Moderate deviation analysis for c-q channels (and hypothesis testing)

Christopher T. Chubb

physics.usyd.edu.au/~cchubb/

Centre for Engineered Quantum Systems University of Sydney

Hao-Chung Cheng

Centre for Quantum Software and Information University of Technology Sydney

QIP 2018 QuTech, TU Delft

US

Refined small-deviation analysis:

• "Moderate deviation analysis for classical communication over quantum channels", Christopher T. Chubb, Vincent Y.F. Tan, and Marco Tomamichel, Communications in Mathematical Physics (2017) 355: 1283, arXiv:1701.03114.

Refined large-deviation analysis:

- "Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing", **Hao-Chung Cheng** and Min-Hsiu Hsieh, IEEE Transactions on Information Theory (to appear), arXiv:1701.03195.
- "Quantum Sphere-Packing Bounds with Polynomial Prefactors", Hao-Chung Cheng, Min-Hsiu Hsieh, and Marco Tomamichel, arXiv:1704.05703.

- Number of channel uses
- Amount of information transmitted
- Error probability

- Number of channel uses
- Amount of information transmitted
- Error probability

- Number of channel uses
- Amount of information transmitted
- Error probability

- Number of channel uses
- Amount of information transmitted
- Error probability

- Number of channel uses
- Amount of information transmitted
- Error probability

- Number of channel uses
- Amount of information transmitted
- Error probability

- Number of channel uses
- Amount of information transmitted
- Error probability

If we have access to a quantum channel, then quantum encoding/decoding can allow us to transmit more information with less error than classical encoding/decoding.

A simple example is a bit-flip channel

$$\mathcal{E}(\rho) = p X \rho X + (1-p)\rho.$$

Classically: Either we send many noisy bits, or fewer encoded bits.

Quantumly: Simply transmit our bits noiselessly in the X basis $\{|+\rangle, |-\rangle\}$.

We are going to consider coding of classical-quantum channels.

For c-q channel W, a (n, R, ϵ) -code is an encoder E and decoding POVM $\{D_i\}$ such that

$$\frac{1}{2^{nR}}\sum_{m=1}^{2^{nR}}\mathsf{Tr}\left[\mathcal{W}^{\otimes n}\left(\otimes_{i=1}^{n}E_{i}(m)\right)D_{m}\right]\geq1-\epsilon$$

We will be concerned with the trade-off between the <u>block-length</u> n, the <u>rate</u> R, and the <u>error probability</u> ϵ . We define the optimal rate/error probability as

$$R^*(\mathcal{W}; n, \epsilon) := \max \{ R \mid \exists (n, R, \epsilon) \text{-code} \}, \\ \epsilon^*(\mathcal{W}; n, R) := \min \{ \epsilon \mid \exists (n, R, \epsilon) \text{-code} \}.$$

For a constant error probability ϵ , the Strong Converse Theorem tells us the rate approaches a constant known as the <u>capacity</u>

$$\lim_{n\to\infty} R^*(\mathcal{W}; n, \epsilon) = C(\mathcal{W}).$$

Equivalently this means that the error probability must to go 0 to 1 either side of the capacity

$$\lim_{n\to\infty} \epsilon^*(\mathcal{W}; n, R) = \begin{cases} 0 & : R < C(\mathcal{W}) \\ 1 & : R > C(\mathcal{W}) \end{cases}$$

This tells us we can have either $R \rightarrow C \text{ OR } \epsilon \rightarrow 0$.

How fast are these convergences? Can we do both?

For a constant error probability ϵ , the Strong Converse Theorem tells us the rate approaches a constant known as the <u>capacity</u>

$$\lim_{n\to\infty} R^*(\mathcal{W}; n, \epsilon) = C(\mathcal{W}).$$

Equivalently this means that the error probability must to go 0 to 1 either side of the capacity

$$\lim_{n\to\infty} \epsilon^*(\mathcal{W}; n, R) = \begin{cases} 0 & : R < C(\mathcal{W}) \\ 1 & : R > C(\mathcal{W}) \end{cases}$$

This tells us we can have either $R \rightarrow C \text{ OR } \epsilon \rightarrow 0$.

