of lemma 3.5. A simplified visualization of
a triangular-expansion Λ(R) of a 3-regular graph R is used. In the figure triangle subgraphs
are shown in gray with only their outer vertices (circles) and the vertices in V (R) (diamonds)
shown. Also shown are sub-trail of a SOET U labeled by the maximal sub-words that describe
them. These sub-trails always begin and end at a vertex in V (R) but their path inside triangle
subgraphs is not shown explicitly. Dashed lines are used to indicate that the sub-trails also
traverse unspecified further parts of the graph Λ(R). Figures 10a and 10b show the two valid
11-skips. The sub-word X1 describes some sub-trail of U connecting Tv and Ts1 . With a slight

abuse of notation we denote the endpoints of this trail by v(X) and s
(X)
1 . Similarly for X2, X ′1

and X ′2.

The SOET U in fig. 10a is of the form

m(U) = U1v
(s1)U2v

(s1)U3s
′(u)
1 U4s

′(u)
1 U5 (85)

where

U1 = uu(s1)s
(u)
1 s

(v)
1 (86)

U2 = vv(X)X1s
(X)
1 s1s

(v)
1 (87)

U3 = v(s′1)s
′(v)
1 s′1s

′(X′)
1 X′

1u
(X′)uu(s′1) (88)

U4 = s
′(v)
1 v(s′1)vv(X)X2s

(X)
1 s1s

(u)
1 u(s1)u(s′1) (89)

U5 = s′1s
′(X′)
1 X′

2u
(X′) (90)

where X1 is the word associated to the sub-trail connecting v(X) and s
(X)
1 as seen in fig. 10a and similarly for

X′
1,X2,X

′
2 Since our goal is to make this a HAMSOET we need to have that pairs of vertices in V (R) are only

consecutive w.r.t. U if they are adjacent in R. This can be done by applying τ̄ -operations to U at v(s1) and s
′(u)
1 . The

Eulerian tour U ′ after these operations will be described by

m(U ′) = m

(
τ̄(
v(s1),s

′(u)
1

)(U)

)
= U1v

(s1)Ũ2v
(s1)U3s

′(u)
1 Ũ4s

′(u)
1 U5 (91)

where the over-set tilde indicates the mirror-inverting of a sub-word. Note that neither (u, v) or (s1, s
′
1) are consecutive

anymore, but instead (u, s1) and (v, s′1) are now consecutive w.r.t. U ′. To make sure that this procedure works we
need to check two things: (1) U ′ is a SOET and (2) there are no additional consecutive pairs of vertices in U ′ that
are not adjacent in R. To do this, lets look at the order U and U ′ traverse the vertices in V (R), i.e. we will look
at m(U)[V (R)] and m(U ′)[V (R)]. Since U is a SOET we must have that X1[V (R)] = X2[V (R)] and similarly
X′

1[V (R)] = X ′2[V (R)]. Lets denote these words by XV = X1[V (R)] and X ′V = X′
1[V (R)]. We then have that the
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double occurrence word of m(U) induced by V (R) is

m(U)[V (R)] = uvXV s1s
′
1X
′
V uvXV s1s

′
1X
′
V (92)

and similarly for U ′ we have

m(U ′)[V (R)] = us1X̃V vs
′
1X
′
V us1X̃V vs

′
1X
′
V (93)

It is therefore clear that the Eulerian tour U ′ is a SOET. Furthermore the only consecutive pairs of vertices in U ′

which where not consecutive in U are (u, s1) and (v, s′1). Since (u, s1) and (v, s′1) are edges of R we see that we can
iteratively apply this procedure to any valid 11-skip as in fig. 10a and turn the SOET into a HAMSOET. Similarly

the SOET in fig. 10b can be turned into a HAMSOET by applying τ -operations to the vertices s
(u)
1 and v(s′1). One

can explicitly check this by applying the operations to U in fig. 10b which is given by

m(U) = U1s
(u)
1 U2s

(u)
1 U3v

(s′1)U4v
(s′1)U5 (94)

where

U1 = uu(s1) (95)

U2 = s
(v)
1 v(s1)vv(X)X1s

(X)
1 s1 (96)

U3 = u(s1)u(s′1)s
′(u)
1 s′1s

′(X′)
1 X ′1u

(X′)uu(s′1)s
′(u)
1 s

′(v)
1 (97)

U4 = vv(X)X2s
(X)
1 s1s

(v)
1 v(s1) (98)

U5 = s
′(v)
1 s′1s

′(X′)
1 X ′2 (99)

with everything defined similarly to the case of fig. 10b. Going through a similar argument as above we can show that
we can also turn the SOET U into a HAMSOET. This completes the lemma.

Lemma 3.6. Let R be a 3-regular graph and Λ(R) be its triangular-expansion. Also let u, v be adjacent vertices on R.
Let U be a SOET on Λ(R) with respect to V (R). Let X be a maximal sub-word of m(U) not associated to u and/or
v containing u(v)v(u) and describing a sub-trail that makes true skips at Tu and Tv. Then u and v are consecutive in
U and moreover m(U) contains a sub-word of the form

uZ1u
(v)v(u)Z2v, Z1 ⊂ V (Tu), Z2 ⊂ V (Tv), (100)

�

Proof. The situation described in the lemma is described graphically in fig. 11. Because U is a SOET the sub-word
v(u)u(v) must be contained exactly twice in m(U). Note that at most one of these instances can be contained in
the maximal sub-word X. The other instance must be contained in a different maximal sub-word Z. This maximal
sub-word will be associated to two vertices w1, w2. Note that since v(u)u(v) ∈ Z and v(u)u(v) ∈ X either we must have
that w1 = u or that the sub-trail described by the maximal sub-word Z makes a true skip at Tu. Since Tu already
contains a true skip (made by the sub-trail described by X) we must have that w1 = u. We can make the same
argument for the vertex v. This means the maximal sub-word Z must be associated to u and v and hence that u, v
must be consecutive in U and moreover we have that

Z = Z1u
(v)v(u)Z2, Z1 ⊂ V (Tu) \ {u}, Z2 ⊂ V (Tv) \ {v}. (101)
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Figure 11: This figure is a graphical aid for lemma 3.6. Shown are two triangle subgraphs Tu,
Tv (gray triangles) with outer vertices (circles) and the vertices u and u (diamonds) shown.
The lemma starts from assuming the existence of the sub-trail described by the maximal sub-
word X, labeled as such in the figure. From this starting point the existence of the maximal
sub-word Z associated to the vertices u and v is derived.
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Lemma 3.7. Let R be a 3-regular graph and Λ(R) be its triangular-expansion. Also let u, v be adjacent vertices on R.
Also take x1, x2 to be the vertices adjacent to u in R such that x1 6= v, x2 6= v. Let U be a SOET on Λ(R) with respect

to V (R). Let Y be a maximal sub-word of m(U) not associated to u and/or v containing u(x1)x
(u)
1 and u(x2)x

(u)
2 and

describing a sub-trail making a true skip at Tu. Also let X be a maximal sub-word associated to u and a vertex x3 6= v
that describes a sub-trail making a true skip at v. Then u, v are consecutive and moreover m(U) contains a sub-word
of the form

uZ1u
(v)v(u)Z2v, Z1 ⊂ V (Tu), Z2 ⊂ V (Tv), (102)

�

Proof. The situation described in the lemma is described graphically in fig. 12. Because U is a SOET the sub-word
v(u)u(v) must be contained exactly twice in m(U). Note that at most one of these instances can be contained in the
maximal sub-word Y and none can be contained in the maximal sub-word X. This means there must be a maximal
sub-word Z of m(U) (different from X and X) containing v(u)u(v). This maximal sub-word must again be associated
with two vertices x, x̂. If these vertices are not u, v then the sub-trail described by Z must make true skips at Tu, Tv
or both. Since both of these triangle subgraphs already contain true skips this is not possible and hence Z must be
associated to u and v which means they are consecutive. Moreover, by construction of Z we have

Z = Z1u
(v)v(u)Z2, Z1 ⊂ V (Tu) \ {u}, Z2 ⊂ V (Tv) \ {v}. (103)
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Figure 12: This figure is a graphical aid for lemma 3.7. Shown are two triangle subgraphs Tu,
Tv (gray triangles) with outer vertices (circles) and the vertices u and v (diamonds) shown.
The lemma starts from assuming the existence of the sub-trails described by the maximal sub-
words Y and X, labeled as such in the figure. From this starting point the existence of the
maximal sub-word Z associated to the vertices u and v is derived.

4 Algorithms

This section is concerned with providing algorithms for various versions of the decision problems STARVERTEXMINOR
with input (G,V ′) and VERTEXMINOR with input (G,G′). We begin by describing an efficient algorithm for
STARVERTEXMINOR whenever the input graph G is distance-hereditary. We prove that this algorithm always
terminates and gives correct results. We also analyze its runtime and show that it is O(|V ′||V (G)|3). Next we de-
scribe an algorithm for STARVERTEXMINOR whenever the input graph G is a circle graph. We prove that this
algorithm is fixed-parameter tractable in the size of the input vertex-set V ′. Finally we prove for the decision problem
VERTEXMINOR with arbitrary connected input graphs G and G′, that whenever |V (G′)| ≤ 3 and V (G′) ⊂ V (G)
we have that G′ < G and provide an efficient algorithm for finding the sequence of local complementations and
vertex-deletions that takes G to G′.

4.1 Star graph as vertex-minor of a distance-hereditary graph

In this section we present an efficient algorithm for deciding whether a star graph on a given set of vertices V ′ is a
vertex-minor of a given distance-hereditary graph G. Throughout this section we assume that the graph G is distance-
hereditary and that V ′ is a subset of its vertices. The algorithm presented in this section will return a sequence of
vertices v in V (G), such that τv(G)[V ′] = SV ′ if such a sequence exists and raise an error-flag otherwise, indicating that
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SV ′ is not a vertex-minor of G. We first present the algorithm in section 4.1.1, analyze its runtime in section 4.1.2 and
prove that it is correct in section 4.1.3. An implementation in SAGE [47] of the algorithm can be found at [1].

4.1.1 The algorithm

We first give a rough sketch of the idea behind the algorithm. Remember that the task of the algorithm is to find a
sequence of local complementations τv such that the induced subgraph of τv(G) on the vertices V ′ is a star graph.

The algorithm starts by choosing a one vertex c in V ′ which will become the center of the star graph on V ′. It then
proceeds by different picking vertices v ∈ V ′ and making them adjacent to c by performing local complementations.
After every vertex that is made adjacent the algorithm will check if the induced subgraph on the neighborhood of c is
a star graph. If it is not it will attempt to turn it into a star graph by local complementations. If it fails at doing so
it will raise an error and if it succeeds it will pick another vertex in V ′ and repeat the procedure until all vertices in
V ′ are in the neighborhood of c. We will often call this process of making a vertex v adjacent to c ’adding’ the vertex
v to the star graph. To understand when the algorithm might fail we now zoom in on the situation where all but one
vertex of V ′ has been added to the neighborhood of c. Let us call this vertex f . At this point in the algorithm the
induced subgraph G[V ′{f}] is already a star graph (be previous successful iterations of this procedure).

The task is now to turn G[V ′] into a star graph by making f adjacent to the center c of G[V ′ \ {f}] but to no other
vertex of V ′, and at the same time not change any edges in G[V ′ \ {f}]. This will be done in two steps, which are
explained further below:

1. Make f and c adjacent, without changing any edges in G[V ′ \ {f}]. The star graph SV ′ is then a subgraph of
the graph, but not necessarily an induced subgraph, since f could be also be adjacent to other vertices in V ′

than c. We will call these edges between f and vertices in V ′ \ {f} bad edges. This first step is the task of
algorithm 2 below. Interestingly, this step always succeeds if the graph is connected, even if the graph is not
distance-hereditary.

