
Quantum Science and Technology

PAPER

Quantum error correction in crossbar architectures
To cite this article: Jonas Helsen et al 2018 Quantum Sci. Technol. 3 035005

 

View the article online for updates and enhancements.

This content was downloaded from IP address 131.180.64.105 on 03/05/2018 at 18:39

https://doi.org/10.1088/2058-9565/aab8b0


QuantumSci. Technol. 3 (2018) 035005 https://doi.org/10.1088/2058-9565/aab8b0

PAPER

Quantum error correction in crossbar architectures

JonasHelsen1 ,Mark Steudtner1,2,MennoVeldhorst1,3 and StephanieWehner1

1 QuTech, Delft University of Technology, Lorentzweg 1, 2628CJDelft, TheNetherlands
2 Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300RALeiden, TheNetherlands
3 Kavli Institute ofNanoscience, Delft University of Technology, P.O. Box 5046, 2600GADelft, TheNetherlands

E-mail: j.helsen@tudelft.nl

Keywords: quantum computing, quantum computing architectures, control of quantum computers, quantum error correction

Supplementarymaterial for this article is available online

Abstract
Acentral challenge for the scaling of quantumcomputing systems is the need to control all qubits in the
systemwithout a large overhead. A solution for this problem in classical computing comes in the formof
so-called crossbar architectures. Recentlywemade a proposal for a large-scale quantumprocessor (Li
et al arXiv:1711.03807 (2017)) to be implemented in siliconquantumdots. This system features a
crossbar control architecturewhich limits parallel single-qubit control, but allows the scheme to
overcome control scaling issues that formamajor hurdle to large-scale quantumcomputing systems. In
thiswork,wedevelop a language thatmakes it possible to easilymapquantumcircuits to crossbar
systems, taking into account their architecture and control limitations.Using this languagewe showhow
tomapwell knownquantumerror correction codes such as the planar surface and color codes in this
limited control settingwithonly a small overhead in time.We analyze the logical error behavior of this
surface codemapping for estimated experimental parameters of the crossbar systemand conclude that
logical error suppression to a level useful for real quantumcomputation is feasible.

1. Introduction

When attempting to build a large-scale quantum computing system a central problem, both from experimental
and theoretical perspectives, is whatmight be called the interconnect problem. This problem,which also exists
in classical computing, arises when computational units (e.g. qubits in quantum computers, transistors in
classical computers) are densely packed such that there is not enough room to accommodate individual control
lines to every unit. A solution to this problem,which is commonplace in classical computing systems, is a so-
called ‘crossbar architecture’. In this class of computing architecture we do not draw a control line to every qubit
but rather organize computational units in a grid with control lines addressing full rows and columns of this
grid. Control effects then happen at the intersection of column and row lines. In this way, usingN control lines
O(N2) computational units can be addressed. Thismakes it possible to scale the system to a large number of
qubits. The price to pay for this is a reduced ability to performoperations on different units in the grid in parallel.
For classical systems this is not a fundamental problem, butwhen the computational units are qubits, whose
information decays over time, parallelism becomes absolutely essential. This introduces a formidable roadblock
for the development of crossbar systems for quantum computing systems.Nevertheless various crossbar
architectures for quantum computers have been proposed in the past [1–5]. Recently [4]weproposed a
quantum computing platformbased on spin qubits in silicon quantumdots featuring a crossbar architecture.
This architecture features compatibility withmodern siliconmanufacturing techniques and in combination
with recent advances in controlling quantumdot qubits and the inherent long coherence times of spin qubits in
siliconwe expect it to be a formidable step forwards in creating large-scale quantum computing devices.

Any realistic quantum computing device, including the onewe propose in [4], will suffer fromnoise
processes that degrade quantum information. This noise can be combated by quantum error correction [6, 7],
where quantum information is encoded redundantly in such away that errors can be diagnosed and remedied as

RECEIVED

2 January 2018

REVISED

1March 2018

ACCEPTED FOR PUBLICATION

21March 2018

PUBLISHED

3May 2018

© 2018 IOPPublishing Ltd

https://doi.org/10.1088/2058-9565/aab8b0
https://orcid.org/0000-0001-7218-2585
https://orcid.org/0000-0001-7218-2585
mailto:j.helsen@tudelft.nl
https://doi.org/10.1088/2058-9565/aab8b0
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aab8b0&domain=pdf&date_stamp=2018-05-03
http://crossmark.crossref.org/dialog/?doi=10.1088/2058-9565/aab8b0&domain=pdf&date_stamp=2018-05-03


they happenwithout disturbing the encoded information.Many quantum error correction codes have been
developed over the last two decades and several of themhave desirable properties such as high noise tolerance,
efficient decoders and reasonable implementation overhead. Of particular note are the planar surface [8] and
color codes [9], which have the nice property that they can be implemented in quantum computing systems
where only nearest-neighbor two-qubit gates are available.

However these codes, and all other quantum error correction codes, were developed under the (often
implicit) assumption that all physical qubits participating in the code can be controlled individually and in
parallel. For large (read: comprisingmany qubits) error correction codes this introduces a tension between the
needs of the error correction code and the control limitations for large systemsmentioned above.While
practical large-scale quantum computersmost likely pose control limitations, surprisingly little work has been
done in this area [10]. Herewe investigate theminimal amount of parallel control resources needed for quantum
error correction and focus in particular on crossbar architectures. Infigures 1 and 5we summarize the layout
and control limitations of the architecture in [4]. Overcoming these limitationsmotivates the current work.

1.1. Contributions
1.1.1. Analysis of the crossbar system
Weanalyze the crossbar architecture we propose in [4].We give a full description of the layout and control
characteristics of the architecture in amanner accessible to non-experts in quantumdots.We develop a language
for describing operations in the crossbar system.Of particular interest here are the regular patterns (see e.g.
section 3.4) that are implied by the crossbar structure. These configurations provide an abstraction onwhichwe
buildmappings of quantum error correction codes (see below). This analysis is particular to the system in [4] but
we believemany of the considerations to hold formore general crossbar architectures.

1.1.2. An efficient algorithms for control on crossbar architectures
Wedevelop an algorithm formoving around qubits (shuttling) on crossbar architectures.We show that the task
of shuttling qubits in parallel can be described using amatrix taking value in an idempotentmonoid. The control
algorithm then reduces tofinding independent columns of thismatrix, for a suitable notion of independence.
This algorithm in principle allows the straightforwardmapping ofmore complicated quantum algorithms
which require long-range operations, with little operational overhead.We also expect this algorithm to be
applicable to the control ofmore general crossbar architectures.We also sketch an algorithm for parallel

Figure 1. (a)A schematic of theQuantumDot Processor (QDP) that we propose [4], see section 2.1 for details. Thewhite circles
correspond to quantumdots, with the black filling denoting the presence of electrons, whose spins are employed as qubits. All dots are
embedded in either a red or a blue column. Single-qubit gates can only be applied globally on either all qubits in all blue columns or all
qubits in all red columns. The vertical, horizontal (both yellow) and diagonal lines (gray) are a feature of this crossbar scheme. The
horizontal and vertical gate lines implement barriers that isolate the dots from each other. The diagonal lines simultaneously control
the dot potentials of all dots coupled to one line. Quantumoperations are effected by pulsing individuals lines. In order to perform
two-qubit operations on qubits in adjacent dots, one typically needs to lower the barrier that separates them, and change the dot
potentials by operating the diagonal lines. Note that two-qubit gates applied to adjacent qubits in the same column are inherently
different (by nature of theQDPdesign) from two-qubit gates between two adjacent qubits in the same row.With the control lines, we
can alsomove qubits fromdot to dot andmeasure them.However, since each control line influencesO(N) qubits, individual qubit
control, as well as parallel operation onmany qubits is limited. (b)Abstracted version of theQDP scheme representing the classical
BOARDSTATEmatrix. TheBOARDSTATEholds no quantum information, but encodes where qubits are located on theQDP grid.

2

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



two-qubit interactions in crossbar systemswhich produce optimal control sequences. This algorithm is based on
computing the Schmidt-normal formofmatrices with entries in the principal ideal domains 2 and 4.

1.1.3.Mapping of surface and color codes
Wemap the planar surface code and the 6.6.6. (hexagonal) and 4.8.8. (square-octagonal) color codes [9] to the
crossbar architecture, taking into account its limited ability to performparallel quantumoperations. The tools
we develop for describing themapping, in particular the configurations described in section 3.4, should be
generalizable to other quantum error correction codes and general crossbar architectures.

1.1.4. Analysis of the surface code logical error
Due to experimental limitations themappingsmentioned abovemight not be attainable in near termdevices.
Thereforewe adapt the abovemappings to take into account practical limitations in the architecture [4]. In this
version of themapping the length of an error correction cycle scales with the distance of themapped code. This
means themapping does not allow for arbitrary logical error rate suppression. Therefore we analyze the behavior
of the logical error rate with respect to estimated experimental error parameters and find that the logical error
rate can in principle be suppressed to below 10−20 (an error rate comparable to the error rate of classical
computers [11]), allowing for practical quantum computation to take place.

Ourwork raises several interesting theoretical questions regarding themapping of quantumalgorithms to
limited control settings, see section 6.

1.2.Outline
In section 2we introduce the architecture we proposed in [4].We forgo an explanation of the physics and focus
on the abstract control aspects of the system (explaining them in a largely self-containedmanner accessible to
non-experts in quantumdot physics).We introduce classical helper objects such as theBOARDSTATEwhich
will aid later developments.We discuss one- and two-qubit operations,measurements, and qubit shuttling. In
section 3we focus on parallel operations.We discuss difficulties inherent in parallel operation in a crossbar
system and develop an algorithm for dealingwith them efficiently.We also introduce several
BOARDSTATEconfigurationswhich feature prominently in quantum error correctionmappings and describe
how to reach them efficiently by parallel shuttling. In section 4we give a quick introduction to quantum error
correctionwith a particular focus on the planar surface code and the 4.8.8. and 6.6.6. color code. In section 4.4
we bring together all previous sections and devise amapping of the planar surface code to the crossbar
architecture. This we continue in section 4.5 for the 6.6.6. and 4.8.8. color codes. Finally in section 5we analyze
in detail the logical error probability of the surface codemapping as a function of the code distance and
estimated error parameters of the crossbar system.

2. The quantumdot processor

In this sectionwewill give an overview of the quantumdot processor (QDP) architecture as proposed in [4].We
will use this architecture as a concrete realization of themore general idea of quantum crossbar architectures.
Wewill focus not somuch on the details of the implementation but rather focus on abstract operational
properties of the system as they are relevant for our purposes. The basic organization of theQDP is that for an
N×N grid of qubits interspersedwith control lines that effect operations on the qubits. Themost notable
feature of theQDP (and crossbar architectures in general) is the fact that any classical control signal sent to a
control linewill be applied simultaneously to all qubits adjacent to that control line. Thismeans that every
possible classical instruction applied to theQDPwill affectO(N) qubits (these qubits will not necessarily be
physically close to each other). This has important consequences for the running of quantum algorithms on the
QDP (or any crossbar architecture) thatmust be taken into account when compiling these algorithms to
hardware level instructions. Notably it places strong restrictions on performing quantumoperations in parallel
on theQDP. To deal with these restrictions it is important to have a good understanding of howoperations are
performed on theQDP. It is for this reason that we begin our study of theQDPwith an examination of its
control structure at the hardware level.We describe the physical layout of the system and develop nomenclature
for the fundamental control operations. This nomenclaturemight be called the ‘machine code’ of theQDP.
From these basic instructions we go on to construct all elementary operations that can be applied to qubits in the
QDP. These are quantumoperations, such as single-qubit gates, nearest-neighbor two-qubit gates and qubit
measurements but also a non-quantumoperation called coherent shuttlingwhich does not affect the quantum
state of theQDPqubits but changes their connectivity graph (i.e.which qubits can be entangled by two-qubit
gates). All of these operations are restricted by the nature of the control architecture in away that gives rise to
interesting patterns (section 3.4) andwhichwewillmore fully examine in section 3.

3

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



2.1. Layout
A schematic overview of theQDP architecture is given infigure 1, where qubits (which are electrons, denoted by
black balls) occupy an array ofN×N quantumdots (hereafter often referred to as sites). The latter are denoted
bywhite sites when empty, since they either are occupied by a qubit or not.Wewill label the dots by tuples
containing row and column indices (i, j)ä [0 :N−1]×2 (beginning from the bottom left corner), such that a
single-qubit state yñ∣ living on the (i, j)’th site will be denoted by yñ∣ ( )i j, .We assume the qubits to be initialized in
the state ñ∣0 . For future reference we note that ñ∣0 corresponds to the spin-up state and ñ∣1 to the spin-down state
of the electron constituting the qubit.

