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Quantum Monte Carlo: a powerful suite of probabilistic classical simulation algorithms for
quantum many-body systems.

Can simulate systems orders of magnitude larger than with exact diagonalization...



TABLE I. QMC results for the ground-state energy, the spin
stiffness, and the squared magnetization per spin. The numbers
within parenthesis indicate the statistical errors of the least sigmifi-

cant digit of the results.

L —E,

4 0.562485(4)
6 0.552696(4)
8 0.550436(4)
10 0.549643(4)
12 0.549296(4)
14 0.549118(4)
16 0.549020(4)

[

0.2769(1)
0.2718(1)
0.2705(2)
0.2700(3)
0.2698(4)
0.2695(3)
0.2699(4)

M

0.13282(2)
0.11885(4)
0.1126(2)
0.1087(2)
0.1065(3)

[Sandvik, Hamer 1999]
Ground state properties of 2D ferromagnetic XY
model on L X L grid.

They also perform finite-temperature numerics up

to L = 64.
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[Sandvik, Hamer 1999]

Ground state properties of 2D ferromagnetic XY
model on L X L grid.

They also perform finite-temperature numerics up

to L = 64.

This is a classical simulation of up to 4096 spins!

What’s the catch?
How does it work?
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What’s the catch?

Quantum Monte Carlo can only be used to study stoquastic Hamiltonians

[ ) Stoquastic
(x|H|x) € R (v[H|x) < 0 X=Y L.e., “sign-problem free”
Examples:
p?
Particle in a potential / H = m +V(x)
. . . |"_ H=— Ta. Ta)+V(n
Hopping and interacting bosons (a;a;j +a;a;) +V(n)
+ <ij>

Quantum annealing Hamiltonians § $ ‘\ H=—-(1-5) Z X; +sV (2 )
[



How does it work?
QMC 1s based on a probabilistic representation of the Gibbs state

e PH

P=78

Z(B) = Tr(e FH)

A collection of samples from a certain probability distribution associated with p are
sufficient to evaluate expectation values of observables.
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How does it work?

Z( ,B) = Tr(e —-pH ) Partition function at temperature T = 71
= Tr((e_AH)M) AK1 M = ,BA_l

< ) (all = BHIZ) I — BHIzs) (gl = AHzy) e ol

sets of states

Z1,Z2,.-Z€{0,1}" |

|

p(zq,2y,...2y) = 0 (use stoquasticity)

QMC uses a classical Markov chain to equilibrate to the probability distribution proportional to
(21,22, -\ Zy)-

Physical properties are computed as expectation values.



In additional to empirical evidence, there is also complexity-theoretic evidence
suggesting that stoquastic Hamiltonians may be easier to simulate.

4 )

Local Hamiltonian problem: Given a local Hamiltonian H and two numbers a < b,
decide if the ground energy of H is < a or = b.
(promised that one case holds).
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4 N
Local Hamiltonian problem: Given a local Hamiltonian H and two numbers a < b,
decide if the ground energy of H is < a or = b.

(promised that one case holds).

The local Hamiltonian problem 1s QMA-complete in general. [Kitaev 99]

For stoquastic local Hamiltonians it 1s StogMA-complete (MAEStogMASEAM)
[Bravyi, Divincenzo, Oliveira, Terhal 2000]

For classical local Hamiltonians it 1s



Examples:

H = z h(i, j)

1<i<jsn

f Ising model

h(i,j) = a;jZ;iZ;

LH problem

NP-complete

}
Transverse-field
_ Ising model

h(i,j) = a;jXiX; — viZ; —v;

/.

J

StogMA-complete
[Bravyi, Hastings 2014]

>

XY model

-

h(i,j) = a;;(X;X; + Y;Y})

QMA-complete
[Cubitt Montanaro 2013]

(Stoquastic)

(Quantum)



Examples:

Isi<jsn

LH problem
k Ising model h(i,j) = a;;Z;Z; NP-complete
>

Transverse-field . StogMA-complete ,
- ISil’lg mOdel h(l)]) — al]XlX] - ylZl - ]/JZ] [Bravyi, Hastings 2014] (Stoquastlc)
~
. QMA-complete nt

N . h(i,j) = a;;j(X;X; + Y;Y;) [Cubsitt Montanaro 2013] (Quantum)

These examples illustrate three flavours of intractable constraint satistaction problems.
(they represent all nontrivial possibilities within the framework of [Cubitt Montanaro 2013])
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Open question : Can QMC be used to efficiently simulate quantum adiabatic algorithms
with stoquastic Hamiltonians?