2. Remove the bad edges, without changing any other edges between vertices in V ′. The removal of the bad edges
is the task of algorithm 1 below. Algorithm 1 tries to remove the bad edges by checking a few cases. Thus,
one of the main results of this section is to prove that these cases provide a necessary condition for SV ′ being a
vertex-minor of G.

We will now describe the two main steps above of the algorithm in more detail. Let’s denote the vertices as above and
furthermore the current leaves in G[V ′ \ {f}] as V ′ \ {c, f} = {l1, . . . , lk}.
Details of step 1:

The vertices c and f are made adjacent by performing local complementations along the shortest path P from c
and f , see fig. 13a. The operations along the path P will in fact be either pivots, i.e. ρ(u,v) = τv ◦ τu ◦ τv, or single
local complementations depending on the situation. The reason for this is to not remove edges between c and the
li’s. The details of the operations along the path P are given in algorithm 2 together with the proof in section
section 4.1.3.

39



r

r

r

r

r
r

r

b

r

bb
b

b

rs

bc

c

l1 l2

l3

l4

l5
l6l7

l8

f

P

(a)

r

r

r

r

r
r

r

r

rs

bc

c

B

bad edges B

B

B L

L

L

L

L

(b)

Figure 13: Visualization of how a vertex f is added to the neighborhood of c. The original
graph is shown in fig. 13a where the vertices {c}∪{li}i (squares) already form a star graph and
the dotted lines are arbitrary edges to the rest of the graph. The new vertex f (white circle) is
made adjacent to the center c (white square) by performing pivots and local complementations
along the shortest path P (black circles). After the pivots and local complementations the new
vertex f is adjacent to the center c of the star graph but also to some leaves B by bad edges
(dashed lines), see fig. 13b.

As mentioned above, by making f and c adjacent we might have also added bad edges between f and some of the
vertices {li}i, see fig. 13b. Let’s denote the set of vertices which are incident to a bad edge by B and the set of vertices
not incident to a bad edge, apart from c, by L = (V ′ \ {c}) \B. We call such a graph as the induced subgraph on V ′

a star-star graph, see definition 4.1.

Next, we must remove the bad edges in order to turn G[V ′] into a star graph. Let G now be the graph with f and c
adjacent but with possibly some bad edges.

Details of step 2:

In this step we will remove the bad edges, if we can. A situation where bad edges can be removed, as we will show,
is when there exists a vertex u /∈ V ′, which is adjacent to all vertices in B but not to any vertex in L. The existence
of such a vertex u is thus a sufficient condition for the removal of bad edges. When G is a distance hereditary graph,
it turns out that this condition is also necessary, that is if no such vertex u exists, then the star graph on V ′ is not
a vertex-minor of G, and we can stop the algorithm. This is shown in detail in section 4.1.3. For this statement to
hold L cannot be empty, but this can always be achieved by performing a local complementation at c first if needed,
which is done in line 14 in algorithm 1. Assume that there indeed exist such a vertex u, i.e.

(L 6= ∅) ∧ (u /∈ V ′) ∧ (B ⊆ Nu) ∧ (L ∩Nu = ∅) (104)

see fig. 14. Now u can be adjacent to c or not. Let’s consider these cases separately:

• Case 1 u and c are not adjacent:

Remember that f is the center of the induced star graph G[B]. If a local complementation is performed at u,
the bad edges are removed but new ones will be created between the vertices in B \ {f}. These new bad edges
will then form a complete graph on B \ {f} and we call such a graph on the vertices V ′ \ {f} a complete-star
graph, see definition 4.2.
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Figure 14: Visualization of how bad edges are removed. The original graph is shown in fig. 14a
where the vertices B ∪ L ∪ {c} (squares) are the desired vertices of the star graph, the dashed
lines are the bad edges and vertex u (black circle) is as in eq. (105). Figure 14b shows the
graph after performing a local complementation on u which produces a new leaf (white square)
and makes the bad edges form a complete graph. This complete graph of bad edges can then
be removed by finding a vertex u′ that is adjacent to all vertices in B (and to none in L) and
performing a local complementation at u′.

Performing the same step again, i.e. doing a local complementation at another vertex adjacent to all vertices
in B \ {f}, will remove all bad edges. We have then produced the star graph on V ′ in two steps.

• Case 2: u and c are adjacent:

In this case, if a local complementation is performed at u, some edges between c and vertices in L will be
removed, which is not desired. We can solve this by finding another vertex h adjacent to both u and c but
not to any other vertex in V ′, by which we can remove the edge (u, c), see fig. 15. In the following section we
show that if there is no vertex h of this form, the star graph is not a vertex-minor of G and we can stop the
algorithm.

To prove that the algorithm is correct we need to show that cases checked by algorithm 2 to remove the bad edges
actually provides a necessary condition for SV ′ being a vertex-minor of G. To be precise, we will show that a
necessary8 condition for the star graph on V ′ being a vertex-minor of G is

P(B,L, c) = ∃u ∈ V \V ′ :

B ⊆ Nu ∧ L ∩Nu = ∅ ∧

(u, c) /∈ E ∨ ∃h :

h ∈ Nu ∩Nc \ ⋃
x∈V ′\{c}

Nx

, (105)

where V ′ = B ∪ L ∪ {c} and L is assumed to be nonempty. It is important to note here that this condition is only
valid if the graph is in the correct form, i.e. the induced subgraph on V ′ form a star-star graph or a complete-star
graph.

8This condition is not sufficient in itself, however theorem 4.1 provide a necessary and sufficient condition.
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Figure 15: A visualization of the case where a vertex u used to remove the bad edges is also
adjacent to c (red thick edge). The vertex h can be used to remove the edge (u, c) by applying
a local complementation at h. Since h is not adjacent to any other vertex in V ′, no edges in
the induced subgraph on V ′ are changed by this local complementation.

We formally state that eq. (105) is a necessary condition for the star graph on V ′ being a vertex-minor of G in
theorem 4.1, which we prove in section 4.1.3. The theorem uses the notion of star-star and complete-star graphs which
we formally define as:

Definition 4.1 (Star-star graph). A graph G = (V,E) is called a star-star graph if there exists two subsets B and
L and a vertex c, such that {B,L, {c}} form a partition of V and |B| > 1. Furthermore Nl = {c} ∀l ∈ L and
c ∈ Nb ∀b ∈ B. Finally G[B] = SB. Such a graph is denoted SS(B,L,c). �

Definition 4.2 (Complete-star graph). A graph G = (V,E) is called a complete-star graph if there exists two subsets
B and L and a vertex c, such that {B,L, {c}} form a partition of V and |B| > 1. Furthermore Nl = {c}, ∀l ∈ L and
c ∈ Nb, ∀b ∈ B. Finally G[B] = KB. Such a graph is denoted KS(B,L,c). Note that if |B| = 2, G is also a star-star
graph. �

Theorem 4.1. Let G be a distance-hereditary graph on the vertices V and let V ′ be a subset of V . Furthermore, let
V ′ = B ∪ L ∪ {c} be a partition of V ′ and let SV ′ be a star graph on the vertices V ′. Then the following statements
hold

• If G[V ′] = SS(B,L,c) is a star-star graph and |B| = 2, then

P(B,L, c) ⇔ SV ′ < G. (106)

• If G[V ′] = SS(B,L,c) is a star-star graph then

¬P(B,L, c) ⇒ SV ′ ≮ G. (107)

• If G[V ′] = SS(B,L,c) is a star-star graph and f is the center of the star graph G[B], then

P(B,L, c) ⇔ KS(B\{f},L∪{f},c) < G. (108)

• If G[V ′] = KS(B,L,c) is a complete-star graph then

P(B,L, c) ⇔ SV ′ < G. (109)

�
Theorem 4.1 implicitly gives a necessary and sufficient condition for when SV ′ is a vertex-minor of G, if G[V ′] is a
star-star graph. More precisely, if the induced subgraph on V ′ is a star-star graph and P(B,L, c) is true then we know
that local complementations can be performed to turn the induced subgraph on V ′ \ {f} into a complete-star graph,
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see eq. (108). Then, if P(B \ {f}, L ∪ {f}, c) is again true, then a star graph can be created on V ′ by performing
further local complementations, see eq. (109). If in any of these two steps, P(B,L, c) or P(B \ {f}, L∪{f}, c) is false,
then SV ′ is not a vertex-minor of G, see eqs. (107) and (109). In section 4.1.3 we prove these statements.

Algorithm 1 Producing SV ′ from a distance-hereditary graph G

1: INPUT: A graph G and a subset of vertices V ′ ⊆ V (G).
2: OUTPUT: A sequence v such that τv(G)[V ′] = SV ′ , if SV ′ < G.
3: ERROR, if SV ′ ≮ G.
4:

5:

6: if |V ′| = 1 then
7: Return ()
8: QUIT
9: end if

10: Find a v such that τv(G) contain the star graph on V ′ as a subgraph by calling algorithm 2.
11: Let c be a vertex in V ′, adjacent to all other in V ′ (except itself).
12: for i in {0, 1} do . Two iterations are always needed if there is more than one bad edge
13: Let B be the vertices incident to a bad edge. . These are the vertices in τm(G)[V ′ \ {c}] of degree 1 or higher
14: Let L = V ′ \ ({c} ∪B).
15: if B = ∅ then . If already SV ′ , only for i = 0
16: Return v
17: QUIT
18: else
19: if B = V ′ \ {c} then . I.e. if L = ∅
20: Set v = v‖(c)
21: BREAK
22: end if
23: Let U be the set U = {u ∈ V (G) \ V ′ : B ⊆ Nu ∧ L * Nu} . Candidates for the u in eq. (105)
24: if U = ∅ then
25: Raise ERROR(SV ′ is not a vertex-minor of G) . Actually not needed, only for clarity
26: end if
27: Set found=False
28: for u in U do
29: if (u, c) /∈ E(τv(G)) then
30: Set v = v‖(u)
31: Set found=True . Found a u satisfying eq. (105)
32: Break
33: else if ∃h :

(
h ∈ Nu ∩Nc \

⋃
x∈V ′{u,c}Nx

)
then

34: Set v = v‖(h, u)
35: Set found=True . Found a u and h satisfying eq. (105)
36: Break
37: end if
38: end for
39: if ¬found then . I.e. condition eq. (105) is false
40: Raise ERROR(SV ′ is not a vertex-minor of G)
41: end if
42: end if
43: end for
44: Return v
45: QUIT
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Algorithm 2 Find a v such that τv(G) contain the star graph on V ′ as a subgraph

1: INPUT: A graph G and a subset of vertices V ′ ⊆ V (G).
2: OUTPUT: A sequence v such that τv(G)[V ′] = SS(B,L,c), where (B,L, {c}) is a partition of V ′.
3:

4:

5: Pick an arbitrary vertex from V ′ and denote this f
6: Find a v such that τv(G)[V ′ \ {f}] = SV ′ and denote the center c by calling algorithm 1
7: Find a shortest path P = (p0 = f, p1, . . . , pk, pk+1 = c) between f and c.
8: for i in (1, . . . , k) do
9: if f is adjacent to any vertex in V ′ \ {c} in the graph τv(G) then

10: Pick an arbitrary vertex in Nf (τv(G)) ∩ V ′ \ {c} and denote this v
11: Set v = v‖v
12: else
13: Set v = v‖(f, pi, f)
14: end if
15: end for
16: Return v
17: QUIT

4.1.2 Runtime of the algorithm

The algorithm described in the previous section checks if a star graph with vertex set V ′ is a vertex-minor of a distance-
hereditary graph G. Here we show that the runtime of this algorithm is O(|V ′||V (G)|3). We will represent subsets
of a base-set as unsorted binary lists9, where 1 indicates that an element in the base-set is in the represented set and
0 that an element in the base-set is not in the represented set. This will be the case both for sets of vertices and
sets of edges. The base-set for sets of vertices will be the set of vertices V (G) of the input graph G and the base-set
for edges-sets will be V (G) × V (G). Thus, we assume that the input graph G is given as an unsorted binary list, of

length |V (G)|2, indicating which edges are in E(G). This allows us to check if an edge (u, v) is in the graph or not in
constant time. Furthermore, we assume that the input-set V ′ is also represented as an unsorted binary list, of length
|V (G)|, indicating which of the vertices of G are in V ′. We also assume that the size of |V ′| is given together with its
representation, which allows us to faster create representations of subsets of V ′.