Typically wewill work in a situationwhere half the sites are occupied by a qubit and half the sites are empty
(as seen in figure 1(a)). Because (aswe discuss in section 2.3.1) the qubits can bemoved around on the grid and
the two-qubit gates depend on the filling of the grid, it is important to keep track of which sites contain qubits
andwhich ones do not. This can be done efficiently in classical side-processing. To this endwe introduce the
BOARDSTATEobject.BOARDSTATEconsists of a binaryN×Nmatrix with a 1 in the (i, j)’th place if the
(i, j)’th site contains an electron (qubit) and a 0 otherwise. TheBOARDSTATEdoes not contain information
about the qubit state yñ∣ ( )i j, , only about the electron occupation of the grid. A particularBOARDSTATEis
illustrated in the left panel offigure 1.

We now turn to describing the control structures that are characteristic for this architecture. As afirst
feature, wewould like to point out that each site is either located in a red or a blue region infigure 1 (left panel).
The blue (red) columns correspond to regions of high (low)magnetic fields, which plays a role in the addressing
of qubits for single-qubit gates.Wewill denote the set of qubits in blue columns (identified by their row and
column indices) by  and the set of qubits in red columns by.

Much finer groups of sites can be addressed by the control lines that run through the grid. The crossbar
architecture features control lines that are connected toO(N) sites. At the intersections of these control lines
individual sites and qubits can be addressed. Thismeans that usingO(N) control linesO(N2) qubits can be
controlled. As seen infigure 1 the rows and columns of theQDP are interspersedwith horizontal and vertical
lines (yellow), as ameans to control the tunnel coupling between adjacent sites.We refer to those lines as barrier
gates, or barriers for short. Each line can be controlled individually, but a pulse has an effect on allO(N) qubits
adjacent to the line. Another layer of control lines is used to address the dots itself rather than the spaces in
between them. The diagonal gate lines (gray), are used to regulate the dot potential.We label the horizontal and
vertical lines by an integer running from0 toN−2 and the diagonal lines with integers running from−(N−2)
toN−2where the−(N−2)’th line is the top left line and incrementsmove towards the bottom right
(see figure 1(a)). Next we describe how these control lines can be used to effect operations on the qubits
occupying theQDP grid.

2.2. Control and addressing
As described above, theQDP consists of quantumdots interspersedwith barriers and connected by diagonal
lines. For our purposes these can be thought of as abstract control knobs that apply certain operations to the
qubits. In this sectionwewill describe what type of gates operations are possible on theQDP.Wewill not
concern ourselves with the details of parallel operation until section 3.

There are three fundamental operations on theQDPwhichwewill call the ‘grid operations’. These
operations are ‘lower vertical barrier’ (V), ‘lower horizontal barrier’ (H) and ‘set diagonal line’ (D). Thefirst two
operations are essentially binary (on-off) but the last one (D) can be set to a value tä[0:T]whereT is a device
parameter. (At the physical level this corresponds to howmany clearly distinct voltages we can set the quantum
dot plunger gates [4]). Although the actual pulses on those gates differ by amplitude and duration between the
different gates and operations, this notation gives us a clear ideawhich lines are utilized. This can be done
because realistically onewill not interleave processes inwhich pulses have such different shapes.We can label the
grid operations bymnemonics (which in a classical analogywewill call OPCODES) as seen insection 2.2. These
OPCODES are indexed by an integer parameter that indicates which control line it applies to.We count
horizontal and vertical lines starting at zero from the lower left corner of the grid (see figure 1). Note that the lines
at the boundary of the grid are never addressed in ourmodel and are thus not counted.

We indicate parallel operation of a collection ofOPCODES by ampersands, e.g.D 1 H 2 D 5[ ] [ ] [ ]& & .We also
define inherently parallel versions (in section 2.2) of the basicOPCODES that take as input a binary vectorV of
lengthN (for the diagonal line this is aT-valued vector of lengthN)

OPCODE Effect

V[i] Lower vertical barrier at indexi

H[i] Lower horizontal barrier at indexi

D[i][t] Set diagonal line at indexi to valuet

4

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



OPCODE Effect

V[V] Set vertical barrier toV " Î -( ) [ ]i i N, 0 : 2

H[V] Set horizontal barrier toV " Î -( ) [ ]i i N, 0 : 2

D[V] Set diagonal at heightV " Î - + -( ) [ ]i i N N, 2: 2

These grid operations can be used to induce some elementary quantumgates and operations on the qubits in the
QDP. Belowwe describe these operations.

2.3. Elementary operations
Herewe give a short overview of the elementary operations available in theQDP.Wewill describe basic single-
qubit gates, two-qubit gates, the ability tomove qubits around by coherent shuttling [12] and ameasurement
process through Pauli Spin Blockade (PSB) [13]. All of these operations are implemented by a combination of
the grid operations defined in section 2.2, and always have a dependence on theBOARDSTATE.

2.3.1. Coherent qubit shuttling
An elementary operation of theQDP is the coherent qubit shuttling [12, 14], of one qubit to an adjacent, empty
site. Thatmeans that an electron (qubit) is physicallymoved to the other dot (site) utilizing at least one diagonal
line and the barrier between the two sites (see figure 2(a) for an illustration). It thereby does not play a role
whether the shuttling is in horizontal (from a red to a blue columnor the other way around) or vertical direction
(inside the same column). However, the shuttling in between columns results in aZ-rotation, thatmust be
compensated by timing operations correctly, see [4] for details. ThisZ-rotation can also by used as a local single-
qubit gate, seesection 2.3.3. The operation is dependent on theBOARDSTATEby the prerequisite that the site
adjacent to the qubit tomust be empty. Collisions of qubits are to be avoided, as thosewill lead to a collapse of
the quantum state (see however themeasurement process in section 2.3.2).We nowdescribe the coherent
shuttling as the combination of grid operations.

We lower the vertical (or horizontal) barrier in between the two sites and instigate a ‘gradient’ of the on-site
potentials of the two dots. That is, the diagonal line of the site containing the qubitmust be operated at tä[0 :T]
while the line overhead the empty sitemust have the potential Îˆ [ ]t T0 : with = -t̂ t 1. Note that this implies
itmight not be operated at all (if it is already at the right level).Wewill subsequently refer to the combination of a
lowered barrier and such a gradient as a ‘flow’. Aflowwill in general be into one of the four directions on the
grid.We define the commandsVS[i,j,k] (vertical shuttling) andHS[i,j,k] (horizontal shuttling). The
commandVS[i,j,k] shuttles a qubit at location (i, j) to (i+1, j) for k=1 (upward flow) and shuttles a qubit
at location (i+1, j) to (i, j) for k=−1 (downward flow). Similarly, the commandHS[i,j,k] shuttles a qubit
at location (i, j) to (i, j+1) for k=1 (rightwardflow) and shuttles a qubit at location (i, j+1) to (i, j) for
k=−1 (leftwardflow). See table 1 for a summary of theseOPCODES.

Using only these control lines, we can individually select a single qubit to be shuttled.However, when
attempting to shuttle in a parallelmanner, we have to be carefully take into account the effect that the activation
of several of those lines has on other locations.Wewill deal with this inmore detail in section 3.1.

2.3.2.Measurement and readout
TheQDP allows for local single-qubitmeasurements in the computational basis ñ ñ∣ ∣0 , 1 .We canmeasure a
qubit by attempting to shuttle it to a horizontally adjacent site that is already occupied by an ancilla qubit and
then detectingwhether the shuttlingwas successful. This process is called Pauli Spin Blockade (PSB)
measurement [4, 13]. See figure 2(b) for an illustration.However, theQDP’s ability to perform this type of qubit
measurements is limited by three factors.

Table 1.OPCODES for horizontal and vertical shuttling andmeasurement together with the controlOPCODES required to implement
these operations on theQDP.

OPCODE ControlOPCODES Effect

HS[i,j,k] V[i]&D[i-j][t-1/2-k/2] (k=1): Shuttle from (i, j) to (i, j+1)
&D[i-j+1][t-1/2+k/2] (k=−1): Shuttle from (i, j+1) to (i, j)

VS[i,j,k] H[j]&D[i-j][t-1/2-k/2] (k=1): Shuttle from (i, j) to (i+1, j)
&D[i-j-1][t-1/2+k/2] (k=−1): Shuttle from (i+1, j) to (i, j)

M[i,j,k] HS[i,j+1/2+k/2,-k] Measurement of qubit at (i, j) using the ancilla at (i, j+k)

5

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



Firstly, themeasurement requires an ancilla qubit horizontally adjacent to the qubit to bemeasured. This
ancilla qubitmust be in a known computational basis state.Moreover, if the ancilla qubit is in the state ñ∣0 the
ancilla qubitmust be in the set  (blue columns infigure 1)while the qubit to bemeasuredmust be in the set
(red columns infigure 1). On the other hand, if the ancilla qubit is in the state ñ∣1 the ancilla qubitmust be in the
set while the qubit to bemeasured is in the set  . Thismeans thatwhen an qubit-ancilla pair is in thewrong
configurationwemust first shuttle both qubits one step to the left (or both the the right). Note that this takes two
additional shuttling operations, whichmeans it is important to keep track at all timeswhere on the
BOARDSTATEthe qubit and its ancilla are or else incur a shuttling overhead (whichmight become significant
when dealingwith large systems andmany simultaneousmeasurements).Wewill deal with this problemof
qubit-ancilla pair placement inmore detail in section 3.3.

Secondly, assuming that the qubit-ancilla pair is in the right configuration to perform the PSB process one
still needs to perform a shuttling-like operation to actually perform themeasurement. On the technical level, the
operation is different from coherent shuttling, but the use of the lines is similar with the difference that after the
readout, the shuttling-like operation is undone by the use of the same lines as before—which are not necessarily
the lines onewould use to reverse a coherent shuttling operation.However, schedulingmeasurement events on
theQDP is at least as hard as the scheduling of shuttle operations discussed above. Depending on the state the
qubit is in, it will now assume one of two possible states that can be distinguished by their charge distribution.

Thirdly, the readout process requires to have a barrier line that borders to the qubit pair, with an empty dot is
across the spot of the qubit to bemeasured. This is a consequence of the readout procedure.

In table 1we introduce themeasurementOPCODE M i j k[ ], , with kä {1, 1} to denote ameasurement of a
qubit at location (i, j)with an ancilla located to the left (k=1) or to the right (k=1).

2.3.3. Single-qubit rotations
There are twoways inwhich single-qubit rotations can be performed on theQDP, bothwith drawbacks and
advantages. Thefirstmethod, whichwe call the semi-global qubit rotation, relies on electron-spin-resonance
[15]. Its implementation in theQDP allows for any rotation in the single-qubit special unitary group SU(2) [16]
to be performed butwe do not have parallel control of individual qubits. The control architecture of theQDP is
such that we canmerely apply the same single-qubit unitary rotation on all qubits in either or  (even or odd
numbered columns). Concretely we can perform in parallel the single-qubit unitaries




= Î
Î

⨂ ( ) ( )
( )

U U U SU 2 1
i j

i j
,

,




= Î
Î

⨂ ( ) ( )
( )

U U U SU 2 , 2
i j

i j
,

,

whereUi,jmeans applying the same unitaryU to the state carried by the qubit at location (i, j). In general the only
way to apply an arbitrary single-qubit unitary on a single qubit in  (or) is by applying the unitary to all qubits
in  (), moving the desired qubit into an adjacent column, i.e.from  to ( to ) and then applying the
inverse of the target unitary to (). This restores all qubits except for the target qubit to their original states
and leaves the target qubit with the required unitary applied. The target qubit can then be shuttled to its original
location. A graphical depiction of theBOARDSTATEassociatedwith thismaneuver can be found infigure 3.
Thismeans applying a single unitary to a single qubit takes a constant amount of grid operations regardless of
grid size.

The secondmethod does allow for individual single-qubit rotations but is limited to performing single-qubit
rotations of the form

f f p= =
-

Îf ( )( ) [ ) ( )U e Z, 1 0
0 1

, 0, 2 3i Z

This operation can be performed on a given qubit yñ∣ ( )i j, by shuttling it from (i, j) to (i, j±1).When the qubit
leaves the column it was originally defined ( to or vice versa) it will effectively start precessing about itsZ axis
[4]. This effect is always present but it can bemitigated by timing subsequent operations such that a full rotation
happens between every operation (effectively performing the identity transformation, see section 2.3.1). By
changing the timing between subsequent operations any rotation of the form equation (3) can be effected. This
techniquewill often be used to perform the Z-gate (defined above) and the =S Z phase gate in error
correction sequences.

