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Results

We construct tensor networks for free fermion systems

- Forfermions hopping on 1 &2 D lattices
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- Forfermions hopping on 1 &2 D lattices
-~ Rigorous approximation guarantees

Key features:
» tensor networks that target correlation functions
» quantum circuits that ‘renormalize entanglement’: MERA
» explicit circuit construction, no variational optimization required
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MERA: multi-scale entanglement renormalization ansatz (Vidal)
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» layers are short-depth quantum circuits (disentangle &
coarse-grain)

» variational class for critical systems in 1D

» any MERA can be extended to a ‘holographic’ mapping
(reminiscent of holography (Swingle))
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Wavelets

Wavelet transforms resolve classical signal into different scales
» multi-resolution analysis: L*(R) = @; Wj, spanned by ((27x - n)
» | is called the wavelet function J‘h 11
i=-1]) j=0 =1 |
Given signal at scaleup to ], V; = @5 Wy, how to resolve it into scales?
» V spanned by &(27x - n), v r] LT
» & is known as scaling function Yo v i

Discrete wavelet transform:

VO \/2

Bz n
WoWl

» defined by low-pass filter h and high-pass filter g
» locally resolves discrete input signal in £%(Z) into different scales
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Key fact: Second quantizing 1D wavelet transform ~ MERA circuit!
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MERA and wavelets

Key fact: Second quantizing 1D wavelet transform ~ MERA circuit!

length of classical filter ~ depth of quantum circuit (Evenbly-White)

Task: To produce free fermion ground state, design wavelet transform
that targets positive/negative energy modes.



Rigorius entanglement renormalization



1D Dirac fermions - Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):
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Massless Dirac fermions on 1D lattice (Kogut-Susskind):
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1D Dirac fermions - Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):

Hip = - Z bln bZ,n - b;,nblml + b;nbl,n - bLngZ,ﬂ
n
_f“d_k b 0 ek —1][bi(k)
S [T 0 []ba(k)]
Diagonalize:
RE 0 L] g [E(k) 0
u(k) = [O —isign(k)ciw] \/i[l —l:|7 - hu-[ 0 E+(k):|

» freedom to choose any basis of Fermi seal
» want pairs of modes related by —isign(k)e!/”.



1D Dirac fermions — Wavelets

Task: Find pair of wavelet transforms such that high-pass filters are
related by —isign(k)e!/”.
» studied in signal processing, motivated by translation-invariance
» impossible with finite filters, but possible to arbitrary accuracy

(Selesnick)

phase difference

-n —3'71/4 —1';/2 —1';/4 0 n}4 n}Z 31‘;/4 n
momentum (k)



1D Dirac fermions - MERA
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1D Dirac fermions - MERA

Parameters:
» L - number of layers
» ¢ -accuracy of phase
relation of filters
» W - “size” of filters

Consider correlation function of N creation and annihilation
operators

C({fi}) = (b] (1)++b] (f) by (Frusn)-+bp (Fan))
supported on S lattice sites.
Theorem (simplified)
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1D Dirac fermions - MERA

i | Parameters:
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1D Dirac fermions — Numerics

Energy error

relative error in energy density
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Non-relativistic 2D fermions — Lattice model

Non-relativistic fermions hopping on 2D square lattice at half filling:
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Non-relativistic 2D fermions — Lattice model

Non-relativistic fermions hopping on 2D square lattice at half filling:

_ T T
Hop = = ) @b n@me1,n + @ pamnes + N.C.
m,n

Fermi surface:

» violation of area law: S(R) ~ Rlog R (Wolf, Gioev-Klich, Swingle)
» Green function factorizes w.r.t. rotated axes



Non-relativistic 2D fermions - Branching MERA

Natural construction: Tensor product of wavelet transforms!
Wo=us @y, -~ (W®W)w=wss@wws®wsw@www

After second quantization, obtain variant of branching MERA
(Evenbly-Vidal):

Similar approximation theorem holds.
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Thank you!
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