Sets used internally by the algorithm (B, L and U) will also be represented as unsorted binary lists together with the
size of the sets. The sizes of the sets will be updated accordingly whenever an element is added. Note that B and L
are subsets of V ′ and will therefore be represented as unsorted binary lists, of length |V ′|, indicating which elements
of V ′ are in these sets. However, U is not a subsets of V ′ and will therefore be represented by an unsorted binary list
of length |V |. Thus, given a vertex v, checking if v is in a set of vertices V can be done in constant time and adding a
vertex to a set can be done in constant time (flipping the bit at the corresponding position). Furthermore, iterating
over elements in a set can be done in linear time with respect to the base-set, i.e. O(|V (G)|) for V ′ and U and O(|V ′|)
for B and L.

As described, the full algorithm starts by calling algorithm 1, which in turn calls algorithm 2, which again calls
algorithm 1 and so on. We will see that the computation that dominates the runtime is updating the graph τv(G)
whenever v is concatenated, as in line 13 of algorithm 1 and line 6 of algorithm 2. We will assume that both algorithm 1
and algorithm 2 have access to a common graph which they can update to τv(G), whenever v is concatenated, to
prevent this from being done for the whole sequence v every time. Note that τv(G) takes up the same amount of

space regardless of v. Each local complementation in the sequence can be performed in time O(|V (G)|2) [11]. Since
algorithm 1 and algorithm 2 increase the length of v by O(1) and O(|V (G)|) respectively each call, the runtime to

update the graph τv(G) is O(|V (G)|3). We will now show that all other parts of both algorithm 1 and algorithm 2

takes time less than O(|V (G)|3), which will imply that the total runtime is O(|V ′||V (G)|3) since algorithm 2 is called
O(|V ′|) times10. Let’s start by going through the runtime of algorithm 1 line by line:

• Line 6 (and 15, 24): Checking if there is only one element (or none) in V ′ (in B, in U) can be done in constant
time, since we keep track of the sizes of these sets.

9It is possible to represent the sets in different ways, by for example (un)sorted lists containing the vertices as entries. However most
reasonable data structures will not affect the total runtime of the algorithm but can reduce the memory used.

10Note that algorithm 2 calls algorithm 1 with the set V ′ \ {f}, thereby reducing the size of V ′ in each recursive call.
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• Line 11: Finding a vertex c ∈ V ′ adjacent to all vertices in V ′ (except itself) can be done in time O(|V ′|2) by
for each vertex v in V ′ checking if τv(G) contains all edges in the set {(v, w) : w ∈ V ′ \ {v}}. Let c be the first
such vertex v.

• Line 13 and 14: Constructing the sets B and L can be done in time O(|V ′|2) by checking, for each vertex v in
V ′ \{c}, if τv(G) contains at least one edge from the set {(v, w) : w ∈ V ′ \{c}. If this is the case, v will be added
to the array representing B, otherwise v will be added to L.

• Line 19: Checking if B = V ′ \ {c} can be done in time O(|V ′|) by checking if all entries of the list representing
B are 1, except at position c.

• Line 23: Constructing the set U can be done in time O(|V ′||V (G)|) by checking, for each u in V (G) \ V ′, that
τv(G) contains all edges in the set {(u,w) : w ∈ B} and no edges in the set {(u,w) : w ∈ L}. If this is the case,
u will be added to the array representing U .

• Line 28-38: The body of this for -loop will be executed O(|V (G)|) since there are at most O(|V (G)|) elements in
U .

– Line 29: Checking if (u, c) is an edge in τv(G) can be done in constant time.

– Line 33: Finding a vertex h which is adjacent to both u and c but to no other vertex in V ′ can be done
in time O(|V ′||V (G)|) (or determining that there is none), by first finding the neighbors of u, i.e all the
vertices h such that (u, h) is an edge in τv(G) and then, for each neighbor h of u, checking if h is also
adjacent to c but to no other vertex in V ′. This is done by checking if (h, c) is an edge in τv(G) and that
no element of the set {(h,w) : w ∈ V ′ \ {c}} is.

Thus, the total runtime of algorithm 1, except for the recursive call to algorithm 2 in line 10, is O(|V ′||V (G)|2) (from
line 33 in the for -loop.).

The runtime of each command in algorithm 2 is:

• Line 5: Picking the vertex f can be done in constant time (pick the first entry).

• Line 7: Finding a shortest path between f and c can be done in timeO(|V (G)|2) by using Dijkstra’s algorithm [20].

• Line 8-15: The body of this for -loop will be executed O(|V (G)|) since the shortest path P is necessarily shorter
than the number of vertices in τv(G).

– Line 9: Checking if f is adjacent to any vertex in V ′ \ {c} can be done in time O(|V ′|) by checking if any
of the edges {(f, w) : w ∈ V ′ \ {c} are in τv(G).

– Line 10: The column with entry 1 in line 9 can be used for v here and thus only adds a constant time to
the runtime.

Thus, the total runtime of algorithm 1, except for the recursive call to algorithm 2 in line 6, is O(|V (G)|2) (from line
7 in the for -loop).

To further substantiate the efficiency of the algorithm we give actual run-times for an implementation of the algorithm
in fig. 1.

4.1.3 Proof that the algorithm is correct

In this section we prove that the algorithm presented in the previous section works, i.e. it gives a sequence of local
complementations v such that τv(G)[V ′] = SV ′ , given a distance-hereditary graph G, if such a sequence exists. It is
relatively easy to show that the algorithm gives the desired results when it does not return an error, which we show
in section 4.1.3.1. The hard part is to prove that, when the algorithm gives an error-flag it is in fact not possible to
produce the star graph, i.e. the star graph is not a vertex-minor of G, which is done in section 4.1.3.2. The notation
will be the same as in the previous section, c is a vertex in V ′ and is adjacent to the rest of the vertices in V ′. The
vertices in G[V ′ \ {c}] with degree greater than 0, i.e. the vertices incident on some bad edge, are denoted as the set
B.
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4.1.3.1 Algorithm succeeds

In this section we show that if algorithm 1 returns a sequence v, i.e. does not give an error-flag, then τv(G)[V ′] = SV ′ .
We start by showing that algorithm 2 always succeeds and gives the desired result, assuming that algorithm 1 works.
After performing a pivot ρ(v,u), i.e. τu ◦ τv ◦ τu, any neighbor of v will become a neighbor of u, except u itself. This
means that after the first pivot in line 9 in algorithm 2, i.e. ρ(p1,f), f and p2 will be adjacent. We want to inductively
show that this implies that after performing pivots along the whole path, f and c are adjacent. To do this we only
need to make sure that a pivot does not remove edges in the later part of the path. More precisely, the pivot ρ(pi,f)

should not remove an edge (pj , pj+1) for j > i. The fact that later edges in the path are not removed follows from the
properties of the pivot and that the path is a shortest path. Apart from edges incident on u or v, a pivot ρ(v,u) can
only flip edges in the set Nv ×Nu. This shows that the pivot ρ(pi,f) cannot remove an edge (pj , pj+1) since neither pj
or pj+1 is equal to f or pi or is adjacent to f . If pj or pj+1 would be adjacent to f , then this would not be a shortest
path. We also need to make sure that we do not remove the edges from E(SV ′\{f}) = {(c, v) : v ∈ V ′ \ {c, f}}, when
doing pivots along the path. By the same argument above we have that the pivot ρ(pi,f) can only remove an edge in
E(SV ′\{f}) if f is adjacent to a vertex in V ′ \ {c}. This is the reason for the if-statement in line 5 in algorithm 2,
where we then just perform a local complementation on the corresponding vertex in v ∈ V ′ \ {c} which will make f
and c adjacent. Performing the local complementation on such a vertex v will not remove edges in E(SV ′\{f}), since v
is a leaf in the induced subgraph on V ′. Note that there are only two cases where bad edges are created. If f and c are
made adjacent by a local complementation on a vertex v ∈ V ′ \{c}, as in line 7, the bad edge (f, v) will be created. On
the other hand, if this is not the case but the last vertex pk is adjacent to some vertices U ⊆ (V ′ \{c, f}), then the bad
edges {(f, u)}u∈U will be created. In both of these cases τv(G)[V ′] will be a star-star graph, see definition 4.1. Note
that f can also be adjacent to some vertices in V ′ \{f}, even before we perform the local complementations, but these
edges will still form a star graph with f as the center. If one wants to minimize the number of local complementations
and use local complementation instead of pivots along the path, this is in fact possible. The only place where a pivot is
needed instead of a local complementation is towards the end of the path, when pi is adjacent to a vertex in V ′ \{c, f}
not on the path.

What is left to show is that if algorithm 1 succeeds and returns a v, then τv(G) = SV ′ . This is easy to see, since
if we perform local complementations on such vertices we are looking for, i.e. u and possibly h in eq. (105), we will
remove the bad edges and produce the star graph. If |B| > 2 this has to be done twice, as captured by the loop over
i in algorithm 1. The reason for this is that, when doing a local complementation on such a u we complement the
induced subgraph G[B]. Since G[B] is a star graph, the induced subgraph after the local complementation will be a
complete graph plus a single disconnected vertex which was the center of G[B]. Performing the step once more will
then complement the complete graph, without the disconnected vertex, and all bad edges are thus removed.

Note that we have nowhere in this section used the assumption that the graph is distance-hereditary. This implies that
if the algorithm succeeds we know that τv(G) = SV ′ , independently of whether G is distance-hereditary, in fact even
independently of the rank-width of G. Furthermore, since algorithm 2 always succeeds to make τv(G)[V ′] connected
and from the fact that any connected graph on two or three vertices is either a star graph or a complete graph, this
implies that a star graph on any subset of size two or three is a vertex-minor of G, if the vertices are connected in G,
which we make use of in section 5. On the other hand, if the algorithm stops and gives an error-flag, then we do not
know in general if SV ′ is a vertex-minor of G or not. In the next section we show that if the graph is distance-hereditary
and the algorithm gives an error-flag we actually do know that SV ′ is not a vertex-minor of G.

4.1.3.2 Algorithm gives error

In this section we prove that if algorithm 1 gives an error-flag, i.e. if P(B,L, c) in eq. (105) is false, then the star
graph is not a vertex-minor of the input graph. At the steps in the algorithm where the error-flag can be raised, we
know that the induced subgraph on V ′ is either a star-star graph (definition 4.1) or a complete-star (definition 4.2)
graph as shown in section 4.1.3.1. The proof will follow the following sequence of steps.

1. Prove for any distance-hereditary graph G that if P(B,L, c) is false and G[V ′] is a star-star graph (or complete-
star graph) where |V ′| = 4 then SV ′ is not a vertex-minor of G. This is done in theorem 4.2.

2. Use the case proven in step 1 to argue that if P(B,L, c) is false and G[V ′] is a star-star graph where |V ′| > 4
then SV ′ is not a vertex-minor of G. This is done in theorem 4.3.

3. Use the case proven in step 1 to argue that if P(B,L, c) is false and G[V ′] is a complete-star graph where |V ′| > 4
then SV ′ is not a vertex-minor of G. This is done in theorem 4.5.
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4.1.3.3 Proof for a star-star (complete-star) graph of size 4

We will first show in theorem 4.2 that if P(B,L, c) is false and |V ′| = 4, then SV ′ is not a vertex-minor of G. This
will then allows us to prove the statement for the cases where |V ′| ≥ 4.