2.3.4. Two-qubit gates
As the last elementary tool, we have the ability to apply entangling two-qubit gates on adjacent qubits. TheQDP
can perform two different types of two-qubit gates. Inside one column, so between qubits at locations (i, j) and
(i±1, j), a square-root of SWAP ( SWAP ) can be realized [17]. This can be done by lowering the horizontal
barrier between the two qubits and toggling the voltage on the diagonal lines overhead the two qubits. This

6

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



situation is illustrated infigure 2(c). The SWAP gate is defined as

=
+ -
- +

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( ) ( )
( ) ( )

( )i i

i i
SWAP

1
1 2 1 2

1 2 1 2
1

, 4

in the computational basis. Alternatively, between horizontally adjacent qubits, e.g. between Î( )i j, and
 Î( )i j, 1 the native two-qubit gate is an effective CPHASE gatewhich hasmatrix representation

=
f

f

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )e

e
CPHASE

1

1

, 5
i

i

1

2

in the computational basis andwith the two angles f f p p+ =mod 21 2 (demonstrated in [18–20]). This gate
can be performed between horizontally adjacent qubits by lowering the vertical barrier between them and
toggling the overhead diagonal lines. This is illustrated infigure 2(b). In practice we expect the SWAP gate to
have significantly higherfidelity than theCPHASE gate [4] so in any application (e.g.error correction) the

SWAP gate is the preferred native two-qubit gate on theQDP. In table 2we defineOPCODES for the
horizontal interaction (CPHASE ) and the vertical interaction ( SWAP ).

Figure 2. Schematic representation of the use of control lines for the native operations in theQDP.Qubits are represented by black
balls on the grid. Red or blue colored dots are empty, but their dot potentials change due to an operation of the diagonal line they are
coupled to. Empty dots unaffected by grid operations are white. (a)Vertical shuttling of a qubit (to the top dot) requires to lower the
orange barrier. One can than either raise the dot potentials on the red diagonal line, or lower the potential on the blue dot by
addressing the blue diagonal. (b) Schematic representation of the control lines used for performing two-qubit SWAP gate between
the two qubits on that grid. The orange barrier is lowered and the red diagonal line is utilized to detune dot potentials. (c)Grid
operations necessary to perform ameasurement or a two-qubit effective CPHASE gate between the two qubits. The orange barrier
between the two qubits is lowered, and the dot potentials along the red diagonal line is raised by pulsing the latter. Note that the empty,
red colored dot is also effected by that action, and its barrier to the adjacent dot is lowered. If the two dots in the upper rowwere not
empty, side effects would occur. See section 2.3.4 formore information on the nature of the two-qubit gates. Note also that the readout
procedure of themeasurement requires us to have the upper dot (light blue) empty, if the barrier gate between them is used for
readout.

Figure 3.BOARDSTATEschematic for applying the unitaryU to a single qubit (red). Timeflows from left to right in the schematic.
This process illustrates both, the possibility to retain single-qubit control by using coherent shuttling, and the overhead that comes
with it. (a)Wefirstly apply the unitaryU (blue bars) to all qubits in ( ).We thenmove the qubit to the adjacent column.Note that
this takes two operations becausewe do notwant any other qubits transitioningwith it. In (b), we apply the inverse unitaryU†to all
qubits in  ( ). In the last stepwemove the red qubit back, such that it is in its original position in (c).

7

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



2.3.5. CNOT subroutine
Many quantumalgorithms are conceived using theCNOT gate as themain two-qubit gate. However theQDP
does not support the CNOT gate natively. It is easy to construct the CNOT gate from theCPHASE gate by
dressing theCPHASE gatewith single-qubit Hadamard rotations as seen infigure 4 (left). It is slightlymore
complicated to construct a CNOT gate using the SWAP but it can be done by performing two SWAP gates
interspersed single-qubit rotations [19–21] as seen infigure 4 (right). If the control qubit ismoved from an
adjacent columnon theQDP (as it is inmost cases wewill deal with) theZ and S-gates can be performed by the
Z-rotation-by-waiting technique described in the last section. For completeness we also define anOPCODE for
theCNOToperation in table 2.

3. Parallel operation of a crossbar architecture

In this sectionwe focus on performing operations in parallel on theQDP (ormore general crossbar
architectures). Because of the limitations imposed by the shared control lines of the crossbar architecture,
achieving asmuch parallelism as possible is a non-trivial task.Wewill discuss parallel shuttle operations, parallel
two-qubit gates, parallel single-qubit gates and parallelmeasurement. As part of the focus on parallel shuttling
we also include some special cases relevant to quantum error correctionwhere full parallelism is possible.

Before we start our investigation however, wewould like to put three issues into focus that are likely to be
encounteredwhen attempting parallel operations. Firstly, itmust be understood that an operation on one
location on a crossbar system can cause unwanted side effects in other locations (thatmight be far away). As
indicated in section 2many elementary operations on the grid in particular take place at the crossing points of
control lines. Thismeans that any parallel use of these grid operationsmust take into account ‘spurious
crossings’whichmay have such unintended side effects.We can illustrate this with an example. Imagine wewant
to perform the vertical shuttling operationsVS[i,j-1,1] andVS[i+2,j-1,1] in parallel (seefigure 5 for
illustration).We can do this by lowering the horizontal barriers at rows i and i+2 (orange in illustration) and
elevating the on-site potentials on the diagonal lines i−j+1 and i+2−j+1 (red in illustration). This will
open upwards flows at locations (i, j−1) and (i+2, j−1). However it will also open an upwardflow at the
location (i+2, j+1). Thismeans, if a qubit is present at that location an unintended shuttling eventwill
happen. To avoid this outcomewemust either perform the operationsVS[i,j-1,1] andVS[i+2,j-1,1]
in sequence (taking two time-steps) or perform an operationVS[i+2,j+1,-1] tofix themistakewemade,
again taking two time-steps. This is a general problemwhen considering parallel operations on theQDP.

Secondly, wewould like to point out that in realistic setups, we expect a trade-off between parallelism
(manifested in algorithmic depth) and operationfidelity (in particular this will be the case in theQDP system). In
order to understand this, we have to be aware thatmost operations consist of applying the correct pulses for the
right amount of time. These durations however can slightly vary from site to site (due tomanufacturing
imperfections), sowe e.g.must be able to switch barriers back on again prematurely when accounting for a site
with a shorter time required. If this is not possible (maybe because it would cause side effects) a loss in operation
fidelity is a consequence of the resulting improperly timed operation. Themost robust case is thus to schedule

Table 2.OPCODES for horizontal and vertical two-qubit operations on theQDP, respectively theCPHASE and SWAP gates.We also
includeOPCODES for the performing of CNOT gates composed of SWAP orCPHASE gates.

OPCODE Effect Parameter

HI[(i,j)] PerformCPHASE gate between sites(i,j) and(i,j+1) (i, j)ä [0:N−2]×2

VI[(i,j)] Perform SWAP gate between sites(i,j) and(i+1,j) Î - ´( ) [ ]i j N, 0: 2 2

HC[(i,j)] PerformCNOT (usingCPHASE ) between(i,j) and(i,j+1) Î - ´( ) [ ]i j N, 0: 2 2

VC[(i,j)] PerformCNOT (using SWAP ) between(i,j) and(i+1,j) Î - ´( ) [ ]i j N, 0: 2 2

Figure 4.Construction of theCNOTgate out of the native CPHASE and SWAP gates. Note that one requires two SWAP gates to
construct aCNOT gate [21].When performing arbitrary algorithms it would be preferable to forgo this substitution and instead
compile the algorithmdirectly into a gateset containing the SWAP gate.

8

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



operations line-by-line. By this wemean that we attempt to performO(N) grid operations in a time stepwhile
using every horizontal, diagonal or vertical line only once per individual grid operation. If we for instance
schedule several vertical shuttle operations, wemay choose to start by lowering one of horizontal barrier first and
then detune the dot potentials of all qubits adjacent to that barrier, by pulsing the corresponding diagonal lines.
To account for the variations, we reset the diagonal lines at slightly different times. Line-by-line operationswork
with either line types for every two-dot operation (measurement, shuttling and two-qubit gates). Note however
that for shuttling operations individual control over one line is sufficient, whereas formeasurement and two-
qubit gates wewould ideally like to be able to control two lines per qubit pair individually, where one line should
be the barrier separating the two paired qubits. Results presented in the following take into account these
constraints for quantum error correction. The parallel operation nonetheless remains one of the greatest
challenges of the crossbar scheme. In this sectionwewill assume all operations to be perfect (evenwhen
performed in parallel) but in section 5we perform amore detailed analysis of the behavior of theQDPwhen
operational errors are taken into account.

Thirdly, from a performance perspective it is important to separate the operations that have to be done on
the qubits on the crossbar grid fromoperations that can be done by classical side computation (which for our
purposes is essentially free).Wewill deal with this by including classical side computation in theOPCODES for
parallel operation. This way the complexity of dealingwith spurious operations is abstracted away.We devise
algorithms that take in an arbitrary list of shuttling or two-qubit gate locations andwork out a sequence of
shuttling or two-qubit gate steps that achieve that list.We beginwith discussing parallel shuttle operations.

3.1. Parallel shuttle operations
Wedefine parallel versions of the shuttlingOPCODES HS i j k[ ], , and VS i j k[ ], , as

OPCODE Effect

HS[L] PerformHS[i,j,k] for all LÎ( )i j k, ,

VS[L] PerformHS[i,j,k] for all LÎ( )i j k, ,

This code takes in a set (denoted asL) of tuples (i, j, k)which denote ‘locations at which shuttling happens’
(i, j) and ‘shuttling direction’ (k). From these codes it is not immediately clear howmany of the shuttling
operations can be performed in a single grid operation, i.e.setting the diagonal lines to some configuration and
lowering several horizontal or vertical barrier. Ifmultiple grid operations are needed (such as in the example
figure 5)wewould like this sequence of grid operations to be as short as possible. However, given some initial
BOARDSTATEand a parallel shuttling commandHS[L] it is not clearwhat the sequence of parallel shuttling
operations actualizing this command is. Belowwe analyze this problemof parallel shuttling inmore detail and
give a classical algorithm that produces, from an inputHS[L] orVS[L] a sequence of parallel grid operations
that performs this command. Ideally wewould like this sequence to be as short as possible. This algorithmdoes

Figure 5. Spurious shuttle operations. Herewe illustrate an example of unintended side effects that occur due to the limited control.
We again denote qubits by colored balls, and color barriers and lines that are operated. Empty dots with changed potentials are colored
as well, white dots are unaffected. (a)The black qubits are to be shuttled from (i, j−1) to (i+1, j−1) and from (i+2, j) to (i+3, j)
respectively withoutmoving the blue qubit. For that purpose, the (orange) barriers between the two-dot pairs are lowered, as well as
the (red) diagonal lines through (i, j−1) and (i+2, j) are pulsed, such that the dot potentials on those sites are raised. (b)The qubit
on (i+3, j+1) has unintentionallymoved to (i+2, j+1). (c)To remedy this situation, we lower the barrier number i+2 again
(orange), and also raise the potential on (i+3, j+1) and all other dots that are connected by the pulsed diagonal line (red). In (d), the
desired situation is achieved.

9

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



not performoptimally in all circumstances (i.e. it does not produce the shortest possible sequence of parallel
shuttling operations) but formany relevant cases it performs quite well. Note that this is a technical section and
the details are not needed to understand the quantum error correction results in section 4, 4.4 and 4.5. Readers
interested only in thosemay skip ahead to section 3.2.

3.1.1. The flowmatrix
Wewill only consider shuttling to the left and to the right but allmechanisms introducedwork equally well for
shuttling in the vertical directions. Aswill be seen in section 3.4 someBOARDSTATEconfigurations can be
converted into each other in an amount of grid operations that is constant in the size of the grid. It can be seen
that the problemofwhether two shuttles can be performed in parallel is a problemwith amatrix structure, as
flows can only occur at the intersection open barriers and non-trivial diagonal line gradients. To capture this
matrix intuitionwe construct, from the initialBOARDSTATEand the commandHS[L] amatrix Fwhichwe
call the flowmatrix. Thismatrix will have entries corresponding to the crossing of the gradient line between two
diagonal qubit lines and the vertical barrier lines. Theflowmatrix is definedwith respect to a specific command
HS[L] and its entries correspond to the locations on the gridwherewewant shuttling in certain directions to
happen.

