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1 cbit <1 qubit > 1 ebit

L ebit, + 2 zero-bits 2 1 qubit

coherence communication

m qubits > 2m zero-bits 7/
(a)
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All noiseless quantum resources (qubits, a-bits, cobits. .. ) can
be rewritten in terms of zero-bits and ebits

e.g. 1 a-bit @ (1 + «) zero-bits 4+ « ebits

When rewritten in this basis, the quantum resource ordering
becomes the product ordering:

(a,b) > (a,b) < (a>d)AN(b>1)
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/ ebit limited
1.0 / — n=0.7
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entanglement-assisted capacities are proportional to mutual information.
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f o« — 1 amortised a-bit capacity —

quantum capacity

BUT amortised quantum capacity = quantum capacity

\Answer: As o« — 1, the size of the side channel diverges
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Further Applications
@ ( /~—— Non-additivity of quantum capacity?
(Ny_p) = I(A)B) qubits +1(A: E) zero-bits

Zcro-bits can substitute for classical bits in:

entanglement distillation, state merging
remote state preparation and channel simulation

Optimality follows from optimality of zero-bit teleportation
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Alpha-bits arise naturally when
studying black holes in AdS/CFT A

Tensor network toy model of AdS/CFT. Alpha-bits
of region between orange lines encoded in A

Boundary subregion may encode «-bits
of a bulk region

Implications: Error-correction is only approximate, reconstructed operators
are state-dependent
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