Theorem 4.2. Let’s assume that G is a distance-hereditary graph with the following induced subgraph (which is both
a star-star and a complete-star-graph)

G[V ′ = {1, 2, 3, 4}] = b

b b

1

4
2

3

b

. (110)

Furthermore assume that P(B,L, c) in eq. (105) is false, where B = {3, 4}, L = {1} and c = 2. Then SV ′ ≮ G. �

Proof. We will prove this by first showing that if P(B,L, c) is false and |V (G)| > 4, then there exist a removable leaf
or twin.11 This then implies the we can actually delete removable leaves and twins, i.e. vertices in T (G) \ V ′, until
there is only the vertices in V ′ left. Note that, if P(B,L, c) is false, then it is also false for any graph reached by
deleting vertices in V \V ′. From theorem 2.7, i.e. the fact that deletion of removable twins or leafs does not change the
property of whether a graph on a V ′ is a vertex-minor and that SV ′ 6=LC G[V ′], the theorem follows. More visually,
P(B,L, c) is false if there exist no u, h ∈ V \ V ′ such that

G[V ′ ∪ {u}] =

b

b b

1

4
2

3

b

bu
∨ G[V ′ ∪ {u, h}] =

b

b b

1

4
2

3

b

bu

b h . (111)

There are only two ways for P(B,L, c) to be false; either (N3 ∩N4) \ {2} = ∅ or

(N3 ∩N4) \ {2} 6= ∅ ∧ ∀u ∈ (N3 ∩N4) \ (N1 ∪ {2}) :
(

(u, 2) ∈ E(G) ∧ (Nu ∩N2) \
(
N1 ∪N3 ∪N4

)
= ∅
)
. (112)

We will consider these two cases separately and prove that if either is true, then T (G) \ V ′ 6= ∅. In most cases below
we will do this by showing that one of the four vertices in V ′ is not in T (G) which shows that T (G) \ V ′ 6= ∅ since
T (G) ≥ 4 by theorem 2.8.

Case 1:

To prove that if (N3 ∩ N4) \ {2} = ∅ and |V (G)| > 4, then there exists a removable leaf or twin, we consider the
following cases.

• Assume that |(N3 ∪N4) \ {3, 4}| > 1. Since, by assumption N3∩N4 = {2}, 3 and 4 does not form a twin-pair.
Also, neither 3 nor 4 is not a twin, since the twin-partner would have to be a common neighbor of 3 and 4.
Furthermore, neither 3 or 4 is a leaf. Thus, the only way for 3 ∈ T (G), is if 3 is an axil, requiring some vertex
not in V ′ being a leaf.12 Finally, if 3 /∈ T (G), then there exist a vertex in T (G) which is not in V ′, since by
theorem 2.8 we know that |T (G)| ≥ 4.

• Assume that (N3 ∪N4) \ {3, 4} = {2}.
– Assume that |N1| > 1. Then 1 is not a leaf and 2 is not an axil. Furthermore, since nothing else is

connected to 3 and 4, 2 is not a twin. Thus, the only way for 2 ∈ T (G), is if 2 is an axil, requiring some
vertex not in V ′ being a leaf. Finally, if 2 /∈ T (G), then since |T (G)| ≥ 4 by theorem 2.8, there must exist
a vertex in T (G) which is not in V ′.

– Assume that |N1| = 1. Then 2 is necessarily a cut-vertex and G \ 2 will contain a connected component
with no vertices in V ′, since |V (G)| > 4,. Thus, there exist a vertex in T (G) which is not in V ′ by
corollary 2.8.1.

Case 2:

To prove that if eq. (112) is true then there exists a removable leaf or twin, we consider the following cases.

11As in section section 2.5, removable means a vertex not belonging to the target vertices V ′
12The same for 4.
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• Assume that |N1| > 1. Then if 2 is an axil, the corresponding leaf cannot be in V ′, since 1 is not a leaf.
Furthermore, since 2 is not a leaf, if 2 ∈ T (G) then 2 has a twin-partner not in V ′, which is then also in T (G).
On the other hand if 2 /∈ T (G), then there exist a vertex in T (G) which is not in V ′, by theorem 2.8.

• Assume that N1 = {2}.
– Assume that |(N3 ∪N4) \ {3, 4}| > |N3 ∩N4|. In this case, 3 and 4 does not form a twin-pair. Further-

more, neither 3 or 4 is a leaf. Thus the only only way for 3(or 4) ∈ T (G), is if 3(4) is an axil or a twin,
requiring some vertex not in V ′ being a leaf or a twin. Finally if 3(4) /∈ T (G), then there exist a vertex
in T (G) which is not in V ′, since by theorem 2.8 we know that |T (G)| ≥ 4.

– Assume that (N3 ∪N4) \ {3, 4} = N3 ∩N4. We will for this case show that |T (G) \ V ′| > 0 by assuming
that T (G) = V ′ and arriving at a contradiction. Since this implies that T (G) 6= V ′ and from the fact
that |T (G)| ≥ 4, we know that |T (G) \ V ′| > 0. Consider the induced subgraph G \ 4 which is also
distance-hereditary.13 From theorem 2.8 we know that |T (G \ 4)| ≥ 4, since (N3 ∩ N4) \ {2} 6= ∅ and
therefore |G \ 4| ≥ 4. Thus, there is a vertex v /∈ V ′ such that v ∈ T (G \ 4) but v /∈ T (G). Note that
by the assumption from eq. (112), any neighbor of 4, except 2, is also a neighbor of both 2 and 3. The
removal of 4 cannot therefore create a new leaf in V \ V ′. The only option left is if there are two vertices
v, v′ ∈ V (G) \ {4}, such that v, v′ form a twin-pair in G \ 4 but not in G. If v and v′ are such vertices, it
must be the case that 4 is adjacent to exactly one of v and v′. Assume without loss of generality that 4
is adjacent to v′ but not to v. The neighborhoods of these vertices are then

Nv = Nv′ \ {4} ∧ 4 ∈ Nv′ . (113)

Note that the vertices adjacent to 4 are (N3 ∩N4)∪ {3}. Firstly, v′ cannot be in N3 ∩N4, since v is then
necessarily adjacent to 3 but not to 4 which contradicts the assumption that (N3∪N4)\{3, 4} = N3∩N4.
Secondly, v′ cannot be 3, since v is then necessarily a neighbor of 2 and all vertices in N3∩N4, contradicting
the second part of eq. (112).

4.1.3.4 Proof for star-star graphs

We are now able to prove the same statement as in theorem 4.2 but for |V ′| ≥ 4. The case when G[V ′] is a star-star
graph is given in theorem 4.3.

Theorem 4.3. Let’s assume that G is a distance-hereditary graph and V ′ is a subset V ′ ⊆ V (G) such that the induced
subgraph G[V ′] is a star-star graph SS(B′,L′,c′). Furthermore assume that P(B′, L′, c′) is false, then SV ′ ≮ G. �

Proof. Pick an edge in (b1, b2) ∈ G[B′], which exist since |B′| > 1 and G[B′] is a star graph. We will prove this by
first showing that

¬P(B′, L′, c′) ⇒ ∃l ∈ L′ : (¬P({b1, b2}, {l}, c′)).14 (114)

Then from theorem 4.2 we know that S{l,c′,b1,b2} ≮ G for some l ∈ L′ and the corollary follows, because if S{l,c′,b1,b2}
is not a vertex-minor of G then neither is SV ′ , since S{l,c′,b1,b2} < SV ′ . To show that eq. (114) is true, we instead show
the contrapositive statement, i.e.

∀l ∈ L′ : (P({b1, b2}, {l}, c′)) ⇒ P(B′, L′, c′). (115)

Let Q(u,B,L, c) be the expression on P(B,L, c) such that

P(B,L, c) = ∃u ∈ V \ V ′ : Q(u,B,L, c) (116)

For each l ∈ L′, let ul be a vertex in V \ {l, c′, b1, b2} such that Q(ul, {b1, b2}, {l}, c′) is true. We will now show that
for at least one of these ul, ul ∈ V \ V ′ and Q(ul, B

′, L′, c′) is true. To show that for at least one ul, ul ∈ V \ V ′ and
Q(ul, B

′, L′, c′) is true we will go trough the following steps:

1. Show that
∀l ∈ L′ : (ul /∈ V ′) (117)

13Induced subgraphs of a distance-hereditary graph are distance-hereditary.
14Remember that L′ 6= ∅, by definition of a star-star graph.
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2. Show that
∀l ∈ L′ : (B′ ⊆ Nul

) (118)

3. Show that
∃l ∈ L′ : (L′ ∩Nul

= ∅) (119)

4. Fix l ∈ L′ to be such that the corresponding expression in eq. (119) is true.

5. Show that

(ul, c
′) ∈ E(G) ∨ ∃h :

h ∈ Nul
∩Nc′ \

⋃
x∈V ′\{c′}

Nx

 (120)

If all the statements in the above steps are shown to be true we know that there exist a ul in V \ V ′ such that
Q(ul, B

′, L′, c′) and therefore P(B′, L′, c′) is true. It is important to note that even if we consider the statements in
the above steps separately we know that there exist at least one ul that simultaneously satisfy all. To see this, note
that we only use a existential quantifier in step 3 and in step 5 we consider a ul which satisfies the corresponding
property in step 3. Let’s now consider the steps 1 through 5 one by one.15 We will in these steps often claim that
certain small graphs are not distance-hereditary. Verifying this can be done by hand or using our code supplied at [1].

Step 1:

Firstly, since Q(ul, {b1, b2}, {l}, c′) is true we know that ul 6= c′. Similarly, we know that ul ∈ (Nb1 ∩ Nb2) \ {c′},
thus ul is not in B′, since G[B′] is a star graph. Furthermore, since b and l are not adjacent ∀b ∈ B′ and ∀l ∈ L′,
ul is not in L′. We therefore know that ul /∈ V ′. �

Step 2:

To see that B′ ⊆ Nul
, assume that first that this is not the case, i.e. ∃b̃ ∈ B′ : b̃ /∈ Nul

. We will now show that this
contradicts the distance-hereditary property. Note that b̃ is not the center of the star graph G[B], because either b1
or b2 is the center, since (b1, b2) is an edge in G[B]. Let’s assume without loss of generality that b1 is the center of
G[B]. Furthermore, let’s consider the cases where ul and c′ are adjacent or not separately.

• Assume that ul and c′ are not adjacent and consider the following induced subgraph

G[{c′, b̃, b1, b2, ul}] =
b b

ul

b2b1b

b

b̃

c′

b

. (121)

The graph in eq. (121) is not distance-hereditary, since the distance between for example b̃ and ul increase if
b1 is removed. This is therefore a contradiction to the assumption that G is distance-hereditary.

• Assume that ul and c′ are adjacent. We then know that there exist a vertex hl which is adjacent to ul and c′,
since Q(ul, {b1, b2}, {l}, c′) is true. First, let’s show that hl and b̃ are not adjacent. In fact we will show that
hl is not adjacent to any vertex in B, which will be useful in step 5.

Assume the opposite, i.e. hl is adjacent to some vertex b̂ ∈ B′ \ {b1, b2}. We already know that hl is not
adjacent to b1 or b2, since Q(ul, {b1, b2}, {l}, c′) is true. Consider therefore the following induced subgraph

G[{c′, b̂, b1, b2, hl}] =

b b
b2b1b

b

b̂

c′
b

hl

(122)

which is not distance-hereditary and we therefore know that Nhl
∩B′ = ∅.

15Step 4 is trivial.

49



Consider now on the other hand the following induced subgraph, with the knowledge that hl is not adjacent
to b̃

G[{c′, b̃, b1, ul, hl}] = b b

ul

hl
b1b

b

b̃

c′

b

(123)

which is also not distance-hereditary.