From a specific commandHS[L] and a specific currentBOARDSTATEwewill define a flowmatrix F. This
matrix will have entries which take value in the set *{ }r l e re le, , , , , . Each element of this set has a specific
operationalmeaning. The elements r, l, e correspond to specific actions that can be taken on the qubit grid. They
correspond specifically to ‘shuttle to the right’ (r), ‘shuttle to the left’ (l) and ‘do nothing’ (e). Note that these
actions do not necessarily act on afixed qubit. Rather they act on a specific location on the grid (where a qubit
may ormay not be present). The other three elements do not directly correspond to a shuttling action but rather
signify that at this locationwe have a choice of different consistent actions.Wewill call these elements
‘wildcards’. These wildcards signify the actions ‘shuttle to the right or do nothing’ (re), ‘shuttle to the left or do
nothing’ (le), or ‘any action is allowed’ (∗).

Wefill in thematrix entry Fijwith a symbol r for every (i, j,1) inL. This indicates that at some point in timewe
want to perform the operationHS[i,j,1] at that location. Similarly we fill in a symbol l on everymatrix entry
Fij for every (i, j+1,−1) inL.We place the symbols re, le respectively on thematrix entries Fi( j−1) and Fij for
every occupied site (i, j) in theBOARDSTATEthat has no corresponding entry inL. This indicates that wewould
like for no shuttle operations to happen on these crossing points (sincewewant the qubit to stay put) but that we
do notmind aHS[i,j-1,1] happening on the crossing point to the left of the qubit at (i, j) (since it will not
affect the qubit) ormind aHS[i,j,1] happening to the right of the qubit at (i, j). Lastly we fill in the symbol e
on everymatrix entry Fijwherewewant no shuttling operation to happen at any time to the right of the site (i, j)
(for instance on the crossing point between two qubits that are in horizontally adjacent sites). In every other
matrix entry Fijwe fill in thewildcard symbol ∗ indicating that we do not care if any operation happens at this
crossing point. Let’s summarize the above construction by

L

L

BOARDSTATE BOARDSTATE L

BOARDSTATE BOARDSTATE L

BOARDSTATE BOARDSTATE L

BOARDSTATE BOARDSTATE L

=

Î
Î

=  + =  Î Î -
=  + =  Î Î -
=  + =  Î Î -

* =  + =  Î Î -

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

( )
( )
( ( ) ( ) ) (( ) { })
( ( ) ( ) ) (( ) { })
( ( ) ( ) ) (( ) { })
( ( ) ( ) ) (( ) { })

F

r i j

l i j

e i j i j i j k k

re i j i j i j k k

le i j i j i j k k

i j i j i j k k

if , , 1

if , , 1

if , 1 , 1 1 , , , 1, 1

if , 0 , 1 1 , , , 1, 1

if , 1 , 1 0 , , , 1, 1

if , 0 , 1 0 , , , 1, 1 .

ij

Theflowmatrix F takes values in the set *{ }r l e re le, , , , , . In supplementarymaterial is available online at
stacks.iop.org/QST/3/035005/mmediawe discuss themathematical structure of this set inmore detail. The
above construction gives us amatrix of operations wewould like to apply to the initialBOARDSTATE. You can
see an example of aBOARDSTATE andHS[L] commandwith corresponding flowmatrix F infigure 6.

3.1.2. An algorithm for parallel shuttling
The task is now to subdivide the flowmatrix F into a sequence of shuttling operations that can be performed in
parallel. Ideally wewould like this sequence to be as short as possible. One simple way to generate a sequence of
this form, as described in the beginning of the section, is to perform all operations one column at a time,
i.e.lowering the first vertical barrier, setting the required gradients to shuttle every qubit adjacent to that vertical
barrier and thenmove on to the second vertical barrier and so on. This yields a sequence of parallel shuttling
operations of depthN. This solution is always possible for any flowmatrix F. However, as can be seen in
section 3.4 for some flowmatrices this is far from an optimal solution. Belowwe set out in detail an algorithm

10

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al

http://stacks.iop.org/QST/3/035005/mmedia


thatfinds better (shorter sequences) solutions formanyflowmatrices. The algorithm is based on the idea that
some columns of theflowmatrix F can be ‘dependent’ on each other. For instance two columns could be
composed of the exact same operations (up to a shift accounting for the fact that the diagonal lines do not run
along the rows but diagonally). Thismeanswe can perform the shuttle operations in the two columns
simultaneously by lowering barriers corresponding to these columns and setting the required gradient.More
complicated forms of dependence are also possible.We can use dependence of columns to performoperations
in parallel. For instance if a commandHS[L] calls for exactly the same shuttling events to happen on two
columns (up to a constant vertical shift proportional to the horizontal distance of the two columns)we can
perform these shuttling operations in a single time step.

This notion of (in)dependence of columns is captured by a call to an ‘independence subroutine’.We call
these subroutines ( )S vCheckIndependence , which takes in a set of columns S of the flowmatrix F of and a
column v of the flowmatrix F and decides whether v is independent of the elements of S andDependenceSet
(S, v)which takes in a set of columns S and a column v and returns a subsetA of S containing all the columns
onwhich v depends.Wewill discuss various versions of these subroutines leading tomore or less refined
notions of independence (and thus longer of shorter shuttling sequences) in supplementarymaterial.We list
all subroutines discussed in supplementarymaterial in table 3 together with their relative power and time
complexity. Here we just treat the subroutines as a given and build the algorithm around it. This algorithm
does not always yield optimal sequences of parallel shuttling operations, but it can be run using a polynomial
amount of classical side-resources given that the subroutine can be constructed efficiently, (see theorem 1)
while we expect an algorithm that always produces optimal shuttling sequences to require exponential
computational resources. Belowwe give a pseudo-code version of the algorithm. Note that this algorithm
only produces sequences of parallel shuttling operations where the ordering of the operations does not
matter. See supplementarymaterial formore details on how this property is guaranteed.

Figure 6.Example of aBOARDSTATE, a parallel commandHS[List] and the corresponding flowmatrix F.

Table 3. Table listing the time complexity and relative power of theCheckIndependence( ) and IndependenceSet( )
for three different classes of subroutine. The parametersN andM are the size of theQDP grid and the size of the input
set S respectively. The subroutine classes ‘simple’ and ‘greedy commutative’ can be run in polynomial timewhile the
class ‘k-commutative’ isfixed-parameter-tractable, with independent parameter k. This subroutine yields increasingly
better results (shorter shuttling sequences) for increasing k but the time complexity grows rapidlywith k. See
supplementarymaterial for a detailed description of these subroutines. For an illustration of the advantages of these
algorithms, one can consider the shuttle commands given in section 3.4. A naive line-by-line approachwill takeN time-
stepswhile it is easy to see that the above algorithmsfind sequences of length one.

Name TimeComplexity Relative power

Simple =( ( )) ( )O O NMCheckIndependence Shorter sequences than line-by-line.

=( ( )) ( )O O NMIndependenceSet

k-commutative =( ( )) ( )O O NMM kCheckIndependence k 4 Shorter sequences than ‘Simple’.

=( ( )) ( )O O NMM kIndependenceSet k 4 Shorter sequences for increasing k.

Greedy commutative =( ( )) ( )O O NMCheckIndependence 3 Shorter sequences than ‘Simple’.

=( ( )) ( )O O NMIndependenceSet 3 Relation to ‘k-commutative’unknown.

11

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



Algorithm1.Generate list of parallel shuttle operations

Input: Flowmatrix F

Output: List of shuttle operations L

1:

2://Wewill consistently write columns of the flowmatrix F as viwhere i indicates

3:// the column index of vi in F.

4:

5:Set S to an empty list

6:

7://Belowwe construct a set of independent columns S and sets of dependenceAi for the dependent columns vi.

8:

9:for iä [0:N−2]do
10:Set vi to the i’th columnof F

11:

12: //Check if the column vi is independent of the columns already in the set S. This requires a

13: // subroutine call toCheckIndependence. See appendix for the construction of this subroutine.
14:

15: if CheckIndependence(vi, S) is TRUE then
16:

17: //The function θmaps the symbols * re le, , to e.Wemust do this sincewewant tomake an operation

18: // out of vi later and thewildcard elements * re le, , do not strictly correspond to operations. Other

19: // choices are possible here but in keepingwith the idea of doing a
20: //minimal amount of operations, themapping to e is a good choice.

21:

22: Add θ(vi) to S
23: SetAi to {vi}
24: else
25: SetAi toDependenceSet(S, vi)
26: end if
27: end for
28:

29:// Initialize an empty ordered set that will contain allHS[L] commands in sequence.

30:

31:Set L to an empty ordered set

32:for viäSdo
33:

34: // Initialize an empty set that will contain all tuples for a singleHS[L] command.

35:

36: SetL to an empty set

37: for jä [0:N−2]do
38:

39://Check if vi is in the dependence setAj.

40:

41:if viäAj then

42:// Loop over all components of vi.

43:for kä [0: length(vi)−1]do
44:

45://fmaps the r, l, e valued column v to an 1,−1, 0 valued vector asf(r)=1,f(l)=−1,f(e)=0.
46:

47:if f ¹[( ) ]v 0i k then

48:Add f- -( ( ) [( ) ])j k i j v, , i k toL

49:end if
50:end for
51:end if
52:end for
53:AddHS[L] to L

54:end for
55:return L

Theorem1.The algorithm described in algorithm 1 has a time complexity upper bounded by

+ +( ) · ( ( )) · ( ( )) ( )O N N O S v N O S vCheckIndependence DependenceSet, , , 6i i
4

where N is the number of columns in the input flowmatrix F .

12

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



The subroutines ( )S vCheckIndependence , i and ( )S vDependenceSet , i both take in a set S of independent
columns of the flowmatrix F and a column vi of the flowmatrix F and respectively check whether v is independent of
the set S or produce a subset A of S onwhich v depends. Various versions of these subroutines are discussed in
supplementarymaterial and their time complexities are given in table 3.

Proof.Begin by noting that the algorithm 1 consists of two independent For-loops. Thefirst For-loop (lines
2-11) calls its bodyN times (ignoring constant factors). Calling the For-loop body (lines 3-10) in theworst case
requires calling bothCheckIndependence( ) andDependenceSet( ) plus some constant time instructions. This
means thefirst For-loop has aworst case complexity of

· ( ( ))N O CheckIndependence + · ( ( ))N O DependenceSet .
The second For-loop (lines 13-25) consists of three nested For-loops of lengthO(N)with an If-clause

inside the first two For-loops (line 16) constant time operation at the bottom (line 19). The first For-loop can
be seen to be of orderO(N) by noting that the set of independent columns S can be no bigger thanN in which
case all columns are independent. The second For-loop (line 15) isO(N) bounded by construction. Note that
the If-clause on line 16 can take timeO(N) to complete since for any dependency setAjwe can only say that

∣ ∣A Nj (sinceAj is a subset of the set of all columns of F). The third loop is alsoO(N) bounded since
length(vi)�N for all columns vi of F. Tallying up all contributions we arrive at equation (6), which
completes the argument. +

This concludes our discussion of parallel shuttling operations. Before wemove on however, it is worth
pointing out an interesting examplewhere this shuttling can be used a subroutine to performmore complicated
operations. This example will also be of use later when discussing parallelmeasurement in section 3.3 and the
mapping of quantum error correction codes in sections 4, 4.4, 4.5.

