Efficient decoding of random errors for quantum expander codes

Omar Fawzi & Antoine Grospellier & Anthony Leverrier

January 17, 2018

Content of the talk

- 2 Examples of quantum codes
- 3 Quantum expander codes

Outline

- 2 Examples of quantum codes
- 3 Quantum expander codes
- Our contribution

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical qubits by a fault-tolerant circuit with noisy gates and $\mathcal{O}(m \operatorname{polylog}(mT))$ physical qubits.

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical qubits by a fault-tolerant circuit with noisy gates and $\mathcal{O}(m \operatorname{polylog}(mT))$ physical qubits.

- Practice: break RSA with 4000 logical qubits, but $10^6 10^9$ physical qubits
- [Gottesman, '13] improved this result using constant rate quantum codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, '13]

Provided codes with nice properties exist, the ratio physical/logical qubits can be made constant: $\mathcal{O}(m \operatorname{polylog}(mT)) \rightsquigarrow \mathcal{O}(m)$

Main motivation: fault-tolerant quantum computation

Threshold Theorem [Ben-Or & Aharonov, '97]

We can simulate a quantum circuit with T perfect gates and m logical qubits by a fault-tolerant circuit with noisy gates and $\mathcal{O}(m \operatorname{polylog}(mT))$ physical qubits.

- Practice: break RSA with 4000 logical qubits, but $10^6-10^9\ {\rm physical}\ {\rm qubits}$
- [Gottesman, '13] improved this result using constant rate quantum codes instead of concatenated codes

Threshold theorem with constant overhead [Gottesman, '13]

Provided codes with nice properties exist, the ratio physical/logical qubits can be made constant: $\mathcal{O}(m \operatorname{polylog}(mT)) \sim \mathcal{O}(m)$

- Before this work, no existing codes had these "nice properties"
- We proved that quantum expander codes have these "nice properties"

Stabilizer codes

Definition stabilizer codes: given a set g_1, \ldots, g_{n-k} of commuting Pauli operators (product of X and Z Pauli matrices) on n qubits (called generators), we define a quantum code Q by:

$$\mathcal{Q} = \left\{ |\psi\rangle \in \mathbb{C}^{2^{n}} : g_{1} |\psi\rangle = |\psi\rangle \cdots g_{n-k} |\psi\rangle = |\psi\rangle \right\}$$

Stabilizer codes

Definition stabilizer codes: given a set g_1, \ldots, g_{n-k} of commuting Pauli operators (product of X and Z Pauli matrices) on n qubits (called generators), we define a quantum code Q by:

$$\mathcal{Q} = \left\{ |\psi\rangle \in \mathbb{C}^{2^{n}} : g_{1} |\psi\rangle = |\psi\rangle \cdots g_{n-k} |\psi\rangle = |\psi\rangle \right\}$$

Parameters of a stabilizer code [[n, k, d]]:

- *Q* encodes k logical qubits into n physical qubits
 i.e *Q* is a 2^k dimensional subspace of C^{2ⁿ}
- A logical error L is a Pauli operator such that $[L, g_i] = 0$ for all i and $L \notin \langle g_1, \dots, g_{n-k} \rangle$
- The minimal distance d is the minimal weight of a logical error

Stabilizer codes

Definition stabilizer codes: given a set g_1, \ldots, g_{n-k} of commuting Pauli operators (product of X and Z Pauli matrices) on n qubits (called generators), we define a quantum code Q by:

$$\mathcal{Q} = \left\{ |\psi\rangle \in \mathbb{C}^{2^{n}} : g_{1} |\psi\rangle = |\psi\rangle \cdots g_{n-k} |\psi\rangle = |\psi\rangle \right\}$$

Parameters of a stabilizer code [[n, k, d]]:

- *Q* encodes k logical qubits into n physical qubits
 i.e *Q* is a 2^k dimensional subspace of C^{2ⁿ}
- A logical error L is a Pauli operator such that $[L, g_i] = 0$ for all i and $L \notin \langle g_1, \dots, g_{n-k} \rangle$
- The minimal distance d is the minimal weight of a logical error

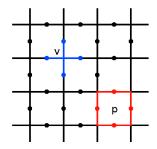
Decoder for a quantum code:

• Measurements of the generators g_1, \ldots, g_{n-k} \rightarrow Syndrome $\in \{-1, +1\}^{n-k}$ Ex: syndrome(code state) = $(+1, +1, +1, \ldots)$

- $\ensuremath{ \bullet} \ensuremath{ \bullet} A \ensuremath{ guess for the error}$
- Apply the guessed error to the quantum state

Example: the toric code

- n qubits on edges
- X-type generators associated with vertices
- Z-type generators associated with plaquettes
- k = # holes = 2
- $d = \text{systole} = \sqrt{n/2}$
- Numerical simulations: 10% rate random errors are corrected

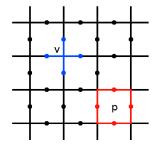


Example: the toric code

- *n* qubits on edges
- X-type generators associated with vertices
- Z-type generators associated with plaquettes
- k = # holes = 2
- $d = \text{systole} = \sqrt{n/2}$
- Numerical simulations: 10% rate random errors are corrected

Adversarial errors VS Random errors:

- "Corrects adversarial errors of size up to Θ(√n)": any error of size up to Θ(√n) is corrected
 → Link with the minimal distance
- "Corrects random errors of size Θ(n)": an error where qubits are flipped with probability p independently is corrected with high probability
 - \rightarrow Framework of our result



"Nice properties" required for [Gottesman, '13]

LDPC

An LDPC code is such that the generators g_1, \ldots, g_{n-k} satisfy:

- The size of the support of each g_i is bounded
- Each qubit is included in the support of a bounded number of g_i

Ex: for the toric code, bounded = 4

"Nice properties" required for [Gottesman, '13]

LDPC

An LDPC code is such that the generators g_1, \ldots, g_{n-k} satisfy:

- The size of the support of each g_i is bounded
- Each qubit is included in the support of a bounded number of g_i
- Ex: for the toric code, bounded = 4

Constant rate

 $k = \Theta(n)$ Ex: the toric code does not have a constant rate (k = 2)

"Nice properties" required for [Gottesman, '13]

LDPC

An LDPC code is such that the generators g_1, \ldots, g_{n-k} satisfy:

- The size of the support of each g_i is bounded
- Each qubit is included in the support of a bounded number of g_i
- Ex: for the toric code, bounded = 4

Constant rate

 $k = \Theta(n)$ Ex: the toric code does not have a constant rate (k = 2)

Efficient decoder

There is a polynomial time decoder which corrects random errors of size $\Theta(n)$ with very high probability

- Very high probability: $\mathbb{P}(ext{correction}) = 1 o(1/n^c)$ for all $c \in \mathbb{N}$
- $d = \Theta(n^{\epsilon})$ is required to get a "very high probability"

Main Theorem

Quantum expander codes are LDPC and have constant rate and have an efficient decoder

Efficient decoder

There is a polynomial time decoder which corrects random errors of size $\Theta(n)$ with very high probability

Main Theorem

Quantum expander codes are LDPC and have constant rate and have an efficient decoder

Efficient decoder

There is a polynomial time decoder which corrects random errors of size $\Theta(n)$ with very high probability

Technical remark:

- The main theorem is true even with syndrome measurements errors (proved after the QIP submission)
- We can apply [Gottesman, '13] with quantum expander codes
- Fault-tolerant quantum computation with constant overhead is possible

Outline

Our contribution

Initial problem:

- The best known minimal distance for a constant rate LDPC code is $\Theta(\sqrt{n} \sqrt[4]{\log(n)})$ ([Freedman & Meyer & Luo '02])
- We want to correct random errors of size $\Theta(n)$ with very high probability

Initial problem:

- The best known minimal distance for a constant rate LDPC code is $\Theta(\sqrt{n} \sqrt[4]{\log(n)})$ ([Freedman & Meyer & Luo '02])
- We want to correct random errors of size Θ(n) with very high probability

Solution given by [Dennis & Kitaev & Landahl & Preskill '01], [Kovalev & Pryadko '13]:

- Use of graph percolation theory
- Given a constant rate LDPC code with minimal distance d = Ω(n^ε), the maximum likelihood decoder corrects random errors of size Θ(n) with very high probability

Initial problem:

- The best known minimal distance for a constant rate LDPC code is $\Theta(\sqrt{n} \sqrt[4]{\log(n)})$ ([Freedman & Meyer & Luo '02])
- We want to correct random errors of size Θ(n) with very high probability