Since in all cases we arrived at a non-distance-hereditary graph we know that B′ ⊆ Nul
. �

Step 3:

We show that at least for one of the ul, L
′ ∩ Nul

= ∅. We will do this by contradiction, assume therefore that
∀l ∈ L′ : (L′ ∩Nul

6= ∅). Since Q(ul, {b1, b2}, {l}, c′) is true, we know that {l}∩Nul
= ∅ for all l ∈ L′. Consider now

the graph G[L′ ∪ {ul}l]. From theorem 4.4 we know that there exist l1, l2 ∈ L′ and ul3 , ul4 ∈ V \ V ′, such that ul3
is adjacent to l1 but not to l2 and ul4 is adjacent to l2 but not to l1.16 But this is in contradiction with that the
graph is distance-hereditary. To see this, consider the induced subgraph

G[{c′, b1, l1, l2, ul3 , ul4}] =

b b ul4
b1b

b

ul3

c′
bb l2l1

(124)

which is not distance-hereditary, independently if the edges (ul3 , ul4), (c′, ul3) and (c′, ul4) are individually present
or not. Since this contradicts the distance-hereditary property we know that ∃l ∈ L′ : (L′ ∩Nul

= ∅). �
Step 5:

Let’s assume that ul is then a vertex such that B ⊆ Nul
and L′ ∩Nul

= ∅. If ul is not adjacent to c′, then clearly
Q(ul, B

′, L′, c′). On the other hand if ul and c′ are adjacent we know that there exist a hl in Nul
∩Nc′\

⋃
x∈{l,b1,b2}Nx.

We thus need to show that hl is not adjacent to any vertex in V ′, other than c′. Firstly, hl cannot be adjacent to
a vertex in L′, since this would violate the distance-hereditary property. To see this, assume that hl is adjacent to
l̃ ∈ L′ and consider the following induced subgraph

G[{c′, b1, l̃, ul, hl}] =

ul

b1 b

b

c′

b

b

b

l̃

hl

(125)

which is not distance-hereditary. This is a contradiction with the distance-hereditary property and we therefore
know that Nhl

∩ L′ = ∅. As we already shown in step 2, hl is also not adjacent to any vertex in B′. Thus, hl is not
adjacent to any vertex in V ′ = B′ ∪ L′ ∪ {c′}. �

We have therefore shown that eq. (115) is true which implies that eq. (114) is true. Finally, as we described in the
beginning of the proof, this implies that if P(B′, L′, c′) is false then SV ′ ≮ G.

16Note that for example l1 and l3 could be the same vertex, but not necessarily.
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Theorem 4.4. Assume G is a graph on the vertices U ∪L such that U ∩L = ∅ and U 6= ∅. Furthermore, assume that
for each l in L, there is at least one vertex in U not adjacent to l and for each u in U , there is at least one vertex in
L adjacent to u, i.e. G satisfies the following expression

R(U,L) = ∀l ∈ L :
(
∃u ∈ U : u /∈ Nl

)
∧ ∀u ∈ U :

(
∃l ∈ L : l ∈ Nu

)
(126)

Then there exist two vertices u1 and u2 in U and two vertices l1 and l2 in L such that u1 is adjacent to l1 but not to
l2 and u2 is adjacent to l2 but not to l1. In other words the induced subgraph is of the following form

G[{u1, u2, l1, l2}] =
b b

b b

l2

u2

l1

u1

. (127)

where the dashed edges are individually either present or not. �

Proof. We will first show that |L| ≥ 2 and |U | ≥ 2. Pick an element u1 ∈ U , which exists since U 6= ∅, by assumption
there is a l1 ∈ L which is adjacent to u1. Furthermore there exist a u2 ∈ U which is not adjacent to l1, thus u1 6= u2.
Finally, by assumption there is a l2 ∈ L which is adjacent to u2, thus l1 6= l2. Note, that this does not yet prove the
theorem, since u1 and l2 might be adjacent.

We will first prove the theorem for |L| = 2 and then use this to prove the general case.

|L| = 2 :

Let’s denote the vertices in L by l1 and l2. We first show by contradiction that both vertices in L must have at
least one neighbor in U . Assume that l1 does not have a neighbor in U , then all vertices in U must be adjacent to
l2 by the second part of eq. (126), but then the first part of eq. (126) is false. Thus l1 has at least one neighbor in U
and by symmetry the same is true for l2. Now choose such a neighbor of l1 in U and denote this u1. We now show
by contradiction that there exist another vertex u2 ∈ U which is adjacent to l2 but not to l1. Assume that this is
not the case, i.e. all vertices in U \ {u1} are adjacent to l1 or not adjacent to l2. If a vertex in U is not adjacent
to l2 then it is necessarily adjacent to l1, thus by assumption all vertices in U \ {u1} are adjacent to l1. This is in
contradiction with the first part of eq. (126) and the theorem for |L| = 2 follows.

|L| > 2 :

We will show that the following is true: (1) G has an induced subgraph as in eq. (127) or (2) there exist a l ∈ L
such that G \ l satisfy R(U,L \ {l}). The theorem then follows since if (1) is true the theorem follows directly and
if (2) is true we can make the same argument for G \ l for some l ∈ L and then possibly for (G \ l) \ l′ etc., which
at some point will give the case |L| = 2, which we have proven above. Note that if the graph reached by deleting
vertices from G, has the graph in eq. (127) as an induced subgraph, then so does G.

To prove that (1) or (2) is true, we show that if (2) is false then (1) is necessarily true. Therefore, assume now that
(2) is false, which means that for every choice of l, G \ l does not satisfy R(U,L \ {l}). The only possibility for this
to happen, i.e. the deletion of l makes the graph not satisfy eq. (126), is if the deletion of l makes some u ∈ U not
adjacent to any vertex in L. It is easy to see that this can only happen if ∃u ∈ U : (L∩Nu = {l}). Since this should
be true for all l ∈ L, we have that if (2) is false, the following is true,

∀l ∈ L :
(
∃u ∈ U : (L ∩Nu = {l})

)
. (128)

But eq. (128) implies that (1) is true. To see this pick two different vertices l1 and l2 in L. From eq. (128) we
know that there exist a vertex u1 ∈ U such that L ∩Nu1 = {l1} and similarly a u2 for l2. Note that u1 6= u2 since
Nu1 6= Nu2 . Furthermore, since L ∩Nu1 = {l1} and L ∩Nu2 = {l2} the induced subgraph G[{u1, u2, l1, l2}] is as in
eq. (127).

4.1.3.5 Proof for a complete-star graph

Here we prove that if P(B′, L′, c′) is false, then SV ′ ≮ G for the case where G[V ′] is a complete-star graph. We have
the following theorem.
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Theorem 4.5. Let’s assume that G is a distance-hereditary graph and V ′ is a subset V ′ ⊆ V (G) such that the induced
subgraph G[V ′] is a complete-star graph KS(B′,L′,c′). Furthermore assume that P(B′, L′, c′) is false, then SV ′ ≮ G. �

Proof. We will prove this by induction on the size of B′. The base-case, |B′| = 2, is true due to theorem 4.3, since for
|B′| = 2, the graph G is also a star-star graph. Let’s now assume that theorem 4.5 is true for |B′| = k. We will now
prove that the theorem is true for |B′| = k + 1 by showing that

¬P(B′, L′, c′) ⇒ ∃b ∈ B′ : ¬P(B′ \ {b}, L′, c′). (129)

where |B′| = k + 1 ≥ 3. Then from the induction hypothesis we know that SV ′\{b} ≮ G for some b ∈ B′ and the
corollary follows, because if SV ′\{b} is not a vertex-minor of G then neither is SV ′ , since SV ′\{b} < SV ′ . To show that
eq. (129) is true, we instead show the contrapositive statement, i.e.

∀b ∈ B′ : P(B′ \ {b}, L′, c′) ⇒ P(B′, L′, c′). (130)

Let’s therefore assume that P(B′\{b}, L′, c′) is true for all b in B′. Let Q(u,B′, L′, c′) be the expression on P(B′, L′, c′)
such that

P(B′, L′, c′) = ∃u ∈ V \ V ′ : Q(u,B′, L′, c′) (131)

For each b ∈ B′, let ub be a vertex in V \ (V ′ \ {b}) such that Q(ub, B
′ \ {b}, L′, c′) is true. We now need to show

that for at least one of these ub, ub ∈ V \ V ′ and Q(ub, B
′, L′, c′) is true. Note that L′ ∩ Nub

= ∅ for all b, since
Q(ub, B

′ \ {b}, L′, c′) for all b. Thus, to show that for at least on ub, ub ∈ V \ V ′ and Q(ub, B
′, L′, c′) is true we will

go trough the following steps:

1. Show that there can maximally be one b̃ ∈ B′ such that ub̃ ∈ B′, i.e.

∃b̃ ∈ B′ :
(
∀b ∈ B′ :

(
b = b̃ ∨ ub /∈ B′

))
(132)

2. Fix b̃ ∈ B′ to be such that the corresponding expression in eq. (132) is true.17

3. Show that there can maximally be one b̂ ∈ B′ \ {b̃} such that B′ * Nub̂
, i.e.

∃b̂ ∈ B′ \ {b̃} :
(
∀b ∈ B′ \ {b̃} :

(
b = b̂ ∨ B′ ⊆ Nub

))
(133)

4. Fix b̂ ∈ B′ to be such that the corresponding expression in eq. (133) is true.

5. Use step 1 to 4 to show that there exist a b ∈ B′ such that ub /∈ B′, B′ ⊆ Nub
and

(ub, c
′) /∈ E(G) ∨ ∃hb :

hb ∈ Nub
∩Nc′ \

⋃
x∈V ′\{c′}

Nx

 (134)

i.e. Q(ub, B
′, L′, c′) is true.

Let us now consider the steps 1 through 5 one by one.18 We will in these steps often claim that certain small graphs
are not distance-hereditary. Verifying this can be done by hand or using our code supplied at [1].

Step 1:

Here we show that eq. (132) is true. Firstly, if for all b ∈ B′ we have that ub /∈ B′, then eq. (132) is clearly true, since
b̃ can then be chosen as any element in B′.19 We now show by contradiction that there cannot exist two different
vertices b̃1, b̃2 ∈ B′, such that ub̃1 ∈ B′ and ub̃2 ∈ B′. Thus, let’s assume that such vertices b̃i for i ∈ {1, 2}, does

exist. Note that, since Q(ub̃i , B
′ \ {b̃i}, L′, c′) is true, we know that ub̃i is adjacent to all vertices in B′ \ {b̃i} and

therefore ub̃i = b̃i. Since ub̃i = b̃i, we know that ub̃1 6= ub̃1 . Furthermore, from the fact that ub̃i ∈ B′, we know that

ub̃i is adjacent to c′ and thus, since Q(ub̃i , B
′ \ {b̃i}, L′, c′) is true, there exist a vertex hi such that

hi ∈ Nub̃i
∩Nc′ \

⋃
x∈V ′\{c′,b̃i}

Nx. (135)

17Note that this does not imply that ub̃ ∈ B′.
18Step 2 and 4 are trivial.
19Remember that |B′| ≥ 3.
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The vertices hi are necessarily different, since h1 is adjacent to b1 = ub̃1 but not to b2 and vice versa for h2. Now
consider the following induced subgraph

G[{c′, b̃1, b̃2, b, h1, h2}] =

b b

b b

h2

b2

h1

b1
b

b

b

c′

(136)

where b is a vertex in B′ \ {b1, b2}, which exists since |B′| ≥ 3 by assumption. The graph in eq. (136) is not
distance-hereditary, independently if the edge (h1, h2) is present or not. Since this contradicts the fact that G is
distance-hereditary, we know that eq. (132) is true. �

Step 3:

Here we show that eq. (133) is true. Firstly, if for all b ∈ B′ \ {b̃} we have that B′ ⊆ Nub
, then eq. (133) is clearly

true, since b̂ can then be chosen as any element in B′ \ {b̃}.20 We now show by contradiction that there cannot exist

two different vertices b̂1, b̂2 ∈ B′, such that B′ * Nub̂1 and B′ * Nub̂2 . Thus, let’s assume that such vertices b̂i for

i ∈ {1, 2}, does exist. Let’s for the remainder of this step denote ub̂i as u(i). From the previous steps we know that

u(i) /∈ B′ and furthermore (B′ \ {b̂i}) ⊆ Nu(i) since Q(u(i), B′ \ {b̂i}, L′, c′) is true. Thus, by assumption, we have

that b̂i /∈ Nu(i) . The vertices u(i) are then necessarily different, i.e. u(1) 6= u(2), since for example b̂1 is a neighbor of
u(2) but not of u(1). We will now show that this contradicts the fact that G is distance-hereditary, by considering
the following cases:

• Assume that u(1) is not adjacent to u(2) and consider the following induced subgraph

G[{b, b̂1, b̂2, u(1), u(2)}] =
b̂2b̂1

u(2) u(1)

b
bb

b
b

b

(137)

where b is a vertex in B′ \ {b̂1, b̂2}, which exists since |B′| ≥ 3 by assumption. The graph in eq. (137) is not
distance-hereditary.