How fast are these convergences? Can we do both?

Moderate deviations

Woderate deviation (This work)

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ we have $R^*(n, \epsilon_n) = C - \sqrt{2V}a_n + o(a_n)$ for $\epsilon_n = e^{-na_n^2}$, or equivalently

 $\ln \epsilon^*(n, R_n) = -\frac{na_n^2}{2V} + o(na_n^2) \quad \text{for} \quad R_n = -\frac{na_n^2}{2V} + o(na_n^2)$

Moderate deviations

Moderate deviation (This work)

For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ we have $R^*(n, \epsilon_n) = C - \sqrt{2V}a_n + o(a_n)$ for $\epsilon_n = e^{-na_n^2}$, or equivalently

$$\operatorname{n} \epsilon^*(n, R_n) = -\frac{na_n^2}{2V} + o(na_n^2) \quad \text{for} \quad R_n = C - a_n.$$

Moderate deviations

What if we want $R \rightarrow C$ AND $\epsilon \rightarrow 0$? 1 - ϵ 0 R Moderate deviation (This work) For any $\{a_n\}$ such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ we have $R^*(n,\epsilon_n) = C - \sqrt{2V}a_n + o(a_n)$ for $\epsilon_n = e^{-na_n^2}$, or equivalently $\ln \epsilon^*(n, R_n) = -\frac{na_n^2}{2M} + o(na_n^2) \quad \text{for} \quad R_n = C - a_n.$

Concentration inequalities

Take
$$\{X_i\}$$
 iid with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] =: V$, and $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

Asymptotic (Law of large numbers)

$$\lim_{n\to\infty} \Pr\left[\bar{X}_n \ge t\right] = \begin{cases} 1 & t < 0, \\ 0 & t > 0. \end{cases}$$

Small deviation (Berry-Esseen)Large deviation (Cramér)
$$\Pr\left[\bar{X}_n \ge \frac{\epsilon}{\sqrt{n}}\right] = Q\left(\frac{\epsilon}{\sqrt{V}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,1)$$
 $\ln \Pr\left[\bar{X}_n \ge t\right] = -n \cdot I(t) + o(n) \quad t \ge 0$

Moderate deviation

For any
$$\{a_n\}$$
 such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$

$$\ln \Pr\left[\bar{X}_n \ge a_n\right] = -\frac{na_n^2}{2V} + o(na_n^2)$$

Concentration inequalities

Take
$$\{X_i\}$$
 iid with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] =: V$, and $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

Asymptotic (Law of large numbers)

$$\lim_{n\to\infty} \Pr\left[\bar{X}_n \ge t\right] = \begin{cases} 1 & t < 0, \\ 0 & t > 0. \end{cases}$$

Small deviation (Berry-Esseen)Large deviation (Cramér)
$$\Pr\left[\bar{X}_n \ge \frac{\epsilon}{\sqrt{n}}\right] = Q\left(\frac{\epsilon}{\sqrt{V}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,1)$$
 $\ln \Pr\left[\bar{X}_n \ge t\right] = -n \cdot l(t) + o(n) \quad t \ge 0$

Moderate deviation

For any
$$\{a_n\}$$
 such that $a_n o 0$ and $\sqrt{n}a_n o \infty$

$$\operatorname{n}\operatorname{Pr}\left[\bar{X}_n \ge a_n\right] = -\frac{na_n^2}{2V} + o(na_n^2)$$

Concentration inequalities

Take
$$\{X_i\}$$
 iid with $\mathbb{E}[X_i] = 0$ and $\operatorname{Var}[X_i] =: V$, and $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$.

