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2nd Law of thermodynamics (in its most convenient form for this talk):

“It is impossible to extract work, in a complete cycle, with the sole

effect of cooling a heat reservoir”
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Second Law: Quantification in quantum language

Pmachine Ohottom



Second Law: Quantification in quantum language

—@0._..m-.

Pmachine Ohottom wd(HR) Pmachine O'T()p

- J
energy-preserving unitary




Second Law: Quantification in quantum language

—@0._..m-.

Pmachine Ohottom Wp (HR) Pmachine O't()p

- J
energy-preserving unitary

Max. Work = FreeEnergys(pr, Hr) — FreeEnergy 5(ws(Hg), Hp)

x D (pr||lws(Hg))



Second Law (work extraction)

No work can be extracted from a
heat bath only.

Q: How much work from a given
resource’

A: Ruled by free energy difference

D (prllws(HR)) = D( [ ||



Second Law (work extraction) Third Law (cooling)

No work can be extracted from a No cooling to zero temperature
heat bath only. with finite resources: time, fuel,
steps...
Q: How much work from a given Q: How cold using a given
resource’ resource’
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Second Law (work extraction) Third Law (cooling)

No work can be extracted from a No cooling to zero temperature
heat bath only. with finite resources: time, fuel,
steps...
Q: How much work from a given Q: How cold using a given
resource’ resource’
4 I
A: Ruled by free energy difference A: Ruled by vacancy
D (prllws(HR) =D( = I ) Valpr. Hr) = D (wp(Hp)|lpr)

=D( &)
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Abstract problem of cooling

4 )

I De—0_We

6 HB Pmachine {3 HT {3 HR Pmachine

\ J
energy-preserving unitary U

Formal optimization problem

max 19,
U.H g pmachinesHmachine

s.t. [U: HB + HR s Hmachine =T HT} = ()
Pmachine ® WB(-(HT) — TrBR (Uwﬁ(HB) 020 PR ® Pmachine & W[J’(HT)UT)
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More on this condition in Markus P. Mueller's talk




Main results (informal overview)

A necessary condition for cooling is:

Vs(pr, Hg) > Va(wg (H), H).
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For low enough target temperature and quasi-classical
resources with full rank, a sufficient condition for cooling is:

Vs(pr, Hg) — Error Term > Vg(wg (Hr), HT).

The error term is additive over independent systems and
vanishes for large classes of resource. Also for any fixed
resource if the target temperature goes to zero.



Main results (informal overview)

A necessary condition for cooling is:
Vs(pr, Hr) > Vg(wg (Hr), HT).

For low enough target temperature and quasi-classical
resources with full rank, a sufficient condition for cooling is:

Vs(pr, Hg) — Brtor Term > Vy(wg,(Hr), Hy)

The error term is additive over independent systems and
vanishes for large classes of resource. Also for any fixed
resource if the target temperature goes to zero.

Third law follows since vacancy of target diverges as target
temperature goes to zero.
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i.i.d. resources
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Vacancy and error term are additive:
Vﬁ(p Ro, H1®1+1Q HQ) — Vﬁ(p, Hi)+ VQ(U, H>).

Necessary and sufficient number of resources are given by:
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i.i.d. resources
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Vacancy and error term are additive:
Vﬁ(p Ro, H1®1+1Q HQ) — Vﬁ(p, Hi)+ VQ(U, H>).

Necessary and sufficient number of resources are given by:

nees. =, Vj(target,final) suff. Vj(target,final)

n n

— Vja(resource,initial)’

necc.
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— Vjg(resource,initial) —Error Term

HEEE -SEE.We

L@’(HT)



i.i.d. resources
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Vacancy and error term are additive:
Vﬁ(p K 0o, H1 R1+1® HQ) = Vﬁ(p, Hl) - V}Q(U, .HQ).
Necessary and sufficient number of resources are given by:

necc. > V;ﬁf(target,ﬁnal) suff. = Vﬁ(targct,ﬁnal)
— Vjg(resource,initial)’ n

n

— Vjg(resource,initial) —Error Term

necc.

As target temperature approaches absolute zero Zsufﬁ 2l

The smallest possible achievable temperature with n resource copies fulfills:

a( H
lim nTC(n) - Efj( T) :
™ = Y olon, Hp)

Similar results for qubit as target system by Janzing et al, 2000.

D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and T. Beth, Int. J. Th. Phys. 39, 2717 (2000)



i.i.d. resources
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Occupation probability of ground-state increases exponentially with number of
resources. Worst-case bound shows:

—nvﬁ(Resource,initial)——A—

po > 1—de 8 p> 1.

e A: Gap above ground-state of target
e ( : Dimension of target



thermal resources (non-i.i.d.)
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Vacancy can be expressed in terms of free energies:

Vs(wpp(Hg), Hr) = Br [FﬁR(wﬁ(HR)a Hp) — Fgp(wpp(Hp), HR)]

Since free energies are extensive, so is the vacancy for thermal many-body systems. The
scaling results for i.i.d. systems transfer similarly.