H = —(1—S)ZXi + sV (2)

Bravyi Terhal 2008]
[Hastings Freedman 2013]
(Crosson Harrow 2016]
Jarret Jordan LLackey 2010]




I. Results



The Hamiltonian

We consider Hamiltonians of the form

R

Il
—

1<j L

d;(I +7;)

Coefficients must satisfy

|bij|1 |Cij|' |dl | <1 (sets energy scale)

|Cij| < byj (ensutes stoquasticity)



The Hamiltonian

We consider Hamiltonians of the form

n
i<j | T
|
0 0 0 _bij _Cij
0 0 Cij_bij 0
0 Cij_bij 0 0
—b;j — cij 0 0 0

|Cij| < byj (ensutes stoquasticity)



The Hamiltonian

We consider Hamiltonians of the form

d;(I +7;)

s

Il
—

i<j | Y L

pi; (VY — XiX;) + qi; (=YY — X, X)) Pij»qij = 0




The Hamiltonian

We consider Hamiltonians of the form

n
i<j i=1
Special cases:
di=0 ¢;=0 Classical Ferromagnetic Ising model
cij =0 Ferromagnetic transverse-field Ising model
bij=1 ¢j=-1 Ferromagnetic XY model

b;: =1 Cij =1 (name?)
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Approximating the partition function

Definition (€-approximation)

Write a =€ b iff e ¢bh <a<eb
- Y,

An €-approximation of Z(f) can be used to compute an estimate of the free energy

F = —%logZ(,B)

to within additive error O (e~1) and an estimate of the ground energy to within
additive error 0((e + n)B~1).



Polynomial-time approximation algorithm

G‘ heorem

There exists a classical randomized algorithm which, given H, 5, and a precision parameter

e € (0,1) outputs an estimate satisfying Z =€ Z(f) with high probability.

The runtime of the algorithm is poly(n, B,€~1)

"

~
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As a corollary we obtain an efficient algorithm to approximate the free energy and
the ground energy to a given additive error.
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G‘ heorem

There exists a classical randomized algorithm which, given H, 5, and a precision parameter

e € (0,1) outputs an estimate satisfying Z =€ Z(f) with high probability.

The runtime of the algorithm is poly(n, ,€™1) = 0(n*1°(1 + p*°)e~2°).

N

~

/

As a corollary we obtain an efficient algorithm to approximate the free energy and
the ground energy to a given additive error.

The algorithm is not practical.

The proof is based on a reduction to counting perfect matchings...



II. Perfect matchings



A perfect matching of a graph G = (V,E) is a subset of edges M € E such that

every vertex 1s incident to exactly one edge in M

Example:




A perfect matching of a graph G = (V,E) is a subset of edges M € E such that

every vertex 1s incident to exactly one edge in M

Example:

The red edges are a perfect
matching




A perfect matching of a graph G = (V,E) is a subset of edges M € E such that

every vertex 1s incident to exactly one edge in M

Example:

The red edges are a perfect
matching




Now suppose the graph has edge weights {W, }oecg. Each perfect matching M is assigned

weight
[ [

eeM



Now suppose the graph has edge weights {W, }oecg. Each perfect matching M is assigned

weight
[ [

eeM

Perfect matching sum:

PerfMatch(G) = z l_[ W,

Perfect matchings M eeM



Now suppose the graph has edge weights {W, }oecg. Each perfect matching M is assigned

weight
[ [

eeM

Perfect matching sum:

PerfMatch(G) = z l_[ W,

Perfect matchings M eeM

Example: a

PerfMatch(G) =
d b erfMatch(G) = ac + bd




A nearly perfect matching of a graph G = (V, E) is a subset of edges M € E such that

every vertex is incident to exactly one edge in M, except for 2 vertices which are untouched.



A nearly perfect matching of a graph G = (V, E) is a subset of edges M € E such that

every vertex is incident to exactly one edge in M, except for 2 vertices which are untouched.

Nearly perfect matching sum:

NearPerfMatch(G) = z 1_[ W,

Nearly eeEM
Perfect matchings M
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Suppose G is a graph with nonnegative edge weights.

Exactly compute €-approximation
PerfMatch(G) to PerfMatch(G)
. In P InP
Planar graphs: Fisher, Kasteleyn, Tempetley algorithm
Bipartite graphs: #P_hard In BPP
(permanent of [Valiant 1979] [Jerrum, Sinclair, Vigoda 2004]

nonnegative matrix)

[Jerrum Sinclair 1989]
Algorithm with runtime

poly(|V], & R)

General graphs: #P-hard

_ NearPerfMatch(G)
~ PerfMatch(G)




II1. Algorithm



Reduction to perfect matchings

ﬁ heorem

There 1s an (efficiently computable) graph G with positive edge weights, such that

Z(B) =€ PerfMatch(G)

and

NearPerfMatch(G)
K PerfMatch(G)

= O(poly(B,n,e™1))

~

/

We then use [Jerrum, Sinclair 1989] which gives an efficient algorithm for approximating

the perfect matching sum.



