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I give you the eigenstate of a 
Hamiltonian.

Can you find the Hamiltonian?

No.
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Motivation
• Hamiltonian tomography – experimental applications?

• Insights about many-body physics?
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The plan
• Introduce the k-correlation matrix as method for Hamiltonian 
recovery

• Consider sensitivity to noise, thermodynamic limit, continuum 
limit… 

• Find interesting physics along the way?

Motivation
• Hamiltonian tomography – experimental applications?

• Insights about many-body physics?
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Toy example: Particle on a line

If you know the Hamiltonian is of the form:

and I tell you an eigenstate       

then you can find       by solving for          ,    
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Toy example: Particle on a line

If you know the Hamiltonian is of the form:

and I tell you an eigenstate       

then you can find       by solving for          ,    

Complete description of the eigenstate, 
not just a single quantum copy!
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Local Hamiltonians

Finite-dimensional local Hilbert spaces, with finite-
range local interactions, on finite (for now) lattices. 

For instance, 1D spin chains with nearest-neighbor 
couplings:

Do we expect we can uniquely 
recover the Hamiltonian from the 

eigenstate?  
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Dimension counting

Most general nearest-neighbor 
Hamiltonian on chain of qubits:

with         real parameters       .

Linear in volume…

Most general state:

parameters.

Exponential in 
volume…
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Dimension counting

Most general nearest-neighbor 
Hamiltonian on chain of qubits:

with         real parameters       .

Linear in volume…

Most general state:

parameters.

Exponential in 
volume…

So maybe the full eigenstate has enough information?
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Related work: Harrison + Grover, 2015

• Focuses on the physics of the “eigenstate 
thermalization hypothesis” (ETH)

• Does not apply to ground states or other low-lying 
states (which I’ll focus on here)

• Somewhat different than present work, but fascinating 
physics!  Ask me about it.
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Most naïve method of recovery

If you actually knew the full eigenstate     (component 
by component…), you could try to calculate the 
intersection of two linear subspaces in the space of 
operators:

(1) Local Hamiltonians

(2) Operators with     as eigenstate

The intersection yields all candidate Hamiltonians.
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Most naïve method of recovery

If you actually knew the full eigenstate     (component 
by component…), you could try to calculate the 
intersection of two linear subspaces in the space of 
operators:

(1) Local Hamiltonians

(2) Operators with     as eigenstate

The intersection yields all candidate Hamiltonians.

It’s just calculating the intersection of linear 
subspaces… but in an exponentially large space!  

And needing to know the full quantum state in Hilbert 
space is very limiting.  

But maybe using the full state is overkill? 
Fact: An eigenstate of a local Hamiltonian is fully 
determined by its two-body reduced density matrices.
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Recovering the Hamiltonian from two-
point correlations
• Simple but powerful

• Leads to efficient reconstructions, given the two-
point correlations of all local variables (w.r.t. the state)

• Leads to interesting physics
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Recovering the Hamiltonian from two-
point correlations
• Simple but powerful

• Leads to efficient reconstructions, given the two-
point correlations of all local variables (w.r.t. the state)

• Leads to interesting physics

Follow the math with me for just a few lines!
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Recovering the Hamiltonian from two-
point correlations
Consider space of all local Hamiltonians on your system, 
e.g. nearest-neighbor spin chains:

We’re looking for operators                              that have our 
given state      as an eigenstate.
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Recovering the Hamiltonian from two-
point correlations
Consider space of all local Hamiltonians on your system, 
e.g. nearest-neighbor spin chains:

We’re looking for operators                              that have our 
given state      as an eigenstate.

First simple observation:  

is an eigenstate of             
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Recovering the Hamiltonian from two-
point correlations
Define the correlation matrix          for a state     :

for an orthonormal basis           of                     ,

e.g.                             .

Define the correlation matrix          for a state     :
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Recovering the Hamiltonian from two-
point correlations
Define the correlation matrix          for a state     :

for an orthonormal basis           of                     ,

e.g.                             .

When considering k-nearest-neighbor Hamiltonians, then          is 
the symmetrized matrix of connected correlations of range-k local 
observables.

Define the correlation matrix          for a state     :
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Recovering the Hamiltonian from two-
point correlations

Eigenstate condition: (O has eigenstate v)

Correlation matrix:
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Recovering the Hamiltonian from two-
point correlations

Eigenstate condition: (O has eigenstate v)

Correlation matrix:

Consider the correlation matrix as a bilinear form on space of range-k
local operators, sending operators to their fluctuation w.r.t. the state.

Express operator     in basis          as 

and the eigenstate condition becomes:
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Recovering the Hamiltonian from two-
point correlations

Eigenstate condition: (O has eigenstate v)

Correlation matrix:

Consider the correlation matrix as a bilinear form on space of range-k
local operators, sending operators to their fluctuation w.r.t. the state.

Express operator     in basis          as 

and the eigenstate condition becomes:

So vectors in the kernel of          have components     corresponding to 
local Hamiltonians                   that have     as an eigenstate. 
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Recovering the Hamiltonian from two-
point correlations

Eigenstate condition: (O has eigenstate v)

Correlation matrix:

Consider the correlation matrix as a bilinear form on space of range-k
local operators, sending operators to their fluctuation w.r.t. the state.