3.1.3. Selective parallel single-qubit rotations
In this sectionwewill discuss a particular example that illustrates the use of abstracting away the complexity of
parallel shuttling. Imagine aQDP grid initialized in the so-called idle configuration. This configuration can be
seen infigure 7.Wewill focus on the qubit in the odd columns (i.e. the set ). Imagine a subset S of these qubits
to be in the state ñ∣1 and the remainder of these qubits to be in the state ñ∣0 . The qubits on in the set can be in
some arbitrary (and possibly entangled)multiqubit state Yñ∣ .Wewould like to change the states states of the
qubits in the set S to ñ∣0 without changing the state of any other qubit. Due to the limited single-qubit gates (see
section 2.3.3) available in theQDP this is a non-trivial problem for some arbitrary set S. However using the
power of parallel shuttlingwe can perform this task as follows. Begin by defining the set Ŝ to be the complement
of S in. Nowwe begin by performing the parallel shuttling operation

HS L L = Î[ ] {( ) ( ) ˆ} ( )i j i j S, , , 1 , . 7

Herewe abuse notation a bit by referring to Ŝ as the set of locations of the qubits in Ŝ . This operation in effect
moves all qubits in Ŝ out of (and into  , note that the dots the qubits are being shuttled in are always empty
because of the definition of the idle configuration). Nowwe can use a semi-global single-qubit rotation (as
discussed in section 2.3.3) to perform anX-rotation on all qubits in, which is now just all qubits in the set S.
Thisflips changes the states of the qubits in S from ñ∣1 to ñ∣0 without changing the state of any other qubit.
Following this we can restore theBOARDSTATEto its original configuration by applying the parallel shuttling
command

HS L L = - Î[ ] {( ) ( ) ˆ} ( )i j i j S, , , 1 , . 8

Nowwe have applied the required operation.Note that at no point we had to reason about the structure of the
set S itself. This complexity was taken care of by the classical subroutines embedded inHS[L]. Next we discuss
performing parallel two-qubit gates.

3.2. Parallel two-qubit gates
Similar to parallel shuttling it is in general rather involved to performparallel two-qubit operations in theQDP.
We can again define parallel versions of theOPCODES for two-qubit operations and then analyze how to
perform them as parallel as possible (again having access to classical side computation).

OPCODE Effect

HI[L] PerformVI[(i,j)] for(i, j)äL
VI[L] PerformHI[(i,j)] for(i, j)äL

13

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



Given anBOARDSTATEand aHI[L] command one could use an algorithm similar to the algorithm
presented for shuttling.We can again construct amatrix F such that Fij=1 is for all tuples (i, j) inL indicating
the locationswherewe desire a two-qubit operation to happen and Fij=0 everywhere else. Nowwe can use the
algorithmpresented above for shuttling to decompose thematrix F into a series of parallelHI[L] operations.
However, sincewe have =CPHASE2 the independence subroutine reduces to linear independence of the
columns of Fmodulo 2. Thismeanswe canfind an optimal decomposition into parallel operations by finding
the Schmidt-normal [22, Chapter14] formof thematrix F (Note that we do have to ‘tilt’ thematrix F to account
for the fact that as posed the diagonal lines of thematrix F are its ‘rows’).We canmake the same argument given a
BOARDSTATEand aVI[L] command but now the Schmidt-normal formmust be foundmodulo 4 as

=( )SWAP 4 . As both additionmodulo 2 (2) and additionmodulo 4 (4) are principal ideal domains both
of the Schmidt-normal forms can be found efficiently and generate optimal sequences of parallel two-qubit
interactions. The depth of the sequence of operations is nowproportional to the rank of thematrix F over 2

(CPHASE ) or 4 ( SWAP ). However, asmentioned before, the parallel operation of two-qubit gates in the
QDPwillmean taking a hit in operationfidelity vis-a-vis themore controllable line-by-line operation [4]. Since
this operation fidelity is typically amuch larger error source than thewaiting-time-induced decoherence
stemming from line-by line operationwewill for the remainder of the paper assume line-by-line operation of
the two-qubit gates. This will have an impact when performing quantum error correction on theQDPwhichwe
will discuss inmore detail in section 5.

Figure 7.UsefulBOARDSTATEconfigurations.We denote data qubits with black color,X-measurement qubits by red and
Z-measurement qubits by blue. Those will collect the parity of the data qubits in one error correction cycle, and one is the others
reference at the PSBmeasurement. (a)The idle configuration is a starting point of all algorithms. All qubits are spread out andwell
separated. (b)The triangle configurations (here we have a rightward triangle, see the frame in thefigure) is assumedwhen the
proximity ofmeasurement qubits to data qubits is required. This is the case for the paritymeasurements in error correction cycles.
(c)Themeasurement configuration is formed to bringX- andZ-measurement qubits close to each other, such that a row can be
selected inwhich themeasurement is performed. (d)Certainmeasurement qubits are brought to adjacent dots in order to perform the
PSB-basedmeasurement and readout in a line-by-line fashion (encircled qubits). Since the rest of the grid is in themeasurement
configuration, individual control over the barrier lines and one potential is guaranteedwithout spuriousmeasurements. (e)The
(right) square configuration is amid-way point between the idle and (right) triangle configuration. Going through the square
configuration keeps the shuttling algorithmmanageable, as notmore that 2 different heights of the dot potentials are employed. One
of the characteristic squares is framed in thefigure.

14

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



For the sake of completeness we also define a parallel version of theCNOTOPCODE. The same
considerations of parallel operation hold for the parallel use of CNOT gates as they hold for theCPHASE and

SWAP gates.We continue the discussion of parallelism in theQDPby analyzing parallelmeasurements.

OPCODE Effect

VC[L] PerformVC[(i,j)] for every (i, j) inL

3.3. Parallelmeasurements
Performingmeasurements on an arbitrary subset of qubits on theQDP is in general quite involved. Every qubit
to bemeasured requires an ancilla qubit and this ancilla qubitmust be in a known computational basis state, and
an empty dotmust be adjacent as a reference for the readout process. The qubitsmust then be shuttled such that
they are horizontally adjacent to their respective ancilla qubits andmust also be located in such away such that
they are in the right columns for the PSB process to take place (revisit section 2.3.2 formore information). This
can be done using the algorithm for parallel shuttling presented above but in theworst case this will take a
sequence of depthO(N) parallel shuttle operations. On top of the required shuttling the PSB process itself (from
a control perspective similar to shuttling)must be performed in away that depends on theBOARDSTATEand
the configuration of the qubit/ancilla pairs. In general this PSB process will be performed line-by-line (for the
fidelity reasonsmentioned in the beginning of the section) and hence requires a sequence of depthO(N) parallel
grid operations (plus the amount of shuttling operations needed to attain the rightmeasurement configuration
in the first place). Due to this complexity wewill not analyze parallelmeasurement in detail but rather focus on a
particular case relevant to themapping of the surface code. Butfirst we define a parallelmeasurementOPCODE
M[L]which takes in a list of tuples (i, j, k) denoting locations of qubits to bemeasured (i, j) andwhether the
ancilla qubit is to the left (k=−1) or to the right (k=1) of the qubit to bemeasured.

OPCODE Effect

M[L] PerformM[(i, j, k)] for every (i, j, k) inL

3.3.1. A specific parallel measurement example
Let us consider a specific example of a parallelmeasurement procedure that will be used in our discussion of
error correction.We begin by imagining theBOARDSTATEto be in the idle configuration (figure 7 top left).We
next perform the shuttle operations needed to change theBOARDSTATEto themeasurement configuration.
This configuration (and how to reach it by shuttling operations from the idle configuration)will be discussed
section 3.4 and can be seen infigure 7(c). Next take the qubits to bemeasured in the parallelmeasurement
operation to be the red qubits infigure 7. The qubits directly to the right or to the left of those qubits will be the
required readout ancillas (blue in figure 7).Wewill assume that the readout ancillas are in the ñ∣0 state. If some
ancilla qubits are in the ñ∣1 state insteadwe can always perform the procedure given in section 2.3.3 to rotate
them to ñ∣0 without changing the state of the other qubits on the grid. Note that all the ancilla qubits are in the set
 whereas the qubits to be read out are in the set. Thismeans thatwe can perform the PSB process by
attempting to shuttle the qubit to bemeasured (red) into the sites occupied by the ancilla qubits (blue). In
principle we could perform this operations in parallel by executing the operations

VS L L = = = + =[ ] {( ) } ( )i j i j i j, , , 1 0 mod 2, 1 mod 2, 1 mod 4 9

to bring the qubits to bemeasured (red) horizontally adjacent to the ancilla qubits (blue) and then

M L L = = =[ ] {( ) } ( )i j i j, , , 1 1 mod 4, 1 mod 4 10

and

M L L = - = =[ ] {( ) } ( )i j i j, , , 1 3 mod 4, 3 mod 4 . 11

All of these operations can be performed in a single time step.However forfidelity and control reasons laid
out in the beginningwewould prefer to perform these operations in a line-by-linemanner. In particular we
would like to perform these operations one row at a time since this gives us the ability to control both diagonal
and vertical lines individually for eachmeasurement. However wemust take care to avoid spurious operations.
For instancewhen performingmeasurements on the qubits at locations (1, 1) and (1, 5)wemust avoid also
performing ameasurement on the qubit at location (5, 5). To avoid this situationwewill bring only the bottom
rowof qubits to bemeasured horizontally adjacent to the ancilla qubits, perform the PSB process and readout on

15

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



that row only and then shuttle the qubits to bemeasured back down again. This we repeat going up in rows until
we reach the end of the grid.More formally we perform the following sequence of operations.

Algorithm2. Loop overOPCODES to perform line-by-linemeasurements

1:foriä [0:N−2]do
2:if =i 1 mod 4 then

3:VS L L = - - =[ ] {( ) }i j j, 1, , 1 1 mod 4

4:M L L = =[ ] {( ) }i j j, , , 1 1 mod 4

5:VS L L = - =[ ] {( ) }i j j, 1, , 1 1 mod 4

6:end if
7:if =i 3 mod 4 then

8:VS L L = - - =[ ] {( ) }i j j, 1, , 1 3 mod 4

9:M L L = - =[ ] {( ) }i j j, , , 1 3 mod 4

10:VS L L = - =[ ] {( ) }i j j, 1, , 1 3 mod 4

11:end if
12:end for

Wewill use this particular procedure when performing the readout step in a surface code error correction
cycle in section 4.4. This concludes our discussion of parallel operation on theQDP.Wenowmove on to
highlight someBOARDSTATEconfigurations that will feature prominently in the surface and color code
mappings.

3.4. Someuseful grid configurations
There are several configurations of theBOARDSTATEthat showup frequently enough (for instance in the error
correction codes in section 4.4) tomerit some special attention. In this sectionwe list these specific
configurations and showhow to construct them.

3.4.1. Idle configuration
The idle configuration is the configuration inwhich theQDP is initialized. As shown infigure 7 it has a
checkerboard pattern offilled and unfilled sites. In this configuration no two-qubit gates can be applied between
any qubit pair but since itminimizes unwanted crosstalk between qubits [4], it is good practice to bring the
systemback to this configurationwhen not performing any operations. For this reasonwe consider the idle
configuration to be the starting point for the construction of all other configurations.

3.4.2. Square configuration
As seen infigure 7(e) the square configurations consist of alternatingfilled and unfilled 2×2 blocks of sites. The
so-called right square configuration can be reached from the idle configuration by a shuttling operationHS[L]
with the setL being

L

È
= =
= + = - =
= + =




{( )
} {( )
} ( )

i j i

j i j i j i

j i j

, , 1 1 mod 2,

1 mod 2, 2 mod 4 , , 1 0 mod 2,

1 mod 2, 3 mod 4 . 12

Note that this operation only takes a single time step, the square configuration is shown infigure 7(e). The right
square configuration is characterized by the red (Z-) ancilla being in the left corner of every square. Another
flavor of this configuration is the left square configuration, where the red ancilla is in the upper right corner, and
the blue one in the left. The left square configuration can be reached from the idle configuration by a shuttling
operationHS[L]with the setL being.

L

È
= =
= + = - =
= + =




{( )
} {( )
} ( )

i j i

j i j i j i

j i j

, , 1 0 mod 2,

0 mod 2, 2 mod 4 , , 1 1 mod 2,

0 mod 2, 1 mod 4 . 13

These configurations are used as an intermediate step for us to reach the triangle configurations.

3.4.3.Measurement Configuration
Themeasurement configuration can be reached from the idle configuration in three time-steps by the following
sequence of parallel shuttling operations.

16

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



HS A A

HS B B

VS C C

= - - - = =
= - - = =
= - = = + =






[ ] {( ) ( ) }
[ ] {( ) }
[ ] {( ) } ( )

i j i j i j

i j i j

i j i j i j

, , , 1 , 1, 1, 1 1 mod 4, 2 mod 4 ,

, 1, 1, 1 3 mod 4, 1 mod 4 ,

, , , 1 0 mod 2, 1 mod 2, 1 mod 4 . 14

This configuration can be seen infigure 7(d) and it is an intermediate state in themeasurement process of the
blue qubits using the red qubits as ancillas. How thismeasurement protocol works in detail is described in
section 3.3.