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e PH) ~€ Tr(G; ... G,G,) J = poly(n, 8,1



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e‘BH) ~€ TI‘(G] . GrGe) ] = poly(n, B, 6_1)
Each Gj satisfies
Gj — e—sh+0(32) s> 0

where h is one of the terms in the Hamiltonian



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e‘BH) ~¢ Tr(G; ... G, Gq) J = poly(n,B,e™1)
Each Gj satisfies
Gj — e—sh+0(52) s> 0

where h is one of the terms in the Hamiltonian

h =YY, — XX, or  h=-=YY —X;X; or h==x+U+1Z;)



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e‘BH) ~¢ Tr(G; ... G, Gq) J = poly(n,B,e™1)
Each Gj satisfies
Gj — e—sh+0(52) s> 0

where h is one of the terms in the Hamiltonian
h =YY, — XX, or  h=-=YY —X;X; or h==x+U+1Z;)

The resulting G; are very special gates...



Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e‘BH) ~¢ Tr(G; ... G, Gq) J = poly(n,B,e™1)

Each G ] is from the gate set containing 1-qubit gates

0 1 t 0
(1 0) (0 1) t>0
and two qubit gates “Matchgates”
>_
14+t2 0 0 t
0 1 0 0 t>0
0 0O 1 0
t 0O 0 1
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Let I' be a a weighted graph with special input and output edges (k of each, say)

We say I' implements a k-qubit operator G if

ny = remove input edges with x; = 0 and output

[ (y|G|x) = PerfMatch(ny)}

edges with y; = 0. Require that a perfect matching

includes the remaining external edges.

Example
_____ —® 0— — — — — x=00y=11
o | T
_____ - & —————

Input edges Output edges (11|6]00) =t



Let I' be a a weighted graph with special input and output edges (k of each, say)

We say I' implements a k-qubit operator G if

ny = remove input edges with x; = 0 and output

[ (y|G|x) = PerfMatCh(ny)}

edges with y; = 0. Require that a perfect matching
includes the remaining external edges.

Example
_____ _. ._____
1+¢t2 0 0 ¢t
_ 0 1 0 O
t t G = 0 O 1 0
_____ D o t 0 0 1

Input edges Output edges
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Matchgates compose nicely

Implements a 2 qubit gate G

Implements Tr(G)
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Proof sketch:

Start with a Trotter-Suzuki style approximation

Tr(e_BH) ~¢ Tr(G; ... G, Gq) ] =poly(n,B,e™ 1)
\ J
|
Matchgate implementable with n
Each G] is 2 matchgate. input edges and n output edges

Trace is a matchgate with no
external edges, 1.e., a perfect
matching sum. (honplanar
and nonbipartite)
This gives first part of theorem:

Z(B) =€ PerfMatch(G)
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Bounding NearPerfMatch (G )

NearPerfMatch(G)
PerfMatch(G)

We need to show: = 0(poly(B,n, 1))

Recall that a nearly perfect matching is like a perfect matching but with 2 vertices unmatched.

NearPerfMatch(G) = Z 0 Q,,= Sum of nearly perfect matchings with
o u,v )

U, v unmatched.
u,veaq

To complete the proof we show that

Qusy N Tr(G;Gj—1 ... G;0G;_1G;_3 ... GiPG;_1G;_5 ... G, G1)
PerfMatch(G) Tr(G, ... G,G,)

\ /
|

Imaginary time spin-spin correlation function

= 0(1)




Open questions

Can QMC be used to etficiently simulate quantum adiabatic algorithms with
stoquastic Hamiltonians?

Other models? See e.g., [Piddock Montanaro 2015]:

B B B

NP

QMA- QMA-

MA-
complete complete Q

complete

StogMA

(a) H= XX +BYY + 422 (b) H=BYY +~2Z (¢) H=XX + BYY +42Z



IBM is hiring for postdoctoral and research staff member
positions in the theory of quantum computing.

Job ads:
https:/ /quantumexperience.ng.bluemix.net/qx/community/questionrq
uestionld=4ee83621979d8391db8c95523e36ebd6&channel=news

Email: dngosset(@us.ibm.com
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IBM O Awards: Att: Students, Profs & Developers

« IBM Teach Me Quantum Award — $10,000: Best university-level
course-materials for a lecture series incorporating the IBM Q
Experience and QISKit. (Submissions close 15 November 2018)

- IBM Q Best Paper Award - $2,500 and IBM lab invite: Highest-
impact scientific paper by a master’s degree or PhD student or
postdoctoral researcher that uses the IBM Q Experience and
QISKit as a tool to achieve the presented results.

(Submissions close 15 July 2018)

- Teach Me QISKit Award — $1,000: Best interactive self-paced
tutorial using QISKit and the IBM Q Experience.
(Submissions close 31 March 2018)

- QISKit Developer Challenge — $5,000: Best solution to a specific
challenge called: “Optimize to the Max.”

(Submissions close 15 May 2018)

Submissions Open

15 January

bit.ly/ibmgawards
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