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Results

We construct tensor networks for free fermion systems

▸▸ For fermions hopping on 1 & 2 D lattices
▸▸ Rigorous approximation guarantees

Key features:
▸▸ tensor networks that target correlation functions
▸▸ quantum circuits that ‘renormalize entanglement’: MERA
▸▸ explicit circuit construction, no variational optimization required
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Entanglement renormalization (MERA)



MERA: multi-scale entanglement renormalization ansatz (Vidal)

↓ local quantum circuit that
prepares state from ∣0⟩⊗N

↑ entanglement renormalization
disentangle local degrees of
freedom

↕ organize q. information by scale

▸▸ layers are short-depth quantum circuits (disentangle &
coarse-grain)

▸▸ variational class for critical systems in 1D

▸▸ any MERA can be extended to a ‘holographic’ mapping
(reminiscent of holography (Swingle))



MERA: multi-scale entanglement renormalization ansatz (Vidal)

↓ local quantum circuit that
prepares state from ∣0⟩⊗N

↑ entanglement renormalization
disentangle local degrees of
freedom

↕ organize q. information by scale

▸▸ layers are short-depth quantum circuits (disentangle &
coarse-grain)

▸▸ variational class for critical systems in 1D

▸▸ any MERA can be extended to a ‘holographic’ mapping
(reminiscent of holography (Swingle))



MERA: multi-scale entanglement renormalization ansatz (Vidal)

↓ local quantum circuit that
prepares state from ∣0⟩⊗N

↑ entanglement renormalization
disentangle local degrees of
freedom

↕ organize q. information by scale

▸▸ layers are short-depth quantum circuits (disentangle &
coarse-grain)

▸▸ variational class for critical systems in 1D

▸▸ any MERA can be extended to a ‘holographic’ mapping
(reminiscent of holography (Swingle))



Wavelet transforms



Wavelets

Wavelet transforms resolve classical signal into different scales

▸▸ multi-resolution analysis: L2(R) =⊕jWj, spanned by ψ(2−jx − n)
▸▸ ψ is called thewavelet function

j = −1 j = 0 j = 1

Given signal at scale up to j, Vj =⊕j′≥jWj′ , how to resolve it into scales?

▸▸ Vj spanned by φ(2−jx − n),
▸▸ φ is known as scaling function

Discrete wavelet transform:

V0

W0 W1

V2 …

▸▸ defined by low-pass filter h and high-pass filter g
▸▸ locally resolves discrete input signal in ℓ2(Z) into different scales
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MERA and wavelets

Key fact: Second quantizing 1D wavelet transform↝MERA circuit!

length of classical filter ∼ depth of quantum circuit (Evenbly-White)

Task: To produce free fermion ground state, design wavelet transform
that targets positive/negative energy modes.
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Rigorius entanglement renormalization



1D Dirac fermions – Lattice model

Massless Dirac fermions on 1D lattice (Kogut-Susskind):

H1D = −∑
n
b†1,nb2,n − b

†
2,nb1,n+1 + b

†
2,nb1,n − b

†
1,n+1b2,n

= ∫
π

−π

dk
2π
[b1(k)
b2(k)

]
†

[ 0 e−ik − 1
eik − 1 0

][b1(k)
b2(k)

] .

Diagonalize:

u(k) = [1 0
0 −i sign(k)eik/2]

1√
2
[1 1
1 −1] , u

†hu = [E−(k) 0
0 E+(k)

]

▸▸ freedom to choose any basis of Fermi sea!
▸▸ want pairs of modes related by −i sign(k)eik/2.
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1D Dirac fermions – Wavelets

Task: Find pair of wavelet transforms such that high-pass filters are
related by −i sign(k)eik/2.
▸▸ studied in signal processing, motivated by translation-invariance
▸▸ impossible with finite filters, but possible to arbitrary accuracy

(Selesnick)
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1D Dirac fermions – MERA
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Parameters:
▸▸ L – number of layers
▸▸ ε – accuracy of phase
relation of filters
▸▸ W – “size” of filters

Consider correlation function of N creation and annihilation
operators

C({fi}) ∶= ⟨b†j1(f1)⋯b
†
jN(fN)bjN+1(fN+1)⋯bj2N(f2N)⟩

supported on S lattice sites.

Theorem (simplified)

∣C({fi})exact − C({fi})MERA∣ ≲
√
SNWmax{2−L/4, ε}
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1D Dirac fermions – Numerics

Energy error
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Non-relativistic 2D fermions – Lattice model

Non-relativistic fermions hopping on 2D square lattice at half filling:

H2D = −∑
m,n

a†m,nam+1,n + a†m,nam,n+1 + h.c.

Fermi surface:
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▸▸ violation of area law: S(R) ∼ R log R (Wolf, Gioev-Klich, Swingle)
▸▸ Green function factorizes w.r.t. rotated axes
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Non-relativistic 2D fermions – Branching MERA

Natural construction: Tensor product of wavelet transforms!

Wψ = ψs ⊕ ψw ↝ (W⊗W)ψ = ψss ⊕ ψws ⊕ ψsw ⊕ ψww

After second quantization, obtain variant of branching MERA
(Evenbly-Vidal):

Similar approximation theorem holds.



Summary



Summary

Entanglement renormalization for free fermions:

▸▸ Rigorous approximation of correlation functions
▸▸ Explicit quantum circuits fromwavelet transforms

Outlook:
▸▸ Dirac fermions in the continuum
▸▸ Massive theories, Dirac cones, beyond states at fixed times, …
▸▸ Interacting theories? Starting point for variational optimization?

Thank you!
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