• Assume that u(1) is adjacent to u(2).

– Assume that neither u(1) or u(2) is adjacent to c′ and consider the following induced subgraph

G[{c′, b̂1, b̂2, u(1), u(2)}] =

c′

b̂2b̂1

u(2) u(1)bb

b

b b (138)

which is not distance-hereditary.

– Assume that exactly one of u(1) and u(2) is adjacent to c′ and let’s assume without loss of generality that
it is u(1) that is adjacent to c′. Since Q(u(1), B′ \ {b̂1}, L′, c′) is true and u(1) is adjacent to c′, we know
that there exist a vertex h1 such that

h1 ∈ Nu(1) ∩Nc′ \
⋃

x∈V ′\{c′,b1}

Nx. (139)

Consider now the following induced subgraph

G[{c′, b, b̂2, u(1), u(2), h1}] =

c′

b̂2

u(2) u(1)

b
bb

b

b
b b h1 (140)

where b is a vertex in B′ \ {b̂1, b̂2}, which exists since |B′| ≥ 3 by assumption. The graph in eq. (140) is
not distance-hereditary, independently if the edge (h1, u

(2)) is present or not.

20Remember that |B′| ≥ 3.
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– Assume that both u(1) and u(2) is adjacent to c′. Since Q(u(i), B′ \ {b̂i}, L′, c′) is true and u(i) is adjacent
to c′, we know that there exist a vertex hi such that

hi ∈ Nu(i) ∩Nc′ \
⋃

x∈V ′\{c′,bi}

Nx. (141)

* Assume that h1 = h2, which implies that h1 is not adjacent to b̂1 or b̂2 and consider the following
induced subgraph

G[{b̂1, b̂2, u(1), u(2), h1}] =

b̂2b̂1

u(2) u(1)bb

b b

bh1

(142)

which is not distance-hereditary.

* Assume that h1 6= h2 and consider the following induced subgraph

G[{c′, b, b̂1, b̂2, u(1), u(2), h1, h2}] =

c′
b̂2

u(2) u(1)

b
bb

b

b
b

b b h2h1

b
b̂1

(143)

where b is a vertex in B′ \ {b̂1, b̂2}, which exists since |B′| ≥ 3 by assumption. The graph in eq. (143)
is not distance-hereditary, independently if the edges

(h1, h2), (h1, u
(2)), (h2, b̂2), (h1, u

(1)), (h1, b̂2) (144)

are individually present or not. To make this statement more transparent, we also provide the
adjacency matrix of the graph in eq. (143). The graph in eq. (143) has adjacency matrix

Γ =

c′ b b̂1 b̂2 u(1) u(2) h1 h2



c′ 0 1 1 1 1 1 1 1
b 1 0 1 1 1 1 0 0

b̂1 1 1 0 1 0 1 x1 0

b̂2 1 1 1 0 1 0 0 x2

u(1) 1 1 0 1 0 1 1 x3

u(2) 1 1 1 0 1 0 x4 1
h1 1 0 x1 0 1 x4 0 x5

h2 1 0 0 x2 x3 1 x5 0

(145)

where x1, . . . , x5 ∈ {0, 1}. By explicit computation one can check that for any assignment of the
variables x1, . . . , x5, the graph with adjacency matrix as in eq. (145) is not distance-hereditary.

Since in all cases we arrived at a contradiction of the fact that G is distance-hereditary, we know that eq. (133) is
true. �

Step 5:

Here we show that there exist a b ∈ B′ such that ub /∈ B′, B′ ⊆ Nub
and

(ub, c
′) /∈ E(G) ∨ ∃hb :

hb ∈ Nub
∩Nc′ \

⋃
x∈V ′\{c′}

Nx

. (146)

Note that B′ ⊆ Nub
implies ub /∈ B′, thus we can focus on the first property. We prove the statement by contradiction

and assume therefore that there exist no such b, i.e. there exist no b ∈ B′ such that B′ ⊆ Nub
and for which eq. (146)

is true. Let’s first introduce the set B of vertices in B′ which satisfy the first of these properties, i.e.

B = {b ∈ B′ : (B′ ⊆ Nub
)}. (147)
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From the previous steps we know that B is not empty. Furthermore, from our assumption we must have that for all
b ∈ B, eq. (146) is false, i.e

∀b ∈ B :

(
(ub, c

′) ∈ E(G) ∧ ∀hb :

hb /∈ Nub
∩Nc′ \

⋃
x∈V ′\{c′}

Nx

). (148)

Let b now be a fixed element of B. Since ub is adjacent to c′ and from the fact that Q(ub, B
′ \ {b}, L′, c′) is true, we

know that there exist a hb such that

hb ∈ Nub
∩Nc′ \

⋃
x∈V ′\{c′,b}

Nx. (149)

Note that, eq. (148) together with eq. (149) implies that hb is adjacent to b but to no other vertex in B′. We
will now show that this leads to a contradiction by considering a vertex b1 ∈ B′ \ {b}, such that ub1 /∈ B′, which
we showed exists in step 1. Furthermore, let b2 a vertex in B′ \ {b, b1}, which is necessarily adjacent to ub1 , since
Q(ub1 , B

′ \ {b1}, L′, c′) is true. Let’s consider the following cases:

• Assume that ub1 is not adjacent to c′. By assumption we then have that B′ * Nub1
, which implies that ub1 is

not adjacent to b1. Consider now the following induced subgraph

G[{c′, b, b1, b2, ub1 , hb}] =

c′

b1

ub1 b

b2
bb

b

b
b b hb (150)

which is not distance-hereditary, independently if the edge (hb, ub1) is present or not.

• Assume that ub1 is adjacent to c′.

– Assume that B′ ⊆ Nub1
. By the same argument as for b and ub, we know that there exist a vertex hb1

which is adjacent to ub1 , c′ and b1 but not to any other vertex in B′. Consider now the following induced
subgraph

G[{c′, b, b1, b2, hb, hb1}] =

b b

b b

hb1

b1

hb

b b

b

b2

c′

(151)

which is not distance-hereditary, independently if the edge (hb, hb1) is present or not.

– Assume that B * Nub1
, which implies that b1 is not adjacent to ub1 since Q(ub1 , B

′ \ {b1}, L′, c′) is true.
Furthermore, we know that there is a vertex hb1 which is adjacent to ub1 and c′ and possibly to b1 but
no other vertex in B′. Consider now the following induced subgraph

G[{c′, b, b1, b2, ub, ub1 , hb, hb1}] =

c′
b

ub ub1
b2

bb

b

b
b

b b hbhb1

b
b1

(152)

which is not distance-hereditary, independently if the edges

(hb, hb1), (hb, ub1), (hb1 , b1), (hb1 , ub), (ub, ub1) (153)

are individually present or not. To make this statement more transparent, we also provide the adjacency
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matrix of the graph in eq. (152). The graph in eq. (152) has adjacency matrix

Γ =

c′ b b1 b2 ub ub1 hb hb1



c′ 0 1 1 1 1 1 1 1
b 1 0 1 1 1 1 1 0
b1 1 1 0 1 1 0 0 x1

b2 1 1 1 0 1 1 0 0
ub 1 1 1 1 0 x2 1 x3

ub1 1 1 0 1 x2 0 x4 1
hb 1 1 0 0 1 x4 0 x5

hb1 1 0 x1 0 x3 1 x5 0

(154)

where x1, . . . , x5 ∈ F2. By explicit computation one can check that for any assignment of the variables
x1, . . . , x5, the graph with adjacency matrix as in eq. (154) is not distance-hereditary.

Since in all cases we arrived at a contradiction of the fact that G is distance-hereditary, we know that there exist a
b ∈ B′ such that ub /∈ B′, B′ ⊆ Nub

and such that eq. (146) is true. �
We have therefore shown that eq. (130) is true which implies that eq. (129) is true. Finally, as we described in the
beginning of the proof, this implies, by induction, that if P(B′, L′, c′) is false then SV ′ ≮ G.

4.2 Fixed-parameter tractable algorithm for unbounded rank-width

In this section we will show that the star vertex-minor problem (STARVERTEXMINOR) is fixed-parameter tractable
for circle graphs, in terms of the size of the considered star graph. More specifically, we will show that there exists an
efficient algorithm to decide if SV ′ is a vertex-minor of G, given that G is a circle graph and the subset V ′ ⊆ V (G)
is of size k. We will do this by showing that we can map this problem in polynomial time to deciding whether the
4-regular multi-graph that defines G has a SOET on the vertices V ′. This is done in section 4.2.1. We will then give
an algorithm that decides whether a 4-regular multi-graph has a SOET on a subset V ′ of its vertices where V ′ = k is
fixed. This is done in section 4.2.2. We begin by formally stating the decisions problems considered.

We first define the problem k−STARVERTEXMINOR.

Problem 4.1 (k−STARVERTEXMINOR). Let G be a graph and let V ′ be a subset of V (G) with |V ′| = k. Decide
whether SV ′ is a vertex-minor of G. �
We also define the problem k−SOET.

Problem 4.2 (k−SOET). Let F be a 4-regular multi-graph and let V ′ be a subset of V (F ) with |V ′| = k. Decide
whether F allows for a SOET with respect to V ′ �

Theorem 4.6. k−STARVERTEXMINOR, restricted to circle graphs, is in P. �

Proof. This will follow from theorem 4.7 which provides an efficient mapping of every circle graph instance of
k−STARVERTEXMINOR to a corresponding instance of k−SOET. By corollary 4.9.1 k−SOET is in P and hence so
is k−STARVERTEXMINOR. An efficient algorithm for k−SOET is given in algorithm 4.

This theorem has the following corollary

Corollary 4.6.1. STARVERTEXMINOR is fixed-parameter tractable in the size of the input vertex-set V ′ if the input
graph G is a circle graph. �
The existence of this fixed-parameter tractable algorithm is theoretically interesting but it is not likely to be of practical
use. This is so because while the algorithm is efficient in the size of the input graph G it suffers from a hidden constant

that is of size O(k! · (f(k)O(kf(k)))), where f(k) = 22O(k2)

making its practical implementation unlikely.
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4.2.1 Mapping k−STARVERTEXMINOR to k−SOET

In this section we will prove that there exists an efficient mapping from instances of k−STARVERTEXMINOR that are
circle graphs to k−SOET. This is formalized in the following theorem, the proof of which also provides a prescription
of the algorithm that defines the mapping.

Theorem 4.7. Let (G,V ′) be an instance of k−STARVERTEXMINOR and let G be a circle graph. These is an
efficient mapping from this instance to an instance of k−SOET and moreover the instance (G,V ′) is a yes-instance
of k−STARVERTEXMINOR if and only if its image under the mapping is a yes-instance of k−SOET. �

Proof. We will prove this by providing an explicit mapping. An instance (G,V ′) of k−STARVERTEXMINOR, where
G is a circle graph and V ′ a vertex set, can be mapped to an instance of k−SOET by the following two steps:

• Find a double occurrence word X with letters in V (G) such that G = A(X). This can be done in timeO(|V (G)|2)
by using Spinrad’s algorithm [46].

• Construct a 4-regular multi-graph F , such that X = m(U) for some Eulerian tour U on F . As shown in [12],
this can be done in the following way:

– Let CX be a cycle graph with the vertices labeled as the consecutive letters of X.