Solution given by [Dennis & Kitaev & Landahl & Preskill '01], [Kovalev & Pryadko '13]:

- Use of graph percolation theory
- Given a constant rate LDPC code with minimal distance d = Ω(n^ε), the maximum likelihood decoder corrects random errors of size Θ(n) with very high probability

Remaining problem:

• The maximum likelihood decoder is exponential time in general

Surface codes

- The generators g_1, \ldots, g_{n-k} are given by a tessellations of a surface
- Maximum-likelihood decoding can be done efficiently using Edmond's matching algorithm

Surface codes

- The generators g_1, \ldots, g_{n-k} are given by a tessellations of a surface
- Maximum-likelihood decoding can be done efficiently using Edmond's matching algorithm

	k	Correction up to size	Efficient correction up to size
Toric code [Kit03]	2	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
Hyperbolic 2D [FML02]	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$

[Kit03] A Yu Kitaev. "Fault-tolerant quantum computation by anyons". (2003) [FML02] Michael H Freedman, David A Meyer, and Feng Luo. "Z2-systolic freedom and quantum codes". (2002)

Properties needed to apply [Gottesman, '13]:

- A constant rate quantum code
- $d = \Omega(n^{\epsilon})$

Surface codes

- The generators g_1, \ldots, g_{n-k} are given by a tessellations of a surface
- Maximum-likelihood decoding can be done efficiently using Edmond's matching algorithm

	k	Correction up to size	Efficient correction up to size
Toric code [Kit03]	2	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
Hyperbolic 2D [FML02]	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$

[Kit03] A Yu Kitaev. "Fault-tolerant quantum computation by anyons". (2003) [FML02] Michael H Freedman, David A Meyer, and Feng Luo. "Z2-systolic freedom and quantum codes". (2002)

Properties needed to apply [Gottesman, '13]:

• A constant rate quantum code

•
$$d = \Omega(n^{\epsilon})$$

No-go result

We cannot apply [Gottesman '13] using surface codes:

$$kd^2 \leq c(\log k)^2 n$$
 [Delfosse '13]

4 Dimensional hyperbolic codes

- The generators g_1, \ldots, g_{n-k} are given by a tessellation of the 4 Dimensional hyperbolic space
- The bound for surface codes can be beaten by 4D codes
- No efficient maximum-likelihood decoder is known

	k	Correction up to size	Efficient correction up to size
Hyperbolic 4D [GL14], [Has13], [LL17]	$\Theta(n)$	$\Omega(n^{0.2}), \mathcal{O}(n^{0.3})$	$\Theta(\log n)$

[GL14] Larry Guth and Alexander Lubotzky. "Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds". (2014)

[Has13] Matthew B Hastings. "Decoding in Hyperbolic Spaces: LDPC Codes With Linear Rate and Efficient Error Correction". (2013)

[LL17] Vivien Londe and Anthony Leverrier. "Golden codes: 4D hyperbolic regular quantum codes". (2017)

- There might be an efficient decoder to correct any adversarial error of size up to Ω(n^ε) but no such algorithm is known
- $\Theta(\log n)$ is not enough to apply [Gottesman '13]

Outline

- Examples of quantum codes
- 3 Quantum expander codes

Our contribution

Definition [Steane '95], [Calderbank & Shor '95]

We can construct a quantum error correcting code using C_X and C_Z two classical error correcting codes such that $C_X^{\perp} \subseteq C_Z$

Each generator g_1, \ldots, g_{n-k} of a CSS-code is either a product of Pauli X matrices or a product of Pauli Z matrices

Definition [Steane '95], [Calderbank & Shor '95]

We can construct a quantum error correcting code using C_X and C_Z two classical error correcting codes such that $C_X^{\perp} \subseteq C_Z$

Each generator g_1, \ldots, g_{n-k} of a CSS-code is either a product of Pauli X matrices or a product of Pauli Z matrices

Remark

The difficulty for constructing CSS code is to find two classical codes which are orthogonal

Hypergraph product codes [Tillich & Zémor '09]

The parity check matrix H of a classical code C satisfies $C = \ker H$. Let H be the parity check matrix of a classical code with constant rate and linear minimal distance.