Asymptotic (Law of large numbers)

$$\lim_{n\to\infty} \Pr\left[\bar{X}_n \ge t\right] = \begin{cases} 1 & t < 0, \\ 0 & t > 0. \end{cases}$$

Small deviation (Berry-Esseen)Large deviation (Cramér)
$$\Pr\left[\bar{X}_n \ge \frac{\epsilon}{\sqrt{n}}\right] = Q\left(\frac{\epsilon}{\sqrt{V}}\right) + \mathcal{O}\left(\frac{1}{\sqrt{n}}\right) \quad \epsilon \in (0,1)$$
 $\ln \Pr\left[\bar{X}_n \ge t\right] = -n \cdot I(t) + o(n) \quad t \ge 0$

Moderate deviation

For any
$$\{a_n\}$$
 such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$

$$\ln \Pr\left[\bar{X}_n \ge a_n\right] = -\frac{na_n^2}{2V} + o(na_n^2).$$

Hypothesis testing

We want to test between two hypotheses, ρ and σ . For a binary POVM $\{A, I - A\}$, we define the type-I and type-II errors as

$$\alpha(A; \rho, \sigma) := \operatorname{Tr}(I - A)\rho, \qquad \beta(A; \rho, \sigma) := \operatorname{Tr} A\sigma,$$

and the ϵ -hypothesis-testing divergence

$$D_h^{\epsilon}(\rho \| \sigma) := -\log \min_{0 \le A \le I} \left\{ \beta(A; \rho, \sigma) \, | \, \alpha(A; \rho, \sigma) \le \epsilon \right\}.$$

If we now consider testing between $ho^{\otimes n}$ and $\sigma^{\otimes n}$, then the asymptotic behaviour is given by Quantum Stein's Lemma.

Asymptotics (Hiai and Petz 1991, Ogawa and Nagaoka 1999) For any $\epsilon \in (0, 1)$ $\lim_{n \to \infty} \frac{1}{n} D_h^{\epsilon}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma).$

Hypothesis testing

We want to test between two hypotheses, ρ and σ . For a binary POVM $\{A, I - A\}$, we define the type-I and type-II errors as

$$\alpha(A; \rho, \sigma) := \operatorname{Tr}(I - A)\rho, \qquad \beta(A; \rho, \sigma) := \operatorname{Tr} A\sigma,$$

and the ϵ -hypothesis-testing divergence

$$D_h^{\epsilon}(\rho \| \sigma) := -\log \min_{0 \le A \le I} \left\{ \beta(A; \rho, \sigma) \, | \, \alpha(A; \rho, \sigma) \le \epsilon \right\}.$$

If we now consider testing between $\rho^{\otimes n}$ and $\sigma^{\otimes n}$, then the asymptotic behaviour is given by Quantum Stein's Lemma.

Asymptotics (Hiai and Petz 1991, Ogawa and Nagaoka 1999) For any $\epsilon \in (0, 1)$ $\lim_{n \to \infty} \frac{1}{n} D_h^{\epsilon}(\rho^{\otimes n} || \sigma^{\otimes n}) = D(\rho || \sigma).$ Small deviation (Tomamichel and Hayashi 2013, Li 2014)

$$\frac{1}{n}D_h^{\epsilon}(\rho^{\otimes n}\|\sigma^{\otimes n}) = D(\rho\|\sigma) + \sqrt{\frac{V(\rho\|\sigma)}{n}}\Phi^{-1}(\epsilon) + \mathcal{O}\left(\frac{\log n}{n}\right) \quad \text{for} \quad \epsilon \in (0,1).$$

Large deviation (Hayashi 2006, Nagaoka 2006)

$$\ln \epsilon_n = -n \cdot E(R) + o(n) \quad \text{for} \quad \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = R < D(\rho \| \sigma).$$

Moderate deviation (This work)

For any
$$\{a_n\}$$
 such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ and $\epsilon_n := e^{-na_n^2}$,
$$\frac{1}{n}D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)}a_n + o(a_n).$$

Small deviation (Tomamichel and Hayashi 2013, Li 2014)

$$\frac{1}{n}D_h^{\epsilon}(\rho^{\otimes n}\|\sigma^{\otimes n}) = D(\rho\|\sigma) + \sqrt{\frac{V(\rho\|\sigma)}{n}}\Phi^{-1}(\epsilon) + \mathcal{O}\left(\frac{\log n}{n}\right) \quad \text{for} \quad \epsilon \in (0,1).$$