– Contract every pair of vertices with the same label, while keeping all the edges. Note that this step can
create multi-edges or self-loops. This step can be done in time O(|V (G)|) by adding the corresponding rows
of the adjacency matrix and deleting one row and one column.

The graph obtained from these steps is then a 4-regular multi-graph F with a Eulerian tour U , such that
X = m(U). Therefore, constructing the 4-regular multi-graph F , given X, can also be done in time O(|V (G)|2).

One can see that the above algorithm runs in O(|V (G)|2) and given a circle graph G outputs a 4-regular graph F
that has a Eulerian tour U such that A(U) = G. From corollary 2.6.1 we then know that SV ′ < G if and only
if F allows for a SOET with respect to V ′. Using the above two steps we see that any circle graph instance of
k−STARVERTEXMINOR can be mapped to k−SOET in time O(|V (G)|2).

Given this mapping, the next logical step is to find an efficient algorithm for k−SOET. This is done in the next
section.

4.2.2 k−SOET is in P

In this section we will prove that k−SOET is in P. We will do this by explicitly writing down an efficient algorithm.
This algorithm will make use of an algorithm which solves a well known graph problem we call k′−DPP. k′−DPP,
for k′-Disjoint Path Problem is formally defined as follows.

Problem 4.3 (k′−DPP). Let H be a multi-graph and let L = {(v1, v
′
1), . . . , (vk′ , v

′
k′)} be a set of two-tuples of vertices

of H such that |L| = k′. Decide whether there exist k′ edge-disjoint paths Pi on H that start at vi and end at v′i for
i ∈ [k′]. �
Robertson and Seymour proved that there exist an efficient algorithm for solving k′−DPP, if k′ is fixed. Their proof
of correctness is based on 23 papers named Graph minors. I , . . . , Graph minors. XXIII [44]. In [31] an improved
algorithm for k′−DPP is given, with a much smaller hidden constant describing the scaling in terms of k′. This hidden
constant is still quite large as running time for the algorithm in [31] is (f(k′)O(k′f(k′)))nO(1), where n is the number of

vertices in the graph and f(k′) = 22O(k′2)

We will discuss an algorithm that solves k−SOET efficiently. It will use an algorithm for k′−DPP as a subroutine,
calling it a constant number of times.

The algorithm for k−SOET is sketched as follows. Let F be a 4-regular multi-graph and let V ′ ⊂ V (F ) be of size
k. Recall that a SOET is a Eulerian path that visits the vertices in V ′ in some order. A necessary condition for a
SOET to exist is that there are, for some ordering of the vertices in V ′ two edge-disjoint trails from the first vertex in
V ′ to the second vertex in V ′ and from the second to the third and so on. If one is given such a collection of paths it
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is not hard to see that one can connect these paths to each other to form a tour and moreover extend this total tour
to be Eulerian. Hence we could use the k′−DPP algorithm described above to to find such a tour by finding all the
edge disjoint trails that connect the vertices in V ′.

There are two problems with this. The first problem is that a SOET with respect to V ′ can exist with respect to any
possible ordering of the set V ′. This means that in order to find this tour we might have to apply k−DPP to all k!
different orderings. This is a large overhead but acceptable since we are only looking for an algorithm that is efficient
for fixed k. The second problem is that the k′−DPP algorithm expects k′ pairs of vertices and requires these pairs to
be different.

This means we cannot input the same vertex-pair twice to get two edge disjoint paths. We can resolve this at
some overhead by running the k′−DPP algorithm on a modified multi-graph H. This multi-graph, which we call a

SOET splitting of F , is created by taking each vertex vi in V and splitting it into two vertices v
(a)
i , v

(b)
i such that the

four edges e1, . . . e4 originally incident on vi are now pairwise incident on v
(a)
i , v

(b)
i .

As an example we could have for instance that e1, e2 are incident on v
(a)
i and e3, e4 are incident on v

(b)
i . We must

consider all possible choices of pairings here (of which there are 6) and since there are k vertices on which to perform
this procedure (each vertex in V ′) there are 6k such SOET splittings of F (which are not 4-regular anymore). This
means we must call the 2k−DPP subroutine 6k · k! times to account for all possible orderings of the SOET.

Let’s make this a little more rigorous. We begin by defining the notion of a SOET-splitting of a 4-regular multi-graph
F with respect to a set V ′.

Definition 4.3 (SOET-splitting). Let F be a 4-regular multi-graph and let V ′ be a subset of it’s vertices. A SOET-
splitting H of F with respect to V is a multi-graph created from F y performing the following operation on all vertices
in V

v
b 7→

v(a)
b

b
v(b)

(155)

We label the two vertices that originate from a vertex v ∈ V ′ as v(a) and v(b). Note that we have not specified how to
connect the edges that were originally incident on v to v(a) and v(b). There are six possible ways to do this for each
v ∈ V ′ and each choice leads to an a priori distinct SOET-splitting multi-graph H. �
We also define the subroutine k′−DPP

Algorithm 3 k′−DPP

1: INPUT: A multi-graph H and a set of 2-tuples {(v1, v̂1), . . . (vk′ , v̂k′)}
2: OUTPUT: TRUE if there exist edge-disjoint paths in H connecting vi, v̂i for all i ∈ [k′].
3: FALSE otherwise

Note that we have only specified the inputs and outputs of this subroutine. For details on the inner workings of this
algorithm see [31]. Using this subroutine we can write down an algorithm for k−SOET.
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Algorithm 4 k−SOET

1: INPUT: A 4-regular multi-graph F and a set V ′ = {v1, . . . , vk} such that V ′ ⊂ V (F )
2: OUTPUT: TRUE if there exist a SOET on F with respect to V ′

3: FALSE otherwise
4:

5:

6: Generate a list L of all possible SOET-splittings of F with respect to V ′

7:

8: for all graphs H in L do
9:

10: for all permutations π of the set [1 : k] do

11: Run 2k−DPP on the set {(v(a)
π(1), v

(a)
π(2)), . . . , (v

(a)
π(k), v

(a)
π(1)), (v

(b)
π(1), v

(b)
π(2)), . . . , (v

(b)
π(k), v

(b)
π(1))}

12:

13: if 2k−DPP returns TRUE then
14: RETURN TRUE
15: QUIT
16: end if
17: end for
18: end for
19: RETURN FALSE
20: QUIT

We now prove that this algorithm returns TRUE if and only if the multi-graph F allows for a SOET with respect
to the vertex-subset V ′. We begin by proving that if the algorithm returns TRUE the multi-graph F allows for a
SOET with respect to the vertex-subset V ′. We have the following theorem.

Theorem 4.8. Let F be a connected 4-regular multi-graph and let V ′ ⊂ V (F ) be a subset of its vertices with |V ′| = k.
If algorithm 4 returns TRUE then F allows for a SOET with respect to the vertex set V ′. �

Proof. Let F be a connected 4-regular multi-graph and let V ′ ⊂ V (F ) be a subset of its vertices with |V ′| = k. If
algorithm 4 returns true this means there exists a SOET-splitting H of F and a permutation π of the set [k] such that

there exist 2k edge-disjoint paths in H that connect the vertices v
(a)
π(1) and v

(a)
π(2), v

(a)
π(2) and v

(a)
π(3) and so forth. Undoing

the SOET-splitting operation that defines F we can see that these edge-disjoint paths can be attached to one another
to form a closed trail21 (a tour) U on F that visits all vertices of V ′ twice in the order vπ(1), . . . , vπ(k). This is not yet

a Eulerian tour however. To construct a Eulerian tour out of the tour U we consider the multi-graph Ĥ obtained from
F by deleting all vertices in V (looking at the induced subgraph F [V \ V ′]) and subsequently removing all edges in
the tour U from the remaining multi-graph. The resulting multi-graph will consist of multiple connected components.
These connected components will either consist of a single vertex or will be multi-graphs with vertices of degree two
and four. This means all these connected components are Eulerian. Moreover each of these connected components will
contain a vertex that is also a vertex in the tour U . Consider on each of these connected components then a Eulerian
tour. These tours will thus form tours on the original multi-graph F as well and since all such tours have at least one
vertex in common with the tour U we can extend U to a Eulerian tour on the multi-graph F by for each connected
component cutting U at such a vertex and inserting the tour originating from the connected components of G. This
means that U can be turned into a Eulerian tour and hence there exists a SOET on the multi-graph F . This proves
the theorem.

Next we prove the converse statement.

Theorem 4.9. Let F be a connected 4-regular multi-graph and let V ′ ⊂ V (F ) be a subset of its vertices with |V ′| = k.
If F allows for a SOET with respect to V ′ then algorithm 4 will return TRUE. �

Proof. Let U be a SOET on F with respect to V ′ and without loss of generality assume that U traverses the vertices

of V ′ in the order v1, v2, . . . , vk. Hence for the vertices v1, v2 there are 2 sub-trails U
(a)
1 , U

(b)
1 of U that start at v1 and

end at v2. The sub-trail U
(a)
1 (or U

(b)
1 ) might not be a path, but one can easily pick a subset of the edges in U

(a)
1

21Note that a path is also a trail.
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which gives a path, for example as the shortest path P
(a)
1 between v1 and v2 in the subgraph of F given by the vertices

and edges of U
(a)
1 . Similarly for U

(b)
1 and P

(b)
1 . We can make the same argument for the vertices v2, v3 and so forth.

By the definition of SOET splittings there must thus exist a SOET splitting G of F with respect to V ′ such that the

path P
(a)
1 starts at v

(a)
1 and ends at v

(a)
2 and such that the path P

(b)
1 starts at v

(b)
1 and ends at v

(b)
2 . We can make

the same argument for the vertices v2, v3 and so forth. Hence there must exist a SOET-splitting G of F with respect

to V ′ such that the algorithm 2k−DPP(G,S) with S = {(v(a)
1 , v

(a)
2 ), . . . , (v

(a)
k , v

(a)
1 ), (v

(b)
1 , v

(b)
2 ), . . . , (v

(b)
k , v

(b)
1 )} returns

TRUE. Since algorithm 4 runs over all possible orderings of V ′ and all possible SOET splittings this particular call to
2k−DPP will always happen and hence algorithm 4 will return TRUE. This proves the theorem.

This leads to the following corollary.

Corollary 4.9.1. k−SOET is in P. �

Proof. By theorem 4.9 and theorem 4.8, algorithm 4 returns TRUE if and only if the tuple (F, V ′), with F a 4-
regular multi-graph and V ′ ⊂ V (F ) a subset of its vertices with |V ′| = k, is a YES instance of k−SOET. Moreover
the function k′−DPP runs in polynomial time in the size of the input graph and we have for all SOET-splittings G of
F with respect to V ′ that |V (G)| = |V (F )|+ k and |E(G)| = |E(F )|. Algorithm 4 hence performs a constant number
of function calls (constant in the size of F , not in k) of k′−DPP with an input multi-graph of size O(|V (F )|, |E(F )|).
Hence Algorithm 4 runs in polynomial time with respect to |V (F )|, |E(F )| and thus we have that k−SOET is in P.

This corollary then leads to theorem 4.6.

5 Connected vertex-minor on three vertices or less

In this section we show that a fixed connected graph with vertices V ′ is a vertex-minor of a connected graph G if
V ′ ⊆ V (G) and |V ′| ≤ 3. Furthermore we provide an algorithm that reduces the number of operations one need to
transform G to the desired graph.