Express operator     in basis          as 

and the eigenstate condition becomes:

So the kernel of           corresponds precisely to local Hamiltonians that 
have    as an eigenstate.

Find kernel of correlation matrix.  (Diagonalize a matrix 
whose dimension grows like lattice size.)

Each vector in the kernel is a set of coefficients for the 
terms in a local Hamiltonian.  Each such Hamiltonian has 
the given state as an eigenstate.

If kernel is one-dimensional, you’ve identified the unique 
Hamiltonian up to scaling!
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Does it actually work?
Let’s try it numerically: Generate a 12-qubit, nearest-neighbor 
Hamiltonian with random couplings.

Given an eigenstate, can we recover the Hamiltonian?

Yes, within error due to machine precision.  
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Okay, but does it work in general?

Knowing that recovery is possible for some particular 
Hamiltonian, you can prove that it works for almost all 
Hamiltonians on that geometry and system size.  So, 
e.g.:
Now we know it works for all 12-qubit nearest-neighbor 
Hamiltonians, except on a measure zero set.

Examples of Hamiltonians in the measure zero set:

Systems that are non-interacting or have locally 
conserved charges.
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But I meant, for systems that aren’t tiny?

No rigorous proof yet.  We can speculate and talk 
about proof strategies soon.

But first:
• Robustness of reconstruction to error
• What happens when you only know the state on 
a sub-region
• The physics of the correlation spectrum
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Correlation spectrum: Spectrum of 
Define the k-correlation spectrum of a state    
as the spectrum of the correlation matrix        
built using correlations of range-k local 
observables.

If the k-correlation spectrum has exactly one 
zero,     is the eigenstate of a k-local 
Hamiltonian, which can be uniquely recovered.
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Correlation spectrum: Spectrum of 
Define the k-correlation spectrum of a state    
as the spectrum of the correlation matrix        
built using correlations of range-k local 
observables.

If the k-correlation spectrum has exactly one 
zero,     is the eigenstate of a k-local 
Hamiltonian, which can be uniquely recovered.

We can define the k-correlation spectrum for 
any state!  

It tells you about more than just Hamiltonian 
recovery:

Gives a local-unitary-invariant measure of 
correlations.
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Correlation spectrum: Spectrum of 
Define the k-correlation spectrum of a state    
as the spectrum of the correlation matrix        
built using correlations of range-k local 
observables.

If the k-correlation spectrum has exactly one 
zero,     is the eigenstate of a k-local 
Hamiltonian, which can be uniquely recovered.

The k-correlation spectrum is also the list of 
principal angles between two planes in 
operator space:
(a) plane of k-local operators, vs. 
(b) plane of operators with zero 
fluctuation in the state
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Sensitivity of reconstruction to error

Imagine we have the wrong correlation matrix – maybe we 
measured the correlations wrong, or we didn’t start with an exact 
eigenstate. 

How sensitive is the reconstruction?

– angle between the true and reconstructed Hamiltonian

– error between true and given correlation matrix

– second-smallest eigenvalue of correlation spectrum
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Taking a look at correlation spectra
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Taking a look at correlation spectra
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Correlation spectra for translation-
invariant states
The eigenvalues of the correlation matrix have corresponding 
eigenoperators.

For the correlation matrix of a translation-invariant state, the 
eigenoperators are translation invariant up to a phase, i.e. they’re of the 
form:

for some “momentum number” q, where is some fixed k-site 
interaction term centered at lattice site x.

 Associate a momentum q to every correlation eigenvalue.
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Correlation spectra for translation-
invariant states
The eigenvalues of the correlation matrix have corresponding 
eigenoperators.

For the correlation matrix of a translation-invariant state, the 
eigenoperators are translation invariant up to a phase, i.e. they’re of the 
form:

for some “momentum number” q, where is some fixed k-site 
interaction term centered at lattice site x.

 Associate a momentum q to every correlation eigenvalue.

For gapped ground states, we have exponential 
decay of correlations.

Leads to smooth, banded correlation spectrum in 
the thermodynamic limit.
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Ground state of a random, translation-invariant, 40-qubit chain
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Ground state of a random, translation-invariant, 40-qubit chain
Xiaoliang Qi and Daniel Ranard

The gap in the correlation spectrum only appears 
for the ground state.  Associated with area law, 
exponential decay of correlations?

What can we learn from band structure of state?

Note the smallest band, with connection to 
energy diffusion. 



Is it possible to uniquely recover the 
Hamiltonian?
• Yes for eigenstates of generic local Hamiltonians on small spin chains. 

•Yes (speculation) for translation-invariant gapped ground states in the 
thermodynamic limit.  And you can approximately reproduce the 
correlation functions with access to only a finite sub-region (easy fact).

• I don’t know for lots of other interesting cases.
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Is it possible to uniquely recover the 
Hamiltonian?
• Yes for eigenstates of generic local Hamiltonians on small spin chains. 

• Yes (speculation) for eigenstates of more general finite-size systems on 
higher-dimensional lattices, but with sensitivity to error often increasing 
with system size.  