We define the two classical codes \mathcal{C}_X and \mathcal{C}_Z by their parity check matrices:

 $H_X = (\mathbb{1} \otimes H, H^T \otimes \mathbb{1}) \qquad H_Z = (H \otimes \mathbb{1}, \mathbb{1} \otimes H^T)$

Then $\mathcal{C}_X^{\perp} \subseteq \mathcal{C}_Z$

Hypergraph product codes [Tillich & Zémor '09]

The parity check matrix H of a classical code C satisfies $C = \ker H$. Let H be the parity check matrix of a classical code with constant rate and linear minimal distance.

We define the two classical codes \mathcal{C}_X and \mathcal{C}_Z by their parity check matrices:

 $H_X = (\mathbb{1} \otimes H, H^T \otimes \mathbb{1}) \qquad H_Z = (H \otimes \mathbb{1}, \mathbb{1} \otimes H^T)$

Then $\mathcal{C}_X^{\perp} \subseteq \mathcal{C}_Z$

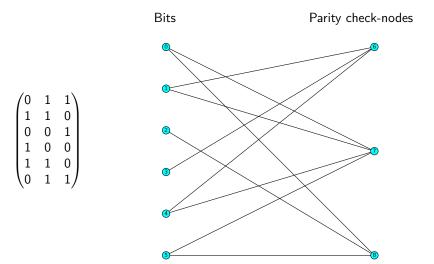
Definition

The hypergraph product is defined as $CSS(C_X, C_Z)$. It's a constant rate code with minimal distance $d = \Theta(\sqrt{n})$

- Freedom to choose H
- [Leverrier & Tillich & Zémor '15] chooses *H* as the parity check-matrix of a "classical expander code" ([Sipser & Spielman, '96])

Classical expander codes

The parity check matrix H of a classical code C satisfies $C = \ker H$ H represented by a factor graph

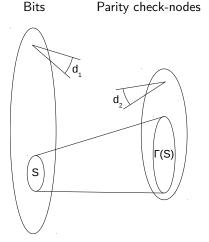


Classical expander codes

The parity check matrix H of a classical code C satisfies $C = \ker H$ H represented by a factor graph

Definition of a (γ, δ) expander graph For all $S \subseteq \{Bits\}$, if $|S| \leq \gamma n$ then: $|\Gamma(S)| \geq (1 - \delta)d_1|S|$ $|\Gamma(S)| \leq d_1|S|$ Expander graph \rightarrow Parity check matrix

- \rightarrow Classical expander code
- \rightarrow Quantum expander code



Decoder for quantum expander codes

• Classical case (bit-flip algorithm):

- As long as it is possible to flip a single bit to decrease the syndrome weight, flip this bit
- This efficient algorithm corrects any adversarial error of size up to $\Theta(n)$ for classical expander codes [Sipser & Spielman, '96]

Decoder for quantum expander codes

• Classical case (bit-flip algorithm):

- As long as it is possible to flip a single bit to decrease the syndrome weight, flip this bit
- This efficient algorithm corrects any adversarial error of size up to $\Theta(n)$ for classical expander codes [Sipser & Spielman, '96]

• Quantum case (small-set-flip algorithm):

- The "qubit-flip" algorithm doesn't work
- Idea: try to flip several qubits at each step
- As long as it is possible to flip a subset of a generator to decrease the syndrome weight, flip this subset

Decoder for quantum expander codes

• Classical case (bit-flip algorithm):

- As long as it is possible to flip a single bit to decrease the syndrome weight, flip this bit
- This efficient algorithm corrects any adversarial error of size up to $\Theta(n)$ for classical expander codes [Sipser & Spielman, '96]

• Quantum case (small-set-flip algorithm):

- The "qubit-flip" algorithm doesn't work
- Idea: try to flip several qubits at each step
- As long as it is possible to flip a subset of a generator to decrease the syndrome weight, flip this subset

Theorem [Leverrier & Tillich & Zémor '15]

This efficient algorithm corrects any adversarial error of size up to $\Theta(\sqrt{n})$ for quantum expander codes