3.4.4. Triangle configurations
In order to collect the parity of the data qubits in the error correction cycles, we need to align the ancilla qubits
with the data qubits, according to the two-qubit gates used. This is reflected in the use of triangle configurations.
There are two triangle configurations that can be reached in a single parallel shuttling step from the right square
configuration. Thefirst one, seen infigure 7(b), is called the rightward triangle configuration. It can be reached
from the square configuration by the grid operationHS[L]with the setL being

L = - = = + ={( ) } ( )i j j i j, , 1 0 1 mod 2, 1 mod 2, 3 mod 4 , 15

which does asmuch as to shuttle the right data qubit of every square (framed squares infigure 7(e)) to the empty
dot on its right. In this configuration, we are able to performhigh-fidelity two-qubit gates between the two data
qubits and the ancilla in every triangle. In order to reach the neighboring pair of data qubits with the same
ancilla, we start from the left square configuration and shuttle the left data qubit to the left. Operationally, we
would doHS[L]with

L = = = + ={( ) } ( )i j i j i j, , 1 0 mod 2, 0 mod 2, 2 mod 4 . 16

Note again that these parallel shuttling operations can be performed in a single time step. From these
configurations the idle configuration can also be reached in a single time step. In the next section these
configurationswill feature prominently in themapping of several quantum error correction codes to theQDP
architecture.

4. Error correction codes

In this sectionwewill apply the techniqueswe developed in the previous sections tomap several quantum error
correction codes to theQDP.

4.1. Introduction
First we recall some basic facts about quantum error correction codes and topological stabilizer codes in
particular. The focuswill be on practical application, for amore in depth treatment of quantum error correction
and topological error correction codes we refer to [7]. Recallfirst the Pauli operators on a single qubit:

= =
-( ) ( ) ( )X Z0 1

1 0
, 1 0

0 1
. 17

Given a systemof n qubits we denote by Pi the Pauli operator Pä{X,Z} acting on the i’th qubit.With this
definitionwe can seewrite the n qubit Pauli group n as the group generated by the operators

Î{ [ ]}X Z i j n, : , 1 :i j undermatrixmultiplication. A stabilizer quantum error correction code acting on n
physical qubits and encoding k logical qubits can then be defined as the joint positive eigenspace of an abelian
subgroup  of n generated by n−k independent commuting Pauli operators. Operationally, this code is then
defined bymeasuring the generators of  and if necessary perform corrections to bring the state of the system
back into the positive joint eigenspace of these generators. This is a very general definition and it is not
guaranteed that a code defined this way yields any protection against errors happening. Belowwewill see some
common examples of stabilizer error correction codes that do have good protection against errors. On top of
that, these codes have the desirable property that their stabilizers are in some sense ‘local’. That is they can be
implemented on qubits lying on a lattice such that the stabilizer generators can bemeasured by entangling a
patch of qubits that is small with respect to the total lattice size. Themostwell known example of a code of this
type is the so-called planar surface code.

4.2. Planar surface code
The planar surface code is probably themost well known practical quantum error correction code due to its high
threshold [23], the availability of efficient decoding algorithms [24]. To construct the planar surface code (in

17

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



particular wewill use the so-called rotated planar surface code [25], as it uses less physical qubits per logical
qubit)wewill consider a regular n×n square lattice of degree four (every node has four connected neighbors)
andwewill place qubits on each node.Wewill define the generators of the abelian group  that defines the
surface code by alternately placingX- andZ-quartets on the faces of the lattice (infigure 8 the red faces
correspond toX-stabilizer quarters while the green faces correspond toZ-stabilizer quartets). This ( )X Z will
indicate thatwe pick the generator ÄX 4 ( ÄZ 4) on the four qubits on the corners of theX (Z) face. Note that this
means that all of the generators commutewith each other since they either act on disjoint sets of qubits or act on
sets that have an overlap of exactly 2 qubits. SinceXZ=−ZXwehave that =Ä Ä Ä ÄX Z Z X2 2 2 2 whichmeans
that all generators commute. These generators (plus appropriate generators on the boundary of the lattice)
define a stabilizer groupwhich specifies a code space of dimension 2, i.e.a single logical qubit.We can locally
measure theseX (Z) stabilizers by using the circuits [6, 7, 26, 27] illustrated infigure 9. This construction calls for
one ancilla qubit per lattice face.

4.3. 2D color codes
Another important class of planar topological codes are the 2D color codes [9]. These codes are defined on
3-colorable tilings of the Euclidean plane. Two popular tilings are the so-called 6.6.6. and 4.8.8. tilings
corresponding to hexagonal and square-octagonal tilings respectively. To construct the code qubits are
places on all vertices of the tiling andX- andZ-stabilizers are associated to every tile by applyingX (Z) to every
qubit on the corner of the tile.With suitable boundary conditions this construction encodes a single logical

Figure 8. Schematic representation of a distance three rotated planar surface code [25]. The gray circles represent the data qubits
supporting the code. The green circles represent ancilla qubits, which are used to perform the stabilizermeasurements which define
the code. These stabilizermeasurements are represented by the red (Z-type stabilizers) and blue faces (X-type stabilizers). The ancilla
qubit in themiddle of a face will be used to perform a stabilizermeasurement of the data qubits on the corners of that face. The actual
quantum circuits used to perform these stabilizermeasurements are shown infigure 9.

Figure 9.Quantum circuits for performing theX- andZ-stabilizermeasurements of the planar surface code [6, 7, 26, 27]. The qubitsA
andB (seefigure 8) are ancilla qubits used to perform stabilizermeasurements on the the data qubits on the corners of the faces
defining the code. The data qubits associated to the face of qubitA are {1, 2, 5, 6} and likewise { }2, 3, 4, 5 for qubitB.

18

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



qubit with a distance proportional to n with n the number of physical qubits. See figure 10 for examples of
the 6.6.6. and 4.8.8. color codes of distance five. Note that these pictures do not include ancilla qubits for
measuring the stabilizers. The planar color codes have lower thresholds than the planar surface code but are
more versatile when it comes to fault-tolerant gates. The planar color codes support the full Clifford group
as a transversal set, making quantum computation on color codesmore efficient than on the surface code.
In the next section wewill focus onmapping these codes to the QDP using the concepts introduced in
section 3.

4.4. Surface codemapping
Wenowdescribe a protocol thatmaps the surface code on the architecture described in section 2. The surface
code layout has a straightforwardmapping that places the data qubits on the even numbered columns and the
X- andZ-ancillas on the odd columns. Thismeanswe have single-qubit control over all data qubits and all
ancilla qubits separately. There are twoways to perform the surface code cycle; we could use either the SWAP
gate or theCPHASE gate as themain two-qubit gate. Since in practice the SWAP gate has higherfidelity [4]we
will use this gate.We begin by changing the circuits performing theX- andZ-stabilizermeasurements towork
with SWAP rather thanCNOT.We can emulate aCNOT gate by using two SWAP gates interspersedwith a
Z-gate on the control plus some single-qubit gates. As described in section 2.3.5 theZ- and S-gates on the ancilla
qubit can performed bywaiting, whichmeans they can be performed locally while the single-qubit operations
on the data qubits can be performed in parallel using the global unitary rotations described in section 2.3.3. The
X- andZ-circuits using SWAP are shown infigure 11.

Wewill split up the quantum error correction cycle by first performing allX-type stabilizers (theX-cycle)
and then all Z-type stabilizers (Z-cycle). Thismeans we can use the idle Z- (X-) ancilla to perform a
measurement on theX- (Z-) ancilla at the end of theX (Z) cycle. For convenience we included a depiction of
the surface code Z-cycle unit cell in figure 12 (right). The qubit labeled ‘A’ is the ancilla used for the Z-
stabilizer circuit. The numbered qubits are data qubits and the qubit labeled ‘B’ is the qubit used for reading
out the ‘A’ qubit. It is also the ancilla qubit for theX-cycle.We now describe the steps needed to perform the
Z-cycle in parallel on the entire surface code sheet. For convenience we ignore the surface code boundary

Figure 10.Distance 5 examples of the 4.8.8. (first from left) and 6.6.6. (third from left) color codes [9] and their deformed versions
(second from left and fourth from left respectively). The vertices correspond to data qubits and every colored face corresponds to both
anX- and aZ-stabilizer to bemeasured. These stabilizers can bemeasured by usingweight 4, 6 and 8 versions of the circuits shown in
figure 9. The deformation of the codes does not change the code properties at all. They are a visual guide that facilitates themapping
the the crossbar grid in section 4.5.

Figure 11.Z-stabilizermeasurement circuit using the SWAP as themain two-qubit gate. TheZ- and S-rotations can be performed
by the timing procedure described in section 2.3.3.

19

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



conditions but these can be easily included. TheX-cycle is equivalent up to different single-qubit gates ( †XS
instead of †ZHS on the data qubits, †HS instead of †S on the ancilla) and shifting every operation 2 steps up,
e.g.setting i to i+2.

Figure 12.Unit cells of the deformed 4.8.8. and 6.6.6. codes (left andmiddle respectively) and the unit cell of the surface code
(Z-cycle)with the gray circle corresponding to qubits. For the 4.8.8. unit cell the qubit labeled ‘A’ is the ancilla qubit for the
octagon (now a rectangle) sub-cell while the qubit labeled ‘D’ is the ancilla for the square sub-cell. The qubit labeled ‘B’ is used to
read out the qubit labeled ‘D’ and the qubit labeled ‘C’ is used to read out the ancilla qubit for the octagon cell directly below the
square cell (not pictured). The qubits labeled by numbers are the data qubits. For the 6.6.6. unit cell the qubit labeled ‘A’ is the
ancilla qubit used to perform the stabilizermeasurement while the qubit labeled ‘B’ is used to read out the ‘A’ qubit for the unit cell
directly to the bottom left (not pictured). The numbered qubits are again data qubits. For the surface code unit cell the qubit
labeled ‘A’ is the ancilla used for theZ-cycle stabilizermeasurement while the qubit labeled ‘B’ is the qubit used to read out the ‘A’
qubit. It is also the qubit used as the ancilla for theX-stabilizer cycle. The numbered qubits are again data qubits. Note that this
unit cell mirrors whenmoving upwards. That is, the unit cell above the one pictured will have the ancilla qubit B to the right of
qubit A instead of to the left as pictured.

20

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



4.5. Color codemapping
Themapping of the color codes is largely analogous to that of the surface code.We beginwith the 6.6.6. color
code as it is easiest tomap.We begin by deforming the tiling onwhich the color code is defined such that it is
more amenable to the square grid structure of theQDP. This is fairly straightforward as can be seen from the
d=5 example infigure 10. In the deformed tiling it is clear how tomap the code to the crossbar grid layout.We
once again place all data qubits in the even columns and all ancilla qubits in the odd columns. This places the unit
‘hexagon’ seen in the deformed code in a 3×5 tile on theQDP (see figure 12 (right) for this unit tile). This places
all data qubits in and 2 extra qubits in  , both of which could be used as an ancilla in the stabilizer circuit.We
will always choose the top qubit (qubit ‘A’) of these two in the hexagon unit cell as the ancilla qubit for the error
correction cycles. The extra (bottom) qubit (qubit ‘B’) in the unit cell will be used to perform the readout of the
ancilla qubit of the unit hexagon to its direct left. This has the advantage ofmaking the readout process
independent of themeasurement results of the previous cycles (aswas the case in the surface code). Note also
that the ancilla qubits are positioned along diagonal lines on theQDP grid. Thismakes the quantum error
correction cycle very analogous to the surface code.We once againmust split up theX- andZ-cycles (again due
to the limited single-qubit rotations possible). Belowwe present the steps needed to perform theZ-cycle (which
nowmeasures aweight 6 operator). TheX-cycle is identical up to differing single-qubit rotations on the data
qubits.

Next up is the 4.8.8. color code.We deform the tiling onwhich the code is defined similarly to the 6.6.6.
code. The deformed 4.8.8. code lattice can be seen in figure 12 (left).We again place the data qubits in the set
 the ancilla qubits in the set  . See figure 12 for a layout of the unit cell of the 4.8.8. code on theQDP. Note
that there are two different types of tiles in this code. The square tile has one qubit (qubit ‘D’ in figure 12) in
 , which we will use as ancilla qubit for that tile. The deformed octagon tile has three qubits in  .Wewill use
the topmost qubit (qubit ‘A’) as the ancilla qubit for the tile while themiddle one (qubit ‘B’) serves as the
readout qubit for the square tile ancilla directly to its left and the bottommost one (qubit ‘C’)will be used to
perform the readout of the octagon directly below the square tile (not pictured). Because the structure of the
4.8.8. code is less amenable to directmapping the stepping process is a little more complicated.Wewill again
only write down the Z-cycle with theX-cycle being the same up to initial and final single-qubit rotations on
the data qubits.

