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How to preserve quantum information for a long time ? 

Quantum error correction 

• Redundant encoding of  quantum states

• Diagnose errors by syndrome measurements

• Syndrome-dependent recovery operations

This talk: efficient algorithms for a classical simulation of  large-scale QEC circuits

Build better qubits

Classical simulation of  quantum error correction circuits with toy noise models

provides insights into how well a given quantum code can perform in practice.



Coherent vs Pauli noise models

…

Pauli noise: models random errors caused by unwanted interactions with the environment 

Coherent noise: models systematic errors caused by imprecision in the classical control 

- trace preserving  

completely positive maps 
Encoder Decoder
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…
SU(2) gates

Encoder Decoder

Stabilizer-type quantum codes: Clifford encoding/decoding circuits.

Pauli noise is easy to simulate numerically (use Gottesman-Knill)

Coherent noise is described by Clifford+SU(2) circuits.

Brute-force simulation requires exponential time.

Clifford Clifford
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stabilizers (parity checks):

𝑍𝑍
𝑋𝑋

Logical (encoded) states are defined as

+1 eigenvectors of  all stabilizers



= qubit

Encodes one logical qubit into 𝑛 = 𝑑2 physical qubits with distance 𝑑

𝑍𝑍𝑍𝑍 𝑋𝑋𝑋𝑋

stabilizers (parity checks):

𝑍𝑍
𝑋𝑋

𝑋𝐿 = 𝑋⊗𝑑

𝑍𝐿 = 𝑍⊗𝑑
logical Pauli operators

Special case: surface codes



Special case: surface codes

One of  the most attractive candidates for an experimental realization

DiCarlo et al. (TU Delft)

Nature Communications 2015

Physical Review Applied 2017

Takita, Corcoles, et al. (IBM)

Nature Communications 2015, PRL 2016 

Barends, Kelly et al. (UCSB)  Nature 2014, Nature 2015
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Special case: surface codes

One of  the most attractive candidates for an experimental realization

High error threshold (above 1%) for the Pauli noise. 

Syndrome readout requires only nearest-neighbor gates on a grid. 

Fowler et al, PRA (2009)

What about coherent noise ?



• Large-scale simulation of  the surface codes subject to coherent errors

such as systematic Z-rotations. Simulated systems with up to 2400 qubits.

• Efficient and exact simulation algorithm. Runtime:  𝑂(𝑑4)

• Estimates of  the error threshold and the effective logical channel.

Our results 

𝑑 = 3
𝑑 = 5
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Result 1: simulating storage of  logical states with coherent errors 𝑼 = 𝐞𝐱𝐩(𝒊𝜽𝒁)

• Input: distance 𝑑, angle 𝜃, initial state 𝜓𝐿

• Output: syndrome 𝑠, final logical state 𝜙𝐿(𝑠)

initial 
logical  state

bitwise
Z-rotation

error

syndrome 𝑠
final

logical state

Pauli 
correction

𝐶(𝑠)

ideal
syndrome

measurement

The Z-rotation angle can be qubit-dependent. 
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physical 
basis  state

logical basis
state

Surface code enables preparation of  logical-X (or Z) basis states by initializing each 

physical qubit in the X-basis, measuring the syndrome, and applying a Pauli correction:

apply Pauli 
correction 𝐶(𝑠)

measure 
syndrome 𝑠



product  state

We simulated a noisy version of  this protocol with errors in the initial state preparation:

apply Pauli 
correction 𝐶(𝑠)

measure 
syndrome 𝑠

final
logical state
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product  state

We simulated a noisy version of  this protocol with errors in the initial state preparation:

apply Pauli 
correction 𝐶(𝑠)

measure 
syndrome 𝑠

final
logical state

Runtime: 𝑂(𝑑4).    

Input: distance 𝑑, initial state |  𝜓 ∈ 𝐂2

Output:  syndrome 𝑠, final state 𝜙𝐿(𝑠)

Result 2: simulating logical state preparation with coherent SU(2) errors



Our algorithms rely on a mapping of  the surface code to a system of  Majorana fermions 

Wen (2003)  

Kitaev (2005)

Terhal, Hassler, DiVincenzo (2012)



• Surface code. Simulation by tensor network algorithms (PEPS).