Outline

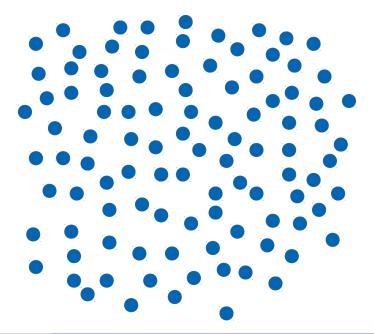
- Examples of quantum codes
- 3 Quantum expander codes

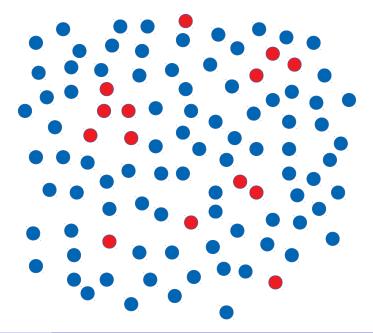
Question: What happens for random errors of size $\Theta(n)$?

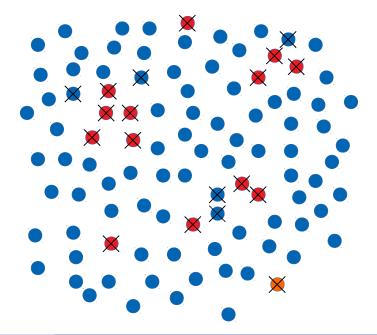
Theorem: what we proved

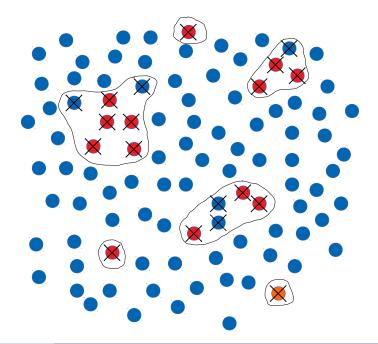
For a probability of error $p < p_{\text{th}}$: $\mathbb{P}(\text{small-set-flip corrects the error}) = 1 - 1/e^{\Omega(\sqrt{n})}$

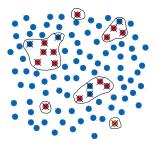
Idea. The algorithm is local with respect to the adjacency graph











The number of flips is linear in the size of the initial error

Definition: α -subset, $\alpha \in (0, 1]$

X is an α -subset of E if $|X \cap E| \ge \alpha |X|$

• Each connected component X is an α -subset of {red dots} $\cap X$

Theorem: what we proved

For a probability of error $p < p_{
m th}$: $\mathbb{P}(
m small-set-flip \ corrects \ the \ error) = 1 - 1/e^{\Omega(\sqrt{n})}$

Theorem: what we proved

For a probability of error $p < p_{\text{th}}$: $\mathbb{P}(\text{small-set-flip corrects the error}) = 1 - 1/e^{\Omega(\sqrt{n})}$

Key lemma: percolation

Let $\alpha \in (0, 1]$ and a probability of error $p < cst(\alpha, d)$. With probability $1 - 1/e^{\Omega(\sqrt{n})}$:

• If X is a connected α -subset of the error then $|X| < c\sqrt{n}$

Theorem: what we proved

For a probability of error $p < p_{\text{th}}$: $\mathbb{P}(\text{small-set-flip corrects the error}) = 1 - 1/e^{\Omega(\sqrt{n})}$

Key lemma: percolation

Let $\alpha \in (0, 1]$ and a probability of error $p < cst(\alpha, d)$. With probability $1 - 1/e^{\Omega(\sqrt{n})}$:

• If X is a connected α -subset of the error then $|X| < c\sqrt{n}$

Sketch of the proof of the theorem:

Take a random error and run the small-set-flip algorithm. Let X be a connected component of the marked qubits:

- X is an α-subset of the error
- $|X| < c\sqrt{n}$
- X is corrected

This is true for any $X \rightarrow$ the entire error is corrected

Conclusion

Quantum expander codes:

- Are LDPC quantum codes
- Have a constant rate
- Have a good minimal distance: $d = \Theta(\sqrt{n})$
- The decoder:
 - Corrects any adversarial error of size up to $\Theta(\sqrt{n})$
 - For a probability of error $p < p_{\mathsf{th}} : \mathbb{P}(\mathsf{correction}) = 1 1/e^{\Omega(\sqrt{n})}$
- Corollary:
 - Fault tolerant quantum computation with constant overhead is possible

Conclusion

Quantum expander codes:

- Are LDPC quantum codes
- Have a constant rate
- Have a good minimal distance: $d = \Theta(\sqrt{n})$

The decoder:

- Corrects any adversarial error of size up to $\Theta(\sqrt{n})$
- For a probability of error $p < p_{\mathsf{th}} : \mathbb{P}(\mathsf{correction}) = 1 1/e^{\Omega(\sqrt{n})}$

Corollary:

• Fault tolerant quantum computation with constant overhead is possible

Future work ($p_{ m th} \sim 10^{-16}$):

- Run simulations
- Improve our numerical value for the threshold

Conclusion

Quantum expander codes:

- Are LDPC quantum codes
- Have a constant rate
- Have a good minimal distance: $d = \Theta(\sqrt{n})$

The decoder:

- Corrects any adversarial error of size up to $\Theta(\sqrt{n})$
- For a probability of error $p < p_{\mathsf{th}} : \mathbb{P}(\mathsf{correction}) = 1 1/e^{\Omega(\sqrt{n})}$

Corollary:

• Fault tolerant quantum computation with constant overhead is possible

Future work ($p_{\rm th} \sim 10^{-16}$):

- Run simulations
- Improve our numerical value for the threshold

Thank you for your attention

Known constructions of quantum LDPC codes

	k	Correction up to size	Efficient correction up to size
Toric code [Kit03]	2	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$
Hyperbolic 2D [FML02]	$\Theta(n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hyperbolic 4D [GL14], [Has13], [LL17]	$\Theta(n)$	$\Omega(n^{0.2}), \mathcal{O}(n^{0.3})$	$\Theta(\log n)$
Expander codes [TZ14], [LTZ15]	$\Theta(n)$	$\Theta(\sqrt{n})$	$\Theta(\sqrt{n})$

[Kit03] A Yu Kitaev. "Fault-tolerant quantum computation by anyons". (2003)

[FML02] Michael H Freedman, David A Meyer, and Feng Luo. "Z2-systolic freedom and quantum codes". (2002)

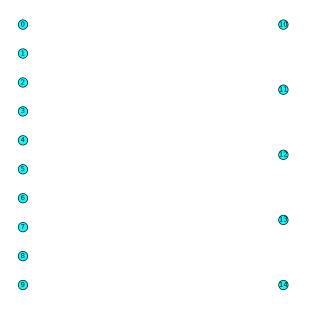
[GL14] Larry Guth and Alexander Lubotzky. "Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds". (2014)

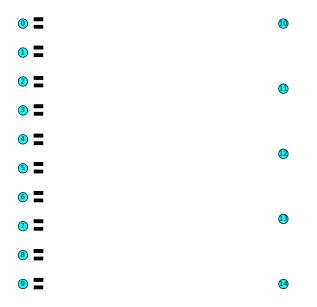
[Has13] Matthew B Hastings. "Decoding in Hyperbolic Spaces: LDPC Codes With Linear Rate and Efficient Error Correction". (2013)

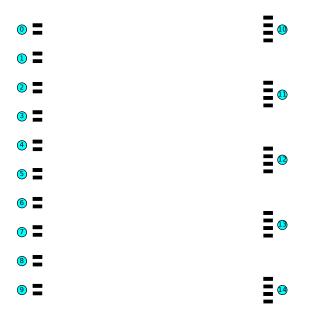
[LL17] Vivien Londe and Anthony Leverrier. "Golden codes: 4D hyperbolic regular quantum codes". (2017)

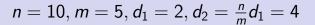
[TZ14] Jean-Pierre Tillich and Gilles Zémor. "Quantum LDPC codes with positive rate and minimum distance proportional to the square root of the blocklength". (2014)

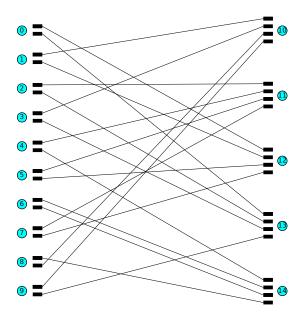
[LTZ15] Anthony Leverrier, Jean-Pierre Tillich, and Gilles Zémor. "Quantum expander codes". (2015)











$$n = 10, m = 5, d_1 = 2, d_2 = \frac{n}{m}d_1 = 4$$

