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Two techniques

Refined small-deviation analysis:

“Moderate deviation analysis for classical communication over quantum
channels”, Christopher T. Chubb, Vincent Y.F. Tan, and Marco
Tomamichel, Communications in Mathematical Physics (2017) 355: 1283,
arXiv:1701.03114.

Refined large-deviation analysis:

“Moderate Deviation Analysis for Classical-Quantum Channels and Quantum
Hypothesis Testing”, Hao-Chung Cheng and Min-Hsiu Hsieh, IEEE
Transactions on Information Theory (to appear), arXiv:1701.03195.

“Quantum Sphere-Packing Bounds with Polynomial Prefactors”, Hao-Chung
Cheng, Min-Hsiu Hsieh, and Marco Tomamichel, arXiv:1704.05703.
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Classical communication

Suppose Alice wants to send classical information to Bob, via some channel.

There is a trade-off between three quantities:

Number of channel uses

Amount of information transmitted

Error probability
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Classical channels versus quantum channels

If we have access to a quantum channel, then quantum encoding/decoding can
allow us to transmit more information with less error than classical
encoding/decoding.

A simple example is a bit-flip channel

E(ρ) = pXρX + (1− p)ρ.

Classically: Either we send many noisy bits, or fewer encoded bits.

Quantumly: Simply transmit our bits noiselessly in the X basis {|+〉 , |−〉}.

C. T. Chubb Moderate deviations 4/22



Classical communication over a quantum channel

We are going to consider coding of classical-quantum channels.

For c-q channel W, a (n,R, ε)-code is an encoder E and decoding POVM {Di}
such that

1

2nR

2nR∑
m=1

Tr
[
W⊗n

(
⊗n

i=1Ei (m)
)
Dm

]
≥ 1− ε

We will be concerned with the trade-off between the block-length n, the rate R,
and the error probability ε. We define the optimal rate/error probability as

R∗(W; n, ε) := max {R | ∃(n,R, ε)-code} ,
ε∗(W; n,R) := min {ε | ∃(n,R, ε)-code} .
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Asymptotics

For a constant error probability ε, the Strong Converse Theorem tells us the rate
approaches a constant known as the capacity

lim
n→∞

R∗(W; n, ε) = C (W).

Equivalently this means that the error probability must to go 0 to 1 either side of
the capacity

lim
n→∞

ε∗(W; n,R) =

{
0 : R < C (W)

1 : R > C (W)

This tells us we can have either R → C OR ε→ 0.

How fast are these convergences? Can we do both?
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Small and large deviations

How fast are the convergences R → C or ε→ 0 as n→∞?

n = 10, 000
n = 1

R

ε

C
0

1

Small deviation (Tomamichel and Tan 2015)

R∗(n, ε) = C +
√

V
n

Φ−1(ε) + o
(

1√
n

)
ε ∈ (0, 1

2
)

Large deviation (Partial progress)

ln ε∗(n,R) = −n · E(R) + o(n) R < C
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Small and large deviations

How fast are the convergences R → C or ε→ 0 as n→∞?

n = 10, 000
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Moderate deviations
What if we want R → C AND ε→ 0?

R

ε

C0

1

Moderate deviation (This work)

For any {an} such that an → 0 and
√
nan →∞ we have

R∗(n, εn) = C −
√

2Van + o(an) for εn = e−na
2
n ,

or equivalently

ln ε∗(n,Rn) = −na2
n

2V
+ o(na2

n) for Rn = C − an.
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Concentration inequalities

Take {Xi} iid with E[Xi ] = 0 and Var[Xi ] =: V , and X̄n := 1
n

∑n
i=1 Xi .

Asymptotic (Law of large numbers)

lim
n→∞

Pr
[
X̄n ≥ t

]
=

{
1 t < 0,

0 t > 0.

Small deviation (Berry-Esseen)

Pr
[
X̄n ≥ ε√

n

]
= Q

(
ε√
V

)
+O

(
1√
n

)
ε ∈ (0, 1)

Large deviation (Cramér)

ln Pr
[
X̄n ≥ t

]
= −n · I (t) + o(n) t ≥ 0

Moderate deviation

For any {an} such that an → 0 and
√
nan →∞

ln Pr
[
X̄n ≥ an

]
= −na2

n

2V
+ o(na2

n).
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Hypothesis testing

We want to test between two hypotheses, ρ and σ. For a binary POVM
{A, I − A}, we define the type-I and type-II errors as

α(A; ρ, σ) := Tr(I − A)ρ, β(A; ρ, σ) := TrAσ,

and the ε-hypothesis-testing divergence

Dε
h(ρ‖σ) := − log min

0≤A≤I
{β(A; ρ, σ) |α(A; ρ, σ) ≤ ε} .

