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Qubits on a manifold, (geometrically) local stabilizer
generators, logical information encoded non-locally.

Well-known models: toric and color codes.

Can be built in the lab: 2D and local measurements!

Desired properties:
- fault-tolerant logical gates,
- efficient decoders,
- high threshold.

Decoder: algorithm finding correction from stabilizer measurements.

Threshold pth = max error rate the code & decoder can tolerate.

TOPOLOGICAL
STABILIZER CODES

2

Qubits on a manifold, (geometrically) local stabilizer

and local measurements!

Kelly et al., Nature 519, (2015)



OUTLINE
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This talk: local (in space/time) decoders w/ provable thresholds.

Many toric/color code decoders: non-local, local but heuristic (Harrington, 
Dennis, Fowler, Breuckmann, Herold, Duclos-Cianci, Haah, Hastings, Brown,…).

1. Generalization of Toom’s rule to any lattice.

2. Local TC decoder w/ non-zero threshold.

3. Reduction of CC decoding to TC decoding.

4. 3D CC thresholds via stat-mech mappings (arXiv: 1708.07131)



Errors can accumulate! To prevent that — diagnose and correct errors.

Example: classical memory protecting one bit ±1
- repetition code,
- decoder — majority vote.

Noise flips some bits. Collecting (global) information
takes time — new errors can appear!

Goal: suppress/remove errors by local operations.

Toom’s rule: flip bit (face) if it differs from both N and E neighbors.

NEED FOR (LOCAL)
ERROR CORRECTION
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Unlike classical bits, quantum information can’t be accessed directly.

Stabilizer (CSS) codes: measure X/Z-stabilizers and correct Z/X-errors 
separately. We consider ideal measurements.

Decoding: find position of errors from
violated stabilizers (excitations).

2D toric code (Kitaev):
- qubits = edges,
- stabilizers = Z-faces & X-vertices,
- Z-errors = edges,
- excitations = vertices.

Decoding successful if error and correction differ by stabilizer.

DECODING PROBLEM
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Toric/color code in d dim w/ (k-1)- & (d-k-1)-dim excitations, k=1,…,d-1.

3D toric code:
- qubits = faces,
- stabilizers = X-edges, Z-cubes.

Decode Z errors = flip faces w/ boundary matching loop-like excitations.

Toom’s rule — a rule for (re)moving domain walls, i.e. “move NE corners”.

TOOM’S RULE AS DECODER
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Is there a rule à la Toom (to move domain walls) on any lattices?

Not obvious how to generalize beyond the square/cubic lattices. Simple 
rules fail, e.g. “move NE corners”.

We want a deterministic rule — simpler to analyze!

We focus on triangulated lattices.

PROBLEMS W/ GENERALIZATION
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Questions:
- Toom’s rule on any lattice?
- does decoding w/ Toom’s rule work?

Sweep Rule — a generalization of Toom’s rule to any d-dim lattice and    
k-dim domain walls for k=1,…,d-1.

Threshold for local toric code decoders based on the Sweep Rule.

Local color code decoders in d"3 dim by using any toric code decoder.

LOCAL EFFICIENT DECODERS:
TORIC AND COLOR CODES
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Change of perspective:
not faces but vertices!

Introduce the sweep direction. 

Extremal vertex v:
local restriction of the domain wall
is in the sweep direction from v.

Sweep Rule: if vertex extremal, flip faces in the sweep direction. 

Sweep Rule in d"2 dim defined similarly. Important to flip right cells!

SWEEP RULE
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The sweep direction induces a partial order # over the set of vertices.
Alternative picture: vertices in spacetime, path & causal path. 

Two notions:
- cone(v) = {vertices u | u#v}
- sup(S) = least lower bound of S

Correction region:
domain wall S stays within cone(sup(S)).

Monotone:
max length of the causal path between
sup(S) and any vertex of domain wall S. 

PROPERTIES OF SWEEP RULE
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Toric code in d"3 dim w/ k-dim excitations for k=1,…,d-2.

Sweep Decoder
1. repeat M times: simultaneously apply the Sweep Rule for every vertex v,
2. correction = flipped faces.

Decoder can fail because:
(a) domain walls have not been removed in M time steps,
(b) correction introduced logical error.

Our result: Sweep Decoder has non-zero threshold pc:
if error rate p#pc then pr(success)—›1 in the limit of lattice size L—›$.

SWEEP DECODER
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We use ideas of Gacs, Harrington, Bravyi&Haah.

Level-0 chunk = single error, level-1 chunk = nearby pair of errors, …,
level-n chunk = two disjoint level-(n-1) chunks & diameter # Qn/2.

Lemma 1: for sufficiently small p 
the probability of having a level-n chunk
is suppressed doubly exponentially in n.