Yes (speculation) for translation-invariant gapped ground states in the 
thermodynamic limit.  And you can approximately reproduce the 
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Is it possible to uniquely recover the 
Hamiltonian?
• Yes for eigenstates of generic local Hamiltonians on small spin chains. 

• Yes (speculation) for eigenstates of more general finite-size systems on 
higher-dimensional lattices, but with sensitivity to error often increasing 
with system size.  

In the thermodynamic limit, does reconstruction remain robust?

• Yes (speculation) for translation-invariant gapped ground states in the 
thermodynamic limit.  And you can approximately reproduce the 
correlation functions with access to only a finite sub-region (easy fact).

• I don’t know for lots of other interesting cases.
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Taking stock

• Found method for reconstructing a local Hamiltonian from an 
eigenstate, using the correlation matrix
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Taking stock

• Found method for reconstructing a local Hamiltonian from an 
eigenstate, using the correlation matrix

• Defined the k-correlation spectrum, a local-unitary-invariant measure 
of correlations that also dictates the sensitivity of the reconstruction
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Taking stock

• Found method for reconstructing a local Hamiltonian from an 
eigenstate, using the correlation matrix

• Defined the k-correlation spectrum, a local-unitary-invariant measure 
of correlations that also dictates the sensitivity of the reconstruction

• Successfully reconstructed Hamiltonians on small spin chains

• Found interesting structure in bands of the correlation spectrum.  
What else can you learn from the spectrum of eigenoperators?
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Taking stock

• Found method for reconstructing a local Hamiltonian from an 
eigenstate, using the correlation matrix

• Defined the k-correlation spectrum, a local-unitary-invariant measure 
of correlations that also dictates the sensitivity of the reconstruction

• Successfully reconstructed Hamiltonians on small spin chains

• Found interesting structure in bands of the correlation spectrum.  
What else can you learn from the spectrum of eigenoperators?

• Experimental application? Measure the ground state correlations of a 
qudit system as a method of determining or verifying the Hamiltonian?
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More material



A nod at the continuum
We can ask about recovering the Hamiltonian from the ground state for 
lattice-regularized QFTs, and then what happens as we shrink the lattice 
spacing (while tuning the couplings using the renormalization group).

For Lorentz-invariant QFTs, there’s a trick for getting the Hamiltonian from 
the ground state, using the modular Hamiltonian.  This method should 
work approximately for the lattice-regularized case.

More generally, any finite-energy-density state (doesn’t need to be an 
eigenstate!) will have “same UV structure”— so any such state might 
determine the Hamiltonian?  You just need to probe the state at the UV 
(lattice cutoff) scale.
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Advertisement: Semi-related work

We’ve been assuming we know the proper tensor factorization of the 
Hilbert space into local degrees of freedom, i.e.

What if we didn’t know that tensor factorization already – what if we just 
knew the trajectory of some non-equilibrium state in the Hilbert space?

Could we recover the right local degrees of freedom – finding a sort of 
preferred local basis in Hilbert space – knowing only the the dynamics of 
the state?  
Paper: “Locality from the Spectrum” (Cotler, Penington, DR)
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Advertisement: Things I’d love to know

While we’re on the topic of generic local lattice 
Hamiltonians…

Are they usually gapped?  [Quiz question!  Answer: No.]

What about translation-invariant systems?  [I’d guess 
gapped, but others say no!]

And… do they have zero-momentum ground states?

And… do they have quasi-particle behavior?

Xiaoliang Qi and Daniel Ranard



Previous work: Harrison+Grover, 2015

If we assume the Hamiltonian satisfies the “eigenstate 
thermalization hypothesis” (ETH), 

then for an excited eigenstate at nonzero energy-density,

the reduced density matrix on any region satisfies:

Then we can find the 
Hamiltonian on the region:
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Previous work: Harrison+Grover, 2015

If we assume the Hamiltonian satisfies the “eigenstate 
thermalization hypothesis” (ETH), 

then for an excited eigenstate at nonzero energy-density,

the reduced density matrix on any region satisfies:

Then we can find the Hamiltonian on 
the region:

Leads to a fascinating study of thermalization 
(H+G, 2008).

Limited as method of Hamiltonian recovery:
• Doesn’t work for ground states or other low-

lying states (which I’ll focus on most)
• Requires knowing full quantum state on a sub-

region
• Requires ETH
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Wait: the ground-state has no UV 
information!
Well, if it’s the exact ground state, it has some 
information about the UV when you probe it 
at short distances. 
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Wait: Do approximate ground state 
projectors ruin everything?
Given the ground state of a range-k 
Hamiltonian, there will generically be many 
quasi-local Hamiltonians with the same 
ground state.  But such Hamiltonians will be 
non-generic among quasi-local Hamiltonians 
of similar interaction length.
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Heuristic intuition for when recovery is 
possible
It can get confusing thinking about quasi-local 
Hamiltonians, continuum limits, and QFTs.
Heuristic intuition:
You can recover the Hamiltonian from the ground 
state when the state’s correlation length is longer 
than the length scale over which DOF are directly 
coupled.
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