If we now consider testing between ρ⊗n and σ⊗n, then the asymptotic behaviour
is given by Quantum Stein’s Lemma.

Asymptotics (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

For any ε ∈ (0, 1)

lim
n→∞

1

n
Dε

h(ρ⊗n‖σ⊗n) = D(ρ‖σ).
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Deviation results for hypothesis testing

Small deviation (Tomamichel and Hayashi 2013, Li 2014)

1
n
Dε

h(ρ⊗n‖σ⊗n) = D(ρ‖σ) +
√

V (ρ‖σ)
n

Φ−1(ε) +O
(

log n
n

)
for ε ∈ (0, 1).

Large deviation (Hayashi 2006, Nagaoka 2006)

ln εn = −n · E(R) + o(n) for 1
n
Dεn

h (ρ⊗n‖σ⊗n) = R < D(ρ‖σ).

Moderate deviation (This work)

For any {an} such that an → 0 and
√
nan →∞ and εn := e−na2

n ,

1

n
Dεn

h (ρ⊗n‖σ⊗n) = D(ρ‖σ)−
√

2V (ρ‖σ)an + o(an).
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Bounding the rate

For this we can use the one shot bounds

R∗(1, ε) ≥ sup
PX

D
ε/2
h (πXY ‖πX ⊗ πY )−O(1), (Wang and Renner 2012)

R∗(1, ε) ≤ inf
σ

sup
ρ∈Im(W)

D2ε
h (ρ‖σ) +O(1), (Tomamichel and Tan 2015)

where πXY =
∑

x PX (x) |x〉〈x |X ⊗ ρ
(x)
Y .

This give n-shot bounds

R∗(n, εn) ≥ sup
PXn

1

n
D
εn/2
h (πX nY n‖πX n ⊗ πY n)−O(1/n),

R∗(n, εn) ≤ inf
σn

sup
ρn∈Im(W⊗n)

1

n
D2εn

h (ρn‖σn) +O(1/n).

This now reduces the problem of proving a moderate deviation bound for channels
to hypothesis testing.
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Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration
bounds. First we see it is related to tail bounds of the Nussbaum-Szko la
distributions1

Pρ,σ(a, b) := ra|〈φa|ψb〉|2 and Qρ,σ(a, b) := sb|〈φa|ψb〉|2,

where we have eigendecomposed our states ρ :=
∑

a ra |φa〉〈φa| and
σ :=

∑
b sb |ψb〉〈ψb|. These reproduce the first two moments of our states

D (Pρ,σ‖Qρ,σ) = D(ρ‖σ) and V (Pρ,σ‖Qρ,σ) = V (ρ‖σ).

Specifically for iid Zi = logPρ,σ/Qρ,σ and (ai , bi ) ∼ Pρ,σ, then2

1

n
Dεn

h

(
ρ⊗n

∥∥σ⊗n) ≥ sup

{
R

∣∣∣∣∣Pr

[
n∑

i=1

Zi

]
≤ εn/2

}
−O(log 1/εn),

1

n
Dεn

h

(
ρ⊗n

∥∥σ⊗n) ≤ sup

{
R

∣∣∣∣∣Pr

[
n∑

i=1

Zi

]
≤ 2εn

}
+O(log 1/εn).

1Nussbaum and Szko la 2009.
2Tomamichel and Hayashi 2013
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Channel coding

 Goal: for                          , 

 Challenges:

 The optimal error exponent is still open

 Need a tight finite blocklength analysis for the optimal error probability  
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 Hayashi 2007:
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Converse (Sphere-Packing Bound)

 Winter 1999:

 Questions:

 What is the right exponent?

 Finite blocklength bound with tight prefactor?
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 How fast are the convergences or as ?

 Moderate deviations for hypothesis testing

 Extension to image-additive channels – What about other channels (entanglement-
breaking) or capacities (entanglement-assisted)?

 Other applications – private communications, classical data compression with 
quantum side information, etc.
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Different concentration regimes

Interplay between R and n 

given a fixed ε

Interplay between ε and n 

given a fixed R

Second-order Analysis Error Exponent Analysis

[Large deviation]
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