Level-n error En = union of level-n chunks.

Disjoint decomposition of errors: 
E = (E0-E1) + (E1-E2) +…+ (Em-1-Em) + Em.

Lemma 2: if C is a level-i cluster of errors in (Ei-Ei+1), then C is “not too 
big” (diam(C) # Qi) and “far from other errors” (d(M, (Ei-M)) " Qi+1/3).

KEY LEMMAS
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Assumptions on the lattice: (locally) Euclidean, …

Isolated error removed in 1 step, level-1 cluster in ~ Q steps, …, level-i 
cluster C in time ~ Qi (use: C “not too big” & monotone).

Removal of level-i cluster C unaffected by other level-j clusters for all j"i 
(use: C “far from other errors” & correction region).

Correction of C inside the cone of its boundary, which for low-level 
clusters (i # log L) is a correctible region —   no logical error!

Run local updates for total time ~ Qi, where i ~ log L. Higher-level clusters
might not be removed, but they are very unlikely!

Failure of the decoder due to presence of high-level clusters:
pr(fail) # poly(L) exp(-cL) —› 0 as L —› $. 

PUTTING THINGS TOGETHER
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Realistic setting — noisy measurements w/ prob = p.

Iterate N times: add new errors, imperfectly measure stabilizers, apply 
one round of local correction everywhere.

After N iterations: measure perfectly, decode, check for logical errors.

We can find threshold pth(N) and analyze its behavior in the limit N—›$.

NOISY MEASUREMENTS:
3D TORIC CODE NUMERICS
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OUTLINE
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1.Generalization of Toom’s rule.

2.Local TC decoder w/ non-zero threshold.

3.Reduction of CC decoding to TC decoding.

4.3D CC thresholds via stat-mech mappings (arXiv: 1708.07131)
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TOPOLOGICAL CODE: 
2D COLOR CODE

(Dual) lattice: made of triangles and 
vertices are 3-colorable.

2D color code (Bombin):
- qubits = triangles,
- stabilizers = X- & Z-vertices.

Logical Clifford gates are transversal,
code switching and gauge fixing, …

Decoding seems to be more challenging:
excitations created in triples!

qubit stabilizer

Z



Idea: color and toric codes are related (Kubica et al.’15) — can we use 
existing toric code decoders?

Noise changes — correlated errors!

2D projection decoder (Delfosse’14)
- TC decoder on three sublattices,
- global filling.

HOW TO DECODE 
COLOR CODES?
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Beyond 2D not really explored! Similar ideas work.

Our result: decoder w/ local reduction and lifting in d " 2 dim.

3D color code (bcc lattice):
- qubits = tetrahedra, 
- stabilizers = X-vertices and Z-edges.

Any toric code decoder can be used! Fully local for loop-like excitations.

Toric code thresholds allows to lower bound color code threshold!

LOCAL COLOR CODE
DECODERS IN D"2 DIM
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OUTLINE
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1.Generalization of Toom’s rule.

2.Local TC decoder w/ non-zero threshold.

3.Reduction of CC decoding to TC decoding.

4.3D CC thresholds via stat-mech mappings (arXiv: 1708.07131)



Analytic bounds on threshold (very) low and far from actual values.

Values of thresholds relevant for:
overhead estimates, comparing codes
and decoders, experiment, …

Dennis et al.’02: connection between
toric code decoding and a classical
spin model (random-bond Ising).

Ordered phase = successful correction.

Our results: new spin models relevant for 3D color code & their phase 
diagrams, thresholds of 3D color code.

THRESHOLDS
FROM STATISTICAL MECHANICS
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RANDOM COUPLING ISING 
MODEL AND 3D COLOR CODE

3D bcc lattice:
- qubits = tetrahedra,
- stabilizers = X-vertices (A) and Z-edges (B).

Z/X-errors lead to 0D point-/ 1D loop-like excitations.
Logical Z/X operators are 1D string-/ 2D sheet-like.

4-body w/ spins on vertices (A):

6-body w/ spins on edges (B):

For p=0 models are dual (low- and high-T expansions match). 21
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NUMERICS
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arXiv: 1708.07131
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3D COLOR CODE THRESHOLDS
FROM PHASE DIAGRAMS
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threshold 
pth = 27.6% 

fix disorder p
and sweep T

threshold 
pth = 1.9% 

arXiv: 1708.07131



DISCUSSION
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Our results:

local decoders of toric and color codes w/ provable thresholds,

noisy measurements — 3D TC sustainable threshold pTC(2) % 2%.

3D color code optimal thresholds from stat-mech:
p(1) % 1.9% and p(2) % 27.6%.

3D gauge color code: threshold p(1) for 1D string-like (Brown et al.’16).

THANK YOU FOR YOUR ATTENTION!