21

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



5.Discussion

In this section we evaluate themapping of the error corrections codes described above and argue numerically
that it is possible to attain the error suppression needed for practical universal quantum computing.Wewill
do this exercise for the planar surface code, as it is themost popular and best understood error correction
code. The description given in section 4.4 assumes that all operations can be implemented perfectly in
parallel. In practice though, for the reasons outlined in section 3many operations that can in principle be
done in parallel will be done in a line-by-line fashion. Note that for surface code in an array like this, the
length of a quadratic grid scales linearly with the code distance as = +N d2 1. Thismeans that the time
performing a surface code cycle and thus the number of errors affecting a logical qubit rises linearly with the
code distance and hence thismapping of the surface code will not exhibit an error correction threshold. As a

22

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



consequence the error probability of the encoded qubit (the logical error probability) cannot bemade
arbitrarily small but rather will exhibit aminimum for some particular code distance after which the logical
error probability will start rising with increasing code distance. The code distance whichminimizes the error
will depend non-trivially on the error probability of the code qubits. This is not a very satisfactory situation
from a theoretical point of view, but from the point of view of practical quantum computation we are not so
much interested in asymptotic statements but rather if the logical error probability can bemade small
enough to allow for realistic computation [27]. As a target logical error probability we choose = -P 10L

20 as
at this point the computation is essentially error free (for comparison, amodern classical processor has an
error probability around 10−19 [11]).Wewill use this number as a benchmark to assess if and for what error
parameters the surface codemapping in theQDP yields a ‘practical’ logical qubit. In order to assess this we
must consider inmore detail the sources of error afflicting the surface code operation on theQDP.Wewill
begin by detailing how the surface code is likely to be implemented in practice on theQDP and afterward we
will consider how this impacts the error behavior of the logical surface code qubit.Wewill distinguish two
classes of error sources: operation induced errors and decoherence induced errors.

5.1. Practical implementation of the surface code
Herewe present amapping of the surface code based on the one presented in section 4.4 but differing in the
amount of time-steps used to perform certain operations. In particular we choose to do all shuttle and two-
qubit-gate operations in a line-by-linemanner. This is a specific choice whichwe expect will workwell but
variations of this protocol are certainly possible. Asmentioned above this willmean that the time an error
correction cycler takeswill scale will the code distance. Thismeans it is important to keep careful track of the
time needed to perform a cycle.Wewill do this while describing line-by-line operation of the surface code cycle
in greater detail below.

In practice wewill perform the protocol in section 4.4 in the followingmanner.We begin by performing step
1 and 2 for all qubits. Thenwe apply steps 3−7 but only to the data and ancilla qubits in the columns 0 and 1.
Note that after performing these steps on only the first two columnswe are back in the idle configuration.Now
we repeat the previous for columns 2 and 3 and so forth until we reach the end of the code surface.Having done
these operations we are at the end of step 7 (go to idle configuration) and the grid is the idle configuration.We
now repeat the same process to perform steps 8−12 of section 4.4.Next we perform step 13which can be done
globally. Hereafter we perform step 14 (ancilla correction) in standard line-by-line fashion.Note that even in an
ideal implementation step 14 has to be done line-by-line in theworst case. After this we perform step 15 (go to
measurement configuration) in a line-by linemanner and similarly for steps 16 (PSB/readout procedure) and 17
(go to idle configuration).

Note that in this line-by-line implementation there is a slight asymmetry between theX- andZ-cycles. Due
to the boundary conditions of the surface code theX-cycle will involve d+1 columns pairs whereas theZ-cycle
will involve d−1 columnpairs. However since + + - =( ) ( )d d d1 1 2 this ismathematically equivalent to
saying that the average cycle involves d columnpairs.With this understandingwe quite in table 4 howmany
time-steps every step in section 4.4 takes (split up by gates involved in that step) in this particular
implementation of the protocol. Note that in this table we do not specify the order inwhich the operations
happen, only towhich step they are associated.We also calculate the amount of time-steps (for different gate
types)needed for the full surface code error correction cycle.

Table 4.Time step count per step in terms of different types of possible gates for the line-by-line implementation of the surface code cycle
described in section 4.4. The number of time-steps is quoted in terms of the code distance d. This table does not specify the exact order in
which the operations happen, see section 5.1 for an explanation of the time flow.Note that the table shows the average of the time step counts
for theX- andZ-cycles. The actual time count for the individualX- andZ-cycles is slightly different due to the boundary conditions of the
surface code. The exact count for theZ-cycle can be obtained by replacing d by d−1 in every entry (except for the last column)whereas the
exact count for theX-cycle is obtained by replacing dwith d+1 in every columnbar the last one. Since (d+1)+(d−1)=2d=d+d
thismakes no difference for the full cycle count. Table cells that are left empty signify zero entries.

Steps 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

X-Z cycle

average

Cycle

total

SWAP gate 2d 2d 2d 2d 8d 16d

Z-rotation 2d 2d 2d d 7d 14d

Shuttling d d d d d d 5d 2d 3d 16d 32d

Global rotation 1 1 1 3 6

Measurement d d 2d

23

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



5.2.Decoherence induced errors
Decoherence induced errors are introduced into the computation by uncontrolled physical processes in the
underlying system. The effect of these processes is called decoherence. Decoherence happens even if a qubit is
not being operated upon and the amount of decoherence happening during a computation scales with the time
that computation takes. Therefore, to account for decoherence induced errors during the error correction cycle
we need to compute how long an error correction cycle takes. Generally any operation on theQDP takes a
certain amount of time denoted by τ.We distinguish again five different operations: (1) two-qubit SWAP
gates, (2) qubit shuttle operations, (3) single-qubitZ gates bywaiting, (4) global single-qubit operations, (5)
qubitmeasurements. The time they takewewill denote by t t t t, , ,sw sh z gl and τm respectively. In table 4we
performed a count of the total time taken by the surface code error correction cycle using themapping described
in sections 4.4, and 5.1. The table below summarizes the total number of time-steps for every gate type for a full
surface code error correction cycle.

Symbol Operation Time-steps per cycle

τsw SWAP gate 16d

tsh Shuttling 32d

τz Z-rotation bywaiting 14d

τgl Global qubit rotation 6

τm Measurement 2d

Wecannow say the total time t ( )dtotal as a function of the code distance d is given by

t t t t t t= + + + +( ) ( )d d d d d16 32 14 6 2 . 18sw sh z gl mtotal

This total time can be connected to an error probability by invoking themean decoherence time of the qubits in
the system, the so-calledT2 time [16, 28] (We ignore the influence ofT1 in this calculation as it is typicallymuch
larger thanT2 in silicon spin qubits [4, 29]).We can find the decoherence induced error probability Pdec [16],
Page 384 as

t
=( ) ( ) ( )P d

d

T2
. 19dec

total

2

Nextwe investigate operation induced errors. Thesewill typically be larger than decoherence induced errors but
will not scalewith the distance of the code.

5.3.Operation induced errors
Operation induced errors are caused by imperfect application of quantumoperations to the qubit states. There
arefive operations performed on qubits in the surface code cycle. These are: (1) two-qubit SWAP gates, (2)
qubit shuttle operations, (3) single-qubitZ gates bywaiting, (4) global single-qubit operations, (5) qubit
measurements.Wewill denote the probability of an error afflicting these operations by Psw, Psh,Pz,Pgl andPm
respectively. In table 5we list the total number of gates of a given type a data qubit and an ancilla qubit participate
in over the course of a surface code cycle. In supplementarymaterial we give amore detailed per step overview of
the operations performed on data qubits and ancilla qubits. For clarity we have chosen qubit 1 infigure 12 (right)
as a representative of the data qubits and qubitA infigure 12 (right) as a representative of the ancilla qubits.
Other qubits in the codemight have a different ordering of operations but their gate counts will be the same,
except for the qubits located at the boundary of the codewhichwill have a strictly lower gate count (we can thus
upper bound their operation induced errors by those of the representative qubits). For each gatewe also

Table 5.This table lists the total number of gates of a given type a data qubit and an ancilla qubit participate in over the
course of a surface code cycle. In supplementarymaterial we give amore detailed per step overview of the operations
performed on data qubits and ancilla qubits. For clarity we have chosen qubit 1 infigure 12 (right) as a representative of the
data qubits and qubitA in figure 12 (right) as a representative of the ancilla qubits. Other qubits in the codemight have a
different ordering of operations but there gate counts will be the same, except for the qubits located at the boundary of the
codewhichwill have a strictly lower gate count (we can thus upper bound their operation induced errors by those of the
representative qubits).

Data qubit Z ancilla qubit
Average data/ancilla

Z-cycle X-cycle Total Z-cycle X-cycle Total

SWAP gate 4 4 8 8 0 8 8

Z-rotation 0 0 0 7 0 7 3.5

Shuttling 2 4 6 10 4 14 10

Global rotation 2 2 4 2 3 5 4.5

Measurement 0 0 0 1 1 2 1

24

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



calculate the average number of this gate data and ancilla qubits participate in. This average numberwill serve as
ourmeasure of operation induced error.

5.4. Surface code logical error probability
By tallying up the contributions fromoperational and decoherence induced errors we can construct ameasure
for the total error probability perQEC cycle experienced by all physical qubits thatmake up the code. Note that
this a rather crudemodel that disregards possible influences from inter-qubit correlated errors and time-like
correlated errors. Nevertheless it serves as a useful first approximation to the performance of the surface code on
theQDP.We define the average per qubit per cycle error probability Ptot as

= + + + + +( ) ( ) ( )P d P P P P P P d8 3.5 10 4.5 . 20sw sh z gl m dectot

Note that this quantity depends linearly on the code distance d.We can plug this total per cycle error probability
Ptot into an empirical equation for the logical error probability PL derived in [27].

=
+⎛

⎝⎜
⎞
⎠⎟

( ) ( )P
P d

P
0.03

8
21L

tot

th

d 1
2

where Pth is the per step fault-tolerance threshold of the surface code, whichwe take to bePth=0.0057 following
the result in [27]. The factor of 8 is inserted to account for the fact that the empirical relation derived in [27] is
between the physical per step error rate and the logical per cycle error rate and the protocol analyzed in [27]
requires 8 time-steps per surface code error correction cycle. This is an approximation but it will serve our
purposes of getting a basic initial estimate of the logical error rate. The next step is to start plugging in
experimental numbers into equation equation (20). In the table belowwe quote error probabilities and
operation times for all relevant parameters. These numbers are projections from [4] and references therein.

Operation Error probability Time

two-qubit SWAP gate Psw=10−3 t = 20 nssw

qubit shuttle Psh=10−3 t = 10 nssh

Z-rotation bywaiting Pz=10−3 t = 100 nsz

global qubit rotation Pgl=10−3 t = 1000 nsgl

measurement Pm=10−3 t = 100nsm

To convert the operation times into decoherence induced errorwe use the estimatedT2 time of quantumdot
spin qubits in 28Si quoted as =T 10 ns2

9 [4, 29] and equation (19). Plugging these numbers into equation (20)
we get the following linear function of the code distance

= ´ + ´- - ( )P d2.7 10 2.8 10 22tot
2 5

whichwe can plug into the empiricalmodel equation (21). Infigure 13we plot the logical error probability PL
versus code distance. Note that for the experimental numbers provided the practical quantum computing

Figure 13.Plot of logical error probability versus code distance for the empiricalmodel given in equation (21)with experimental
parameters given in section 5.4.Note that the logical error probability for crossbar operation goes belowPL=10−20 for d=37. This
is only slightly slower than parallel operation, which reaches PL=10−20 for d=31. Due to the scaling of crossbar operationwith the
code distance the logical error probability bottoms out at some point. This however does not happen until d=155 (not shown) for a
logical error rate ofPL=10−41, which is not practically relevant. This roughmodel gives good indication it is possible to create very
low logical error surface code logical qubits in theQDP.