Non-equilibrium free energy:  Fj(p, H) :=



thermal resources: vanishing error term
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Lemma:

For any thermal resource that is warmer than the heat bath and whose
thermal energy 3 +— E3(Hp) is convex, the error term in the sufficient
condition vanishes.
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Lemma:

For any thermal resource that is warmer than the heat bath and whose
thermal energy 3 +— E3(Hp) is convex, the error term in the sufficient
condition vanishes.

Systems for which this is true:

e Two-level systems

e Any system with equidistant energy-levels

e Arbitrary networks of harmonic oscillators (quasi-free bosonic system)

e Quasi-free fermionic systems

e Any system whose heat capacity increases monotonically with temperature
(i.e., generic, large many-body systems)



thermal resources: vanishing error term

wpp(HR)

Lemma:

For any thermal resource that is warmer than the heat bath and whose
thermal energy 3 +— E3(Hp) is convex, the error term in the sufficient
condition vanishes.

Systems for which this is true:

e Two-level systems

e Any system with equidistant energy-levels

e Arbitrary networks of harmonic oscillators (quasi-free bosonic system)

e Quasi-free fermionic systems

e Any system whose heat capacity increases monotonically with temperature
(i.e., generic, large many-body systems)

In all these cases Vs(pr, Hg) > Vs(wps,(Hr), Hr) is necessary and sufficient.



Towards proof: General properties of vacancy
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Towards proof: General properties of vacancy
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@® Vacancy is monotonic under such catalytic thermal operations:

Va(p, H) > V(o' H).
@® Vacancy is additive:

Va(p® 0, HH®1+1® Hy) = Vs(p, Hy) + Vs(o, Hy).
® Vacancy vanishes in equilibrium:

Vﬁ(wﬁ(H)v H)=0.



Necessary condition
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Initial Vacancy: V[)’(PR &) ng(HT), Hp + HT) - Vﬁ(pR, HR).

Final Vacancy:  Vs(wg(Hg) ® wg,(Hr), Hr + Hr) = Vs(wg.(Hr), Hr).



Necessary condition
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Initial Vacancy: Vs(pr ® ws(Hr), Hr + Hr) = Vs(pr, HR).

Final Vacancy: Vg(ws(Hpg) ® ws.(Hr), Hr + Hr) = Vs(ws.(Hr), Hr).

Thus monotonicity implies:

Vs(pr, Hr) > Vs(wg,(Hr), HT).

See also Janzing et al, 2000.

D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and T. Beth, Int. J. Th. Phys. 39, 2717 (2000)
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Sufficient condition
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General theorem (Brandao et al, 2015)

Let p and p’ be diagonal in the energy basis. Then p can be mapped to p’ by a
catalytic thermal operation if and only if*

Dy(p,ws(Hr) 2 Do(p',wp(Hr)),  Va =0,

where D, denote the Rényi divergences.

* Omitting some detail about the use of the machine/catalyst. See our paper or talk to me for detailed discussion of this point.

F. G.S. L. Brandao, M. Horodecki, N. H. Y. Ng, J. Oppenheim, and S. Wehner. “The second laws of quantum thermodynamics”. PNAS 112 (2015)



Sufficient condition

A technical Lemma

For any target Hamiltonian and environment temperature, there exists a
critical inverse tempreature Seritical , such that for all 5. > Beritical and all
0 < a < 4§(6,.), the Renyi-divergence

Q> Da(wﬁc(HT)Hwﬁ(HT))

IS concave.

The critical value §(3,) is given by

- log(Zp)
o) = Vatop D) < 1




Sufficient condition: Proof sketch
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Sufficient condition: Proof sketch




Sufficient condition: Proof sketch
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6(5)
Vs(pr, Hr)e — ka* >Vg(wg (Hy), Hr)a V0 < a < 6(Bc)



Sufficient condition: Proof sketch




e We derived general necessary and sufficient conditions for low-temperature
cooling using non-equilibrium resources.

e For large classes of non-i.i.d resources the necessary and sufficient condition
for cooling a target to very low temperature is given by:

Vs(pr, Hr) = Va(wg (Hr), HT).
e Thus, low temperature cooling is essentially determined by the single

quantity
Vs(p, H) = D(wg(H)||p).

e Similar to work extraction, which is quantified by the non-equilibrium free
energy

AFg(p, H) == kgT D(pllwg(H)).



Open Problems

e Understand general properties of vacancy.

e Do we really need the catalyst/cyclic machine? Can we bound the vacancy
required in the catalyst independent of the target temperature’?

e Get better estimates for error term and prove that it vanishes under more
general conditions.

e Connect this resource theoretic approach to physical cooling mechanisms
like laser-cooling.

e Quantum coherence in the resource states.
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