Runtime is exponential in the code distance 𝑑.

Works for any single-qubit noise channels

Darmawan and Poulin, PRL 2017. 

• Repetition code (1D surface code). Analytic solution.

Greenbaum and Dutton, Quant. Sci. Technol. 2018

• Repetition code with the circuit-based noise model (noisy encoding/decoding).

Simulation by mapping to dynamics of  free fermions.

Suzuki, Fujii, and Koashi, PRL 2017

Previous work on simulation of  QEC with coherent errors



• Majorana representation of  the surface code

• Sketch of  the simulation algorithm

• Numerical results

Outline



Majorana fermions

𝑛 qubits = 2𝑛 Majorana modes

…

Commutation rules: 

Products of  Majorana operators 𝑐𝑝 form an operator basis of  n qubits 
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Suppose |  𝜙 is a normalized 𝑛-qubit state. Define a covariance matrix 

We say that |  𝜙 is a Gaussian state  if  it obeys Wick’s theorem:

(and similar formulas for the higher-order correlators)

A Gaussian state is fully specified by its covariance matrix 𝑀.
This requires only  𝑂(𝑛2) real parameters.
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two-mode parity projector

two-mode rotation

Fermionic Linear Optics (Knill 2001, DiVincenzo and Terhal 2002)

• Operations that map Gaussian states to Gaussian states. 

• Can be efficiently simulated by keeping track of  the covariance matrix

two-mode initialization

Simulation costFLO operation
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Majorana representation of  the surface code  Wen (2003)

4𝑛 Majorana fermions 𝑐1, … , 𝑐4𝑛 (blue dots)

Edge operators:

Strategy for simulating syndrome measurements:

Express each plaquette stabilizer as a product of  edge operators 𝐴𝑒.
Measure syndromes of  the edge operators (two-mode parity measurements).

Each plaquette syndrome is a product of  the edge syndromes.

Majorana commutation rules imply



Majorana C4-code:
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stabilizer:



Majorana C4-code:

𝑐1

𝑐2

𝑐3

𝑐4

• Any logical state is Gaussian

• Any logical (non-Pauli) operator can be realized by Fermionic Linear Optics 

stabilizer:
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plaquette

operator

plaquette operator

encoded by C4 code

edge operators on

the boundary of  𝑓

The same formula applies to X-type plaquette operators
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Simulating syndrome measurements: overview

Goal: measure syndromes of  all plaquette operators 𝐵𝑓 on a product state |  𝜓⊗𝑛 .

• Suffices to measure syndromes of  C4-encoded plaquette operators 𝐵𝑓

on the C4-encoded product state |   𝜓⊗𝑛

• Suffices to measure syndromes of  edge operators 𝐴𝑒 on  |   𝜓⊗𝑛

• The state |   𝜓⊗𝑛 is Gaussian since any logical state of  C4 is Gaussian.

• Simulating two-mode parity measurements on a Gaussian state is easy.

Runtime 𝑂 𝑛2 per measurement. Overall runtime is 𝑂 𝑛3 .
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Runtime can be improved by measuring edge operators in a specific order: 

Tensor product

of  two-mode

states 

Tensor product

of  four-mode

states 

At each time step all except for 𝑂( 𝑛) “active” modes are in a product state. 

Inactive modes can be removed from the simulator. This reduces the runtime to 𝑂(𝑛2)
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How to measure final logical state:

Claim: once all edge operators have been measured, the reduced state of  the 

four corner modes is the final logical state encoded by the C4-code

The logical Bloch vector is determined by expectation values of  the 

“logical” edge operators  𝑋 = 𝑖𝑐1𝑐4,  𝑌 = 𝑖𝑐2𝑐4,  𝑍 = 𝑖𝑐3𝑐4

𝑐1

𝑐4 𝑐3

𝑐2
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Simulating storage of  a logical state: sketch of  main ideas

initial 
logical  state

bitwise
Z-rotation

error

syndrome 𝑠
final

logical state

Pauli 
correction

𝐶(𝑠)

ideal
syndrome

measurement

Encode each qubit of  the initial logical state by C4. This results in a non-Gaussian state.