Theorem 5.1. Let G be a connected graph and G′ be a connected graph with vertices V ′, such that |V ′| ≤ 3. Then
we have that

G′ < G ⇔ V ′ ⊆ V (G) (156)

�

Proof. Note that if G′ < G then clearly V ′ ⊆ V (G). Assume therefore that V ′ ⊆ V (G). Let’s denote the vertices in
V (G)\V ′ as U = (v1, v2, . . . , vn−k, where n = |V (G)| and k = |G′|. We will now show that G′ < G by finding a sequence
of operations P = Pvn−k

◦· · ·◦Pv1 , where Pvi ∈ {Xv, Yv, Zv}, such that each intermediate graph G(i) = Pvi ◦· · ·◦Pv1(G)
is connected. Since any connected graph with vertices V ′, for |V ′| ≤ 3, is either a star graph or a complete graph,
which are LC-equivalent, this shows that G′ < G. Let’s therefore consider such an intermediate graph G(i) for some
i ∈ [n− k] and the next vertex vi+1. We will now show that G(i) \ vi+1 or τvi+1

(G(i)) \ vi+1 is connected. This will be
done by considering the following two cases:

Assume that G(i) \ vi+1 is not connected:

This means that vi+1 is a cut vertex. Let G1 be a connected component in the graph G(i) \ vi+1 and G2 the rest
of the vertices, see eqs. (157) and (158) for an illustration. Since vi+1 is a cut vertex, we know that no vertex in
Nvi+1

∩ V (G2) is adjacent to any vertex in Nvi+1
∩ V (G1), in the graph G(i). Thus, all vertices in Nvi+1

∩ V (G2)

are adjacent to all vertices in Nvi+1
∩ V (G1) in the graph τvi+1

(Ĝ) \ vi+1, showing that this graph is connected, see
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eq. (159).

G(i) = G1
G2

vi+1
b

(157)

G(i) \ vi+1 = G1
G2 (158)

τvi+1
(G(i)) \ vi+1 = G1

G2 (159)

Assume that τv(Ĝ) \ v is not connected:

This case follows from the previous. To see this, let G̃ be the graph τv(G
(i)). From the above case we then know

that τv(G̃) \ vi+1 is connected. But this graph is exactly G(i) \ vi+1 since local complementations are involutions
and the theorem follows.

From theorem 5.1 we can easily formulate an algorithm that finds a sequence of operations taking G to a desired
connected graph G′ on V ′, by simply checking recursively if Ĝ \ v or τv(Ĝ) \ v is connected. However, if the vertices
in V ′ are already close in G and G is a very large, it would be practical to not have to consider all the vertices in G.
Next, we present a more practical algorithm to find a sequence of local complementations and vertex-deletions that
take some graph G to a star graph22 on the vertices a, b and c. The algorithm performs the following steps:

• Find the shortest path P1 between a and b and connect these by doing τ -operations along this path. This first
step already give an algorithm for creating a star graph on vertices a and b, see algorithm 5.

• Then do the same with b and c by finding the shortest path P2 between b and c. The question is now whether
we removed the edge between a and b while connecting b and c. This could only happen if P2 goes through a
vertex which is a common neighbor of a and b. Furthermore, since P2 is the shortest path from c to b this could
only be the case for the last vertex on the path, before b.

– If c is connected to a before the last local complementation on P2, then stop, since the induced graph is
already connected.

– Assume that c is not connected to a before the last local complementation is performed. So in this case,
after performing the local complementation along P2, a and b will not be connected but they will both be
connected to c.

The full protocol is formalized in algorithm 6.

Algorithm 5 Producing S1 on vertices a and b

1: INPUT: A graph G and two vertices a, b ∈ V (G).
2: OUTPUT: A sequence of vertices v such that τv(G)[{a, b}] is a star graph.
3:

4:

5: Find the shortest path P between a and b
6: Perform τp for all p ∈ P \ {a, b}

22Note that any other connected graph on {a, b, c} can easily be constructed.

61



Algorithm 6 Producing S2 on vertices a, b and c

1: INPUT: A graph G and three vertices a, b, c ∈ V (G).
2: OUTPUT: A sequence of vertices v such that τv(G)[{a, b, c}] is a star graph.
3:

4:

5: Find the shortest path P1 between a and b
6: Perform τp for all p ∈ P1 \ {a, b}
7: Find the shortest path P2 = (p0 = b, p1, . . . , pn, pn+1 = c)
8: for i in 1, . . . , n do
9: if a and c are not adjacent then

10: Perform τpi
11: end if
12: end for

6 Conclusion

We have shown that deciding if a graph state |G′〉 can be obtained from another graph state |G〉 using LC+LPM+CC is
NP-Complete, by showing that VERTEXMINOR is NP-Complete. The computational complexity of VERTEXMINOR
was previously unknown and was posted as an open problem in [18]. It is important to note that our results are for
labeled graphs, since vertices correspond to physical qubits in the case of transforming graph states.

We presented an efficient algorithm for STARVERTEXMINOR when the input graph is restricted to be distance-
hereditary. It would be interesting to know if the same approach generalize to qudit graph states described by
weighted graphs of low rank-width.

We presented an efficient algorithm for k−STARVERTEXMINOR on circle graphs, that is the problem of deciding if
the star graph on a subset of vertices V ′, with |V ′| = k, is a vertex-minor of another graph. However, the computational
complexity of k−STARVERTEXMINOR or k−VERTEXMINOR on general graphs is still unknown.

Below we list some more open questions regarding the computational complexity of deciding how graph states can be
transformed using local operations:

• Is the problem still NP-Complete if one allows for arbitrary local operations and classical communication (LOCC),
instead of restricting to only LC + LPM + CC? Is there an efficient algorithm for states with bounded Schmidt-
rank width also in this case? It has been shown that many graph state are equivalent under LC if and only if
they are equivalent under stochastic LOCC (SLOCC) [51]. An interesting question is therefore whether graph
states described by distance-hereditary or circle graphs fall into this category.

• What is the computational complexity of deciding if a graph state |G〉 can be transformed in to another |G′〉 if
the qubits are partitioned into multiple local sets, within which multi-qubit Clifford operations and multi-qubit
Pauli measurements can be performed.

• How do the computational complexity results of this paper relate to the complexity of code switching in stabilizer
quantum error correction codes, e.g. fault-tolerant interconversion between two stabilizer codes [27]? More
precisely, can one re-use the techniques presented here, to prove that it is computationally hard to decide
whether one stabilizer code can be fault-tolerantly transformed into another. We conjecture that this could
be possible, since many stabilizer codes (such as topological stabilizer codes) have a notion of ‘locality’ with
fault-tolerant conversions being the conversions that respect this locality [37].

While finishing this work we became aware of work by F. Hahn et al [29], where specific instances of VERTEXMINOR
are considered in the context of quantum network routing.
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[24] R. Ganian and P. Hliněný. On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-
width. Discrete Applied Mathematics, 158(7):851–867, 2010.

[25] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The Planar Hamiltonian Circuit Problem is NP-Complete. SIAM
Journal on Computing, 5(4):704–714, 1976.

63

https://github.com/AckslD/vertex-minors
http://dx.doi.org/10.1098/rsta.2017.0325
arxiv.org/abs/1805.05305


[26] M. C. Golumbic. Algorithmic graph theory and perfect graphs. 2nd edition, 2004.

[27] D. Gottesman. Stabilizer Codes and Quantum Error Correction. PhD thesis, 1997.

[28] D. Gottesman. The Heisenberg Representation of Quantum Computers. Proceedings of the XXII International
Colloquium on Group Theoretical Methods in Physics, 1:32–43, 1998.

[29] F. Hahn, A. Pappa, and J. Eisert. Quantum network routing and local complementation. arXiv pre-print:
1805.04559.

[30] M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. V. den Nest, H. J. Briegel, M. V. den Nest, and H. J. Briegel.
Entanglement in Graph States and its Applications. Quantum Computers, Algorithms and Chaos, pages 1–99,
2006.

[31] K. I. Kawarabayashi and Y. Kobayashi. The edge-disjoint paths problem in Eulerian graphs and 4-edge-connected
graphs. Combinatorica, 35(4):477–495, 2015.

[32] P. Komar, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D. Lukin. A quantum network of
clocks. Nature Physics, 10(8):582, 2014.

[33] A. Kotzig. Eulerian lines in finite 4-valent graphs and their transformations. In Colloquium on Theory of Graphs
(1966 : Tihany, Hungary), pages 219–230, 1968.

[34] A. Kotzig. Quelques remarques sur les transformations κ. In seminaire Paris, 1977.

[35] A. Langer, F. Reidl, P. Rossmanith, and S. Sikdar. Practical algorithms for MSO model-checking on tree-
decomposable graphs. Computer Science Review, 13-14:39–74, 2014.

[36] D. Markham and B. C. Sanders. Graph states for quantum secret sharing. Physical Review A, 78(4), 2008.

[37] H. P. Nautrup, N. Friis, and H. J. Briegel. Fault-tolerant interface between quantum memories and quantum
processors. Nature Communications, 8(1):1321, 2017.

[38] M. A. Nielsen. Cluster-state quantum computation. Reports on Mathematical Physics, 57(1):147–161, 2006.

[39] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press,
Cambridge, 2010.

[40] S. I. Oum. Rank-width and vertex-minors. Journal of Combinatorial Theory. Series B, 95(1):79–100, 2005.

[41] S.-i. Oum and P. Seymour. Approximating clique-width and branch-width. Journal of Combinatorial Theory,
Series B, 96(4):514–528, 2006.

[42] R. Raussendorf and H. J. Briegel. A One-Way Quantum Computer. Physical Review Letters, 86(22):5188–5191,
2001.

[43] J. Ribeiro, G. Murta, and S. Wehner. Fully device-independent conference key agreement. Physical Review A,
97(2):022307, 2018.

[44] N. Robertson and P. D. Seymour. Graph minors. I - XXIII. Journal of Combinatorial Theory, Series B.

[45] D. Schlingemann and R. F. Werner. Quantum error-correcting codes associated with graphs. Physical Review A,
65(1):8, 2002.

[46] J. Spinrad. Recognition of Circle Graphs, 1994.

[47] W. A. Stein and Others. {S}age {M}athematics {S}oftware ({V}ersion 8.2). The Sage Development Team, 2018.

[48] M. Van den Nest, J. Dehaene, and B. De Moor. Efficient algorithm to recognize the local Clifford equivalence of
graph states. Physical Review A, 70(3):034302, 2004.

[49] M. Van den Nest, J. Dehaene, and B. De Moor. Graphical description of the action of local Clifford transformations
on graph states. Physical Review A, 69(2):022316, 2004.

[50] M. Van den Nest, W. Dür, G. Vidal, and H. J. Briegel. Classical simulation versus universality in measurement-
based quantum computation. Physical Review A, 75(1):012337, 2007.

[51] B. Zeng, H. Chung, A. W. Cross, and I. L. Chuang. Local unitary versus local Clifford equivalence of stabilizer
and graph states. Physical Review A, 75(3), 2007.

64


	1 Introduction
	2 Preliminaries
	2.1 Notation and definitions
	2.2 Graph states
	2.3 Local complementations and vertex-deletions
	2.3.1 Vertex-minors

	2.4 Circle graphs
	2.4.1 Double occurrence words
	2.4.2 Eulerian tours on 4-regular multi-graphs
	2.4.3 Local complementations on circle graphs
	2.4.4 Vertex-deletion on circle graphs
	2.4.5 Vertex-minors of circle graphs
	2.4.6 Semi-Ordered Eulerian tours

	2.5 Leaves, twins and axils
	2.5.1 Distance-hereditary graphs


	3 Complexity
	3.1 VERTEXMINOR is in NP
	3.2 VERTEXMINOR is NP-Complete
	3.2.1 Reducing the SOET problem to STARVERTEXMINOR
	3.2.2 Reducing CubHam to the SOET problem
	3.2.3 triangular-expansions
	3.2.4 Skips and true skips
	3.2.5 Equivalence between SOET's and Hamiltonian cycles


	4 Algorithms
	4.1 Star graph as vertex-minor of a distance-hereditary graph
	4.1.1 The algorithm
	4.1.2 Runtime of the algorithm
	4.1.3 Proof that the algorithm is correct

	4.2 Fixed-parameter tractable algorithm for unbounded rank-width
	4.2.1 Mapping k-STARVERTEXMINOR to k-SOET
	4.2.2 k-SOET is in P


	5 Connected vertex-minor on three vertices or less
	6 Conclusion