25

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



benchmarking = -( )Plog 20L is reached for a code distance of d=37. Themaximal code distance for the
experimental parameters is d=155 forwhich the log-logical error probability reaches = -( )Plog 41L , after
which it starts increasing again. For completeness we have also plottedwhat would happen if we had the power
to operate theQDP (with quoted device parameters) completely in parallel.We estimate the physical per cycle
error rate of this situation by setting d=1 in equation (22). Note that the difference between parallel and
crossbar style operation is not that big, the parallel version reachesPL=10−20 for d=31. This roughmodel
provides some quantitative justification for the implementation of planar error correction codes in theQDP
even in the absence of the ability to arbitrarily suppress logical error. Note also that, due to the long coherence
times [4, 29] of theQDP spin qubits, the dominant terms in the expression for the total error probability Ptot are
those associatedwith operation induced errors. This provides justification for the line-by-line application of
two-qubit gates discussed in section 3.2, which takes a longer time to performbut improves gate quality. It also
means that long coherence times and/or fast operation times are likely critical to the success of a crossbar based
scheme. This concludes our discussion of theQDPmapping of the surface code. A similar exercise can be done
for the 6.6.6. and 4.8.8. color codes but due to their lower thresholds [30], the results will likely be less positive for
current experimental parameters.

6. Conclusion

Weanalyzed the architecture presented in [4], focusing on its crossbar control system. Building on this analysis
we presented procedures formapping the planar surface code and the 6.6.6. and 4.8.8. color codes. Because the
line-by-line operation of the crossbar architecturemeans the noise in a single error correction cycle scales with
the distance it is not possible to arbitrarily suppress the logical error rate by increasing the code distance. Instead
therewill be some ‘optimal’ code distance forwhich the logical error rate is the lowest. Using numbers for [4]
and an empiricalmodel taken from [27]we analyzed the logical error behavior of the surface codemapping and
found that, for current experimental numbers, it is at least in principle possible to achieve logical error
probabilities below Plog=10−20,making practical quantum computation possible. However, we strongly stress
that this is a rather crude estimate and amore detailed answerwould have to take into account the details of the
dominant error processes in quantumdot qubits. Itmust also take into account that while it is possible to
achieve certain lownoise gates and good coherence times in quantumdots qubits in isolation this does not
necessarilymean theywill be practically achievable in the currentQDPdesign. A future research directionwould
be to performmuchmore detailed simulations of this crossbar system, perhapswith input from future
experiments. In such a simulation the effect of correlated errors (whichmight feasibly appear in a crossbar
architecture) could be investigated.

Another possible research directionwould be to use the currently developedmachinery tomapmore exotic
quantum error correction codes. Afirst step in this directionwould be the implementation of variants of the
surface codewithmore resistance to biased noise [31, 32]. Due to the possibility of qubit shuttling, also codes
with long distance stabilizers could in principle be implemented. Codes such as the 3D gauge color codesmight
be prime candidates for this kind of treatment. However, barring some special cases, parallel shuttling is
currently being performed in a line-by-linemanner. A general classical algorithm for generating optimal (in
time) shuttling-steps from an initial to afinalBOARDSTATEwould vastly simplify the task ofmappingmore
exotic codes and also general quantum circuits. Such an algorithmwould probably be useful for any future
crossbar quantum architecture. In this workwe constructed a non-optimal but classically efficient algorithmbut
finding an algorithm that generates optimal shuttling sequences and analyzing its resource use is still an open
problem.

Lastly there are important aspects of quantum error correction that are not discussed in this paper. Two of
these aspects are the ability to storemultiple logical qubits simultaneously and the ability to performquantum
operations on the logical qubits. A popular way of performing these tasks is by encodingmultiple logical qubits
in a single surface code sheet by introducing topological defects into the surface code sheet [27]. This process
involves notmeasuring stabilizers at certain points in the sheet, thus creating extra degrees of freedomwhich can
store logical information. The code distance of the code is given by the physical distance (measured in number of
physical qubits) between the defects. Operations can then be performed on these logical qubits bymoving the
defects around each other, a process known as braiding.We think this approach is not natural to the constraints
of the crossbar architecture for the following reasons

• Encoding qubits as defects wouldmean the size of the surface code sheet would scale as the number of encoded
qubits. Hence also, in our implementation, the physical error probability perQEC cycle would scale with the
number of qubits. This would put an upper limit on the number of qubits that can be implemented.

26

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al



• Creating andmoving around defects requires turning on and ofmeasurements for certain stabilizers in a local
manner. This locality runs counter to the design ideas of the crossbar architecture

• Given that the size of the surface code sheet would scale with the number of logical qubits onewould likely face
significant issues involving uniformity of control parameters of the entire sheet. This would be a significant
issue even if the scaling of the physical error probability can be avoided by clever implementation

Howeverwe can envision amode of computation that we speculate ismore amenable to this architecture by
thinking of an architecture composed of separatemodules containing a single logical qubit.We refer tofigure 7
of [4] for a proposal of how this could be done. Inside eachmodule our surface code protocol could be runwith
the ideal code distance given physical error parameters setting the size of thesemodules.We could then perform
logical X andZ gates transversally within themodules andwe could performCNOTgates between adjacent
modules via lattice surgery on the edges of themodules. Note that lattice surgery, which involves the turning on
and off of stabilizer patches in regular patterns (see [25] for an introduction to lattice surgery), is very amenable
to the constraints of the architecture, implying that a high degree of parallelization could be achievedwhen
mapping lattice surgery techniques to the crossbar architecture.

Acknowledgments

Wewould like to thank JérémyRibeiro, David Elkouss, KobeVrancken, Roy Li and LievenVandersypen for
helpful suggestions, discussions and feedback.Wewould like to thankCWJBeenakker for his support. JH and
SWare supported by STWNetherlands, NWOVIDI and an ERCStartingGrant.MS is supported by the
NetherlandsOrganization for Scientific Research (NWO/OCW) and an ERCSynergyGrant.MV acknowledges
support by theNetherlandsOrganization of Scientific Research (NWO)VIDI program.

ORCID iDs

JonasHelsen https://orcid.org/0000-0001-7218-2585

References

[1] Colless J 2014PhDThesisUniversity of Sydney
[2] Vandersypen L, BluhmH,Clarke J, DzurakA, Ishihara R,Morello A, Reilly D, Schreiber L andVeldhorstM2017 npjQuantum

Information 3 34
[3] Hill CD, Peretz E,Hile S J, HouseMG, FuechsleM, Rogge S, SimmonsMY andHollenberg LC 2015 Science Advances 1 e1500707
[4] Li R et al 2017 arXiv:1711.03807
[5] VeldhorstM, EeninkH, YangC andDzurakA 2017Nat. Commun. 8 1766
[6] GottesmanD1998Phys. Rev.A 57 127
[7] LidarDA andBrunTA 2013QuantumError Correction (Cambridge: CambridgeUniversity Press)
[8] Dennis E, Kitaev A, Landahl A and Preskill J 2002 J.Math. Phys. 43 4452
[9] BombinH andMartin-DelgadoMA2006Phys. Rev. Lett. 97 180501
[10] Versluis R, Poletto S, Khammassi N, Tarasinski B,HaiderN,MichalakD, BrunoA, Bertels K andDiCarlo L 2017 Physical Review

Applied 8 034021
[11] HeijmenT 2010 Soft errors from space to ground:Historical overview, empirical evidence, and future trends Soft Errors inModern

Electronic Systems edMNicolaidis (Berlin: Springer) (https://doi.org/10.1007/978-1-4419-6993-4_1)
[12] Fujita T, Baart TA, Reichl C,WegscheiderW andVandersypen LMK2017 arXiv:1701.00815
[13] HansonR, Kouwenhoven L P, Petta J R, Tarucha S andVandersypen LM2007Rev.Mod. Phys. 79 1217
[14] Taylor J, EngelH-A,DürW,Yacoby A,MarcusC, Zoller P and LukinM2005Nat. Phys. 1 177
[15] VeldhorstM et al 2014Nat. Nanotechnol. 9 981
[16] NielsenMAandChuang I 2002Quantum circuitsQuantumComputation andQuantum Information (Cambridge: Cambridge

University Press) (https://doi.org/10.1017/CBO9780511976667)
[17] Petta J R, JohnsonAC, Taylor JM, Laird EA, Yacoby A, LukinMD,MarcusCM,HansonMP andGossardAC 2005 Science 309 2180
[18] Meunier T, CaladoV andVandersypen L 2011Phys. Rev.B 83 121403
[19] WatsonT et al 2017 arXiv:1708.04214
[20] VeldhorstM et al 2015Nature 526 410
[21] SchuchN and Siewert J 2003Phys. Rev.A 67 032301
[22] Gorodentsev A L 2016Algebra I: Textbook for Students ofMathematics (Berlin: Springer)
[23] WangD S, Fowler AG andHollenberg LC2011Phys. Rev.A 83 020302
[24] Fowler AG, Stephens AMandGroszkowski P 2009Phys. Rev.A 80 052312
[25] HorsmanC, Fowler AG,Devitt S andVanMeter R 2012New J. Phys. 14 123011
[26] Terhal BM2015Rev.Mod. Phys. 87 307
[27] Fowler AG,MariantoniM,Martinis JM andClelandAN2012Phys. Rev.A 86 032324
[28] Tomita Y and Svore KM2014Phys. Rev.A 90 062320
[29] Tyryshkin AM2011Nat.Mater. 11 143–47

27

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al

https://orcid.org/0000-0001-7218-2585
https://orcid.org/0000-0001-7218-2585
https://orcid.org/0000-0001-7218-2585
https://orcid.org/0000-0001-7218-2585
https://doi.org/10.1038/s41534-017-0038-y
https://doi.org/10.1126/sciadv.1500707
http://arxiv.org/abs/1711.03807
https://doi.org/10.1038/s41467-017-01905-6
https://doi.org/10.1103/PhysRevA.57.127
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevApplied.8.034021
https://doi.org/10.1007/978-1-4419-6993-4_1
http://arxiv.org/abs/1701.00815
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1038/nphys174
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1126/science.1116955
https://doi.org/10.1103/PhysRevB.83.121403
http://arxiv.org/abs/1708.04214
https://doi.org/10.1038/nature15263
https://doi.org/10.1103/PhysRevA.67.032301
https://doi.org/10.1103/PhysRevA.83.020302
https://doi.org/10.1103/PhysRevA.80.052312
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nmat3182


[30] Landahl A J, Anderson J T andRice PR 2011 arXiv:1108.5738
[31] Wootton J R, Peter A,Winkler J R and LossD 2017Phys. Rev.A 96 032338
[32] Tuckett DK, Bartlett SD and Flammia ST 2018Phys. Rev. Lett. 120 050505
[33] WestDB et al 2001 Introduction to GraphTheory vol 2 (Upper Saddle River: Prentice hall)
[34] BronC andKerbosch J 1973Commun. ACM 16 575
[35] DowneyRG and FellowsMR1995Theor. Comput. Sci. 141 109

28

QuantumSci. Technol. 3 (2018) 035005 JHelsen et al

http://arxiv.org/abs/1108.5738
https://doi.org/10.1103/PhysRevA.96.032338
https://doi.org/10.1103/PhysRevLett.120.050505
https://doi.org/10.1145/362342.362367
https://doi.org/10.1016/0304-3975(94)00097-3

	1. Introduction
	1.1. Contributions
	1.1.1. Analysis of the crossbar system
	1.1.2. An efficient algorithms for control on crossbar architectures
	1.1.3. Mapping of surface and color codes
	1.1.4. Analysis of the surface code logical error

	1.2. Outline

	2. The quantum dot processor
	2.1. Layout
	2.2. Control and addressing
	2.3. Elementary operations
	2.3.1. Coherent qubit shuttling
	2.3.2. Measurement and readout
	2.3.3. Single-qubit rotations
	2.3.4. Two-qubit gates
	2.3.5. CNOT subroutine


	3. Parallel operation of a crossbar architecture
	3.1. Parallel shuttle operations
	3.1.1. The flow matrix
	3.1.2. An algorithm for parallel shuttling
	3.1.3. Selective parallel single-qubit rotations

	3.2. Parallel two-qubit gates
	3.3. Parallel measurements
	3.3.1. A specific parallel measurement example

	3.4. Some useful grid configurations
	3.4.1. Idle configuration
	3.4.2. Square configuration
	3.4.3. Measurement Configuration
	3.4.4. Triangle configurations


	4. Error correction codes
	4.1. Introduction
	4.2. Planar surface code
	4.3.2D color codes
	4.4. Surface code mapping
	4.5. Color code mapping

	5. Discussion
	5.1. Practical implementation of the surface code
	5.2. Decoherence induced errors
	5.3. Operation induced errors
	5.4. Surface code logical error probability

	6. Conclusion
	Acknowledgments
	References