Measure syndrome of  X-stabilizers by bitwise X-measurements.

Construct a sequence of  Gaussian states that results in the same measurement statistics

for bitwise X-measurements.



Structure of  the logical channel

Syndrome probabilities:

We shall only consider Z-rotation errors 𝑈 = exp(𝑖𝜃𝑍)

initial logical statesyndrome projector



Lemma (logical rotation angle)
The syndrome probability distribution 𝑝(𝑠) does not depend on the initial logical state.

The logical qubit undergoes a Z-rotation by some angle 𝜃 𝑠 .

Structure of  the logical channel

Syndrome probabilities:

We shall only consider Z-rotation errors 𝑈 = exp(𝑖𝜃𝑍)

initial logical statesyndrome projector



logical channel

syndromes
Encoder Noise Decoder

Structure of  the logical channel



Logical error rate:

average diamond-norm distance between the logical channel Φ𝑠
𝐿 and the identity



Logical error rate:

average diamond-norm distance between the logical channel Φ𝑠
𝐿 and the identity

Pauli correction was computed using the min-weight matching decoder.

The decoder does not depend on 𝜃 (all edge weights are set to one)
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Pauli Twirl Approximation:
replace coherent physical 
noise 

𝑁 𝜌 = 𝑒𝑖𝜃𝑍𝜌𝑒−𝑖𝜃𝑍

by its Pauli twirled version

𝑁𝑡𝑤𝑖𝑟𝑙 𝜌 = 1 − 𝜖 𝜌 + 𝜖𝑍𝜌𝑍

𝜖 = sin2(𝜃)

Coherent vs twirled physical noise

The same error threshold ! 



PTA underestimates 
the logical error rate  
in the sub-threshold regime

Coherent vs twirled physical noise

PTA gives a good estimate
of the error threshold



Pauli-Z error

Pauli-Z error

Logical Z-rotation angle: probability distribution

𝑑 = 9 𝑑 = 25

coherent

coherent

coherent coherent
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How to quantify coherence of the logical-level noise ?

Full logical channel:

Twirled logical channel:
(random part of the full channel)

Now we have two different logical error rates:

We shall use the ratio 𝑃𝐿/𝑃𝑡𝑤𝑖𝑟𝑙
𝐿 to quantify coherence of the logical noise.



Increasing the code distance
makes the logical noise
less coherent

The degree of coherence 
of the logical channel.



Average logical channel 

syndromes
Encoder Noise Decoder

Appropriate model if  the environment has no access to the measured syndromes.

Quantify coherence of  the average logical channel using the ratio of  two error rates 



Increasing the code distance
makes the logical noise
less coherent

The degree of coherence for 
the average logical channel

Conjecture: 
the average logical channel
has no coherent part
in the limit 𝑑 → ∞
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Coherent vs Pauli noise models

𝛼

𝛽

Example of a uncorrectable Z-error
Minimum weight correction 

𝑅 = Manhattan distance between 𝛼 and 𝛽

Pauli noise:

𝐴1

𝐴2

𝐴𝑁
Total probability of all uncorrectable errors connecting 𝛼 and 𝛽 can be amplified 
due to  a constructive interference.

Coherent noise:

≫
?

N equivalent errors



Conclusions

Efficient simulation algorithm for error correction with Z-rotation errors

Runtime 𝑂(𝑑4). Simulated systems with up to 2400 qubits.

The observed error threshold is close to 0.1𝜋 which agrees very well

with the threshold of  the Pauli twirled noise model.

Increasing the code distance makes the logical-level noise less coherent.  

Pauli twirl approximation significantly underestimates the logical error rate

in the sub-threshold regime.




