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1. What is decoding and how fast 
does it need to be?

2. The Union Find decoder 

3. Achieving almost-linear time
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What is a decoder?
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• The decoder is part of a feedback loop that 
determines how the quantum state should be 
addressed. 

• If the measurements outcomes cannot be 
processed by the decoder as quickly as they 
are being produced, we end up with a backlog 
problem. 

Clock speed Estimated decoding time 
(for a 20x20 lattice)

Superconducting qubits 20ns 400 ns 1411.7403

Trapped ions 480ns 10,000 ns 1709.06952

Photons 2 ns 40 ns

NV centres (electron) 10 !s 200,000 ns Science 356, 634, 928-
932

NV centres (nuclear spin) 500 !s 10,000,000 ns Science 356, 634, 928-
932

How fast?



What makes a good decoder?

• The optimal decoder cannot always correct 
errors, instead we see threshold behavior

• The optimal decoder has exponential complexity. 
Approximate algorithms trade off speed for 
lowering the threshold.  
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Threshold
(2d surface code)

Worst case 
Complexity

Works with any 
geometry?

Optimal decoder 11.0% eN !

MWPM
(Harrington, Fowler)

10.3% O(N3) x

RG decoder
(Harrington, Duclos-Cianci, Poulin)

8.2% O(NlogN) x

HDRG
(Wooton)

7.3% O(N2) !

Union Find decoder 9.9% O("(N) N) !

increasing 
code size
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Syndrome graph
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Syndrome graph

• The syndrome graph is a 
representation of (one basis of) the 
code. 

• Each edge represents the error 
state of a qubit.

• Stabilizer measurement outcomes 
are associated with each vertex. 

• The sum of the outcomes around 
each vertex should always be even. 

2D surface code

Syndrome graph



Identifying errors

Erasure error
a.k.a loss

• A Pauli error occurs with 
50% probability 

• The location of the error is 
known.

• For example: we 
reinitialize a qubit into the 
maximially mixed state.

Bit-flip error
(Z-basis Pauli error)

• The location of the error is 
unknown

• For example: the photon 
is in the ‘wrong’ rail before 
the final detection
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The Union Find Decoder

1. Convert stochastic errors into erasures

2. Apply the erasure decoder

The Union Find decoding algorithm can be broken in two stages



Decoding Erasure

Measurement outcomes are represented as a 
graph where edges correspond to erased 
outcomes, and vertices are syndromes.
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Erasure Decoder

Grow a spanning forest to cover the 
erased edges. 

while erased edges remain, do: 

1. start at a leaf edge (u,v).

2. Remove the edge from the erasure, and apply the 
rules:

• (R1) If the vertex u is odd, set the edge value 
to 1 and flip the value of v

• (R2) If the vertex u is even, set the edge value 
to 0
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Syndrome Validation

16

Syndrome Validation

Create a list of all odd clusters

while there exists an odd cluster: 

Iterate over all odd clusters: 

1. Grow the cluster by a half-edge

2. If the cluster meets another cluster, fuse and 
update parity

3. If the new cluster is even, remove it from the 
odd cluster list

Add any edges that are full grown to the list of erased 
edges. 
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Syndrome Validation
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Syndrome Validation
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Example: decoding with 10% erasure, 5% Pauli error 
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Example: decoding with 10% erasure, 5% Pauli error Measure Syndromes
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Syndrome ValidationExample: decoding with 10% erasure, 5% Pauli error 
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Syndrome ValidationExample: decoding with 10% erasure, 5% Pauli error 
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Syndrome ValidationExample: decoding with 10% erasure, 5% Pauli error 
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Erasure DecodingExample: decoding with 10% erasure, 5% Pauli error 
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Erasure DecodingExample: decoding with 10% erasure, 5% Pauli error 
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Erasure DecodingExample: decoding with 10% erasure, 5% Pauli error 



30
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Erasure DecodingExample: decoding with 10% erasure, 5% Pauli error 
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Erasure DecodingExample: decoding with 10% erasure, 5% Pauli error 
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Resulting errorExample: decoding with 10% erasure, 5% Pauli error 
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Performance: Threshold

a) Correctable region in 2d b) Correctable region in 3d
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! Fault tolerance: Exactly the same algorithm will decode the 2+1d surface 
code, which has a cubic syndrome graph. 

! Arbitrary surface code: Method works for any structure of syndrome graph, 
and can be applied directly to any surface code, including those with unusual 
geometry such as hyperbolic codes. 

! Color code: By projecting the surface code onto the color code, an arbitrary 
color code can be decoded. 

! Other codes?: For any code for which there is an erasure decoder, and a 
notion of distance between syndromes, this approach can be used to create a 
decoder for Pauli error.

Wider Applicability



1. What is decoding and how fast 
does it need to be?

2. The Union Find decoder 

3. Achieving almost-linear time



O(N)?

UNION(u,v)
Merges clusters u and v

FIND(n)
Returns the cluster to which 

node n belongs

Achieving almost linear complexity
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Achieving almost linear complexity

Naive algorithm

FIND:  Lookup node: O(1) 
UNION:  Relabel every element of one cluster: O(N) 

Worst case complexity:  O(N2) 

Data structure: Lookup table for each node
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Achieving almost linear complexity

Better algorithm

FIND:  Traverse tree to find root: O(log N) 
UNION:  Point root of one cluster to the other O(1) 

Worst case complexity:  O( N log N ) 

Data structure: Tree, stored as a linked list
root of tree identifies the cluster
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Achieving almost linear complexity

Even better algorithm

Data structure: Tree, stored as a linked list
root of tree identifies the cluster

Worst case complexity:  O( !(N) N ) 

!(N) is the inverse of Ackermann’s function, and !(N) " 3 as long as N <

+ Weighted Union
During UNION always updates the smallest of the two clusters. 
Size of smaller cluster at least doubles when UNION is called. 

+ Path compression
After FIND(u) Is called, add a new edge pointing u directly to the root.
If Find(u) is called again, it will take 1 step to return the root. 

The analysis of these three things combined was first made by Tarjan: 
R. E. Tarjan, Journal of the ACM (JACM) 22, 215. (1975).



Performance: Running time
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Why you should care about the Union Find Decoder if: 

You want to build a quantum computer: 
• The UF decoder is very fast in practice, with effectively linear scaling and a small constant 

overhead
• Very simple algorithm, good for implementing in hardware. 

You want to numerically study codes with unusual geometries: 
• The decoder can be applied to any surface code (2d or 2+1d), without any adaptation, to 

color codes, and potentially to wider classes of codes.

You want to understand the connection between erasure errors and Pauli errors: 
• The decoding algorithm provides one way of converting Pauli errors into erasures. Maybe 

this can help us better understand how they are related?

Questions still to answer:

• How fast can it run in hardware?
• Compare directly to other decoders’ below threshold performance 
• What’s the best way to parallelize the algorithm?
• Can the threshold be further improved?
• Can the algorithm be adapted to account for more types of errors?