Large deviation (Hayashi 2006, Nagaoka 2006)

$$\ln \epsilon_n = -n \cdot E(R) + o(n) \quad \text{for} \quad \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = R < D(\rho \| \sigma).$$

Moderate deviation (This work)

For any
$$\{a_n\}$$
 such that $a_n \to 0$ and $\sqrt{n}a_n \to \infty$ and $\epsilon_n := e^{-na_n^2}$,
 $\frac{1}{n}D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)}a_n + o(a_n).$

Bounding the rate

For this we can use the one shot bounds

$$R^{*}(1,\epsilon) \geq \sup_{P_{X}} D_{h}^{\epsilon/2}(\pi_{XY} \| \pi_{X} \otimes \pi_{Y}) - \mathcal{O}(1), \qquad (\text{Wang and Renner 2012})$$
$$R^{*}(1,\epsilon) \leq \inf_{\sigma} \sup_{\rho \in \text{Im}(\mathcal{W})} D_{h}^{2\epsilon}(\rho \| \sigma) + \mathcal{O}(1), \qquad (\text{Tomamichel and Tan 2015})$$

where
$$\pi_{XY} = \sum_{x} P_X(x) |x\rangle \langle x|_X \otimes \rho_Y^{(x)}$$
.

This give *n*-shot bounds

$$R^*(n,\epsilon_n) \ge \sup_{P_{X^n}} \frac{1}{n} D_h^{\epsilon_n/2}(\pi_{X^nY^n} \| \pi_{X^n} \otimes \pi_{Y^n}) - \mathcal{O}(1/n)$$
$$R^*(n,\epsilon_n) \le \inf_{\sigma^n} \sup_{\rho^n \in \operatorname{Im}(\mathcal{W}^{\otimes n})} \frac{1}{n} D_h^{2\epsilon_n}(\rho^n \| \sigma^n) + \mathcal{O}(1/n).$$

This now reduces the problem of proving a moderate deviation bound for channels to hypothesis testing.

Bounding the rate

For this we can use the one shot bounds

$$\begin{aligned} R^*(1,\epsilon) &\geq \sup_{P_X} D_h^{\epsilon/2}(\pi_{XY} \| \pi_X \otimes \pi_Y) - \mathcal{O}(1), \qquad \text{(Wang and Renner 2012)} \\ R^*(1,\epsilon) &\leq \inf_{\sigma} \sup_{\rho \in \operatorname{Im}(\mathcal{W})} D_h^{2\epsilon}(\rho \| \sigma) + \mathcal{O}(1), \qquad \text{(Tomamichel and Tan 2015)} \end{aligned}$$

where $\pi_{XY} = \sum_{x} P_X(x) |x\rangle \langle x|_X \otimes \rho_Y^{(x)}$.

This give *n*-shot bounds

$$R^*(n,\epsilon_n) \geq \sup_{P_{X^n}} \frac{1}{n} D_h^{\epsilon_n/2}(\pi_{X^nY^n} \| \pi_{X^n} \otimes \pi_{Y^n}) - \mathcal{O}(1/n)$$

$$R^*(n,\epsilon_n) \leq \inf_{\sigma^n} \sup_{\rho^n \in \operatorname{Im}(\mathcal{W}^{\otimes n})} \frac{1}{n} D_h^{2\epsilon_n}(\rho^n \| \sigma^n) + \mathcal{O}(1/n).$$

This now reduces the problem of proving a moderate deviation bound for channels to hypothesis testing.

Bounding the rate

For this we can use the one shot bounds

$$\begin{aligned} R^*(1,\epsilon) &\geq \sup_{P_X} D_h^{\epsilon/2}(\pi_{XY} \| \pi_X \otimes \pi_Y) - \mathcal{O}(1), \qquad \text{(Wang and Renner 2012)} \\ R^*(1,\epsilon) &\leq \inf_{\sigma} \sup_{\rho \in \operatorname{Im}(\mathcal{W})} D_h^{2\epsilon}(\rho \| \sigma) + \mathcal{O}(1), \qquad \text{(Tomamichel and Tan 2015)} \end{aligned}$$

where $\pi_{XY} = \sum_{x} P_X(x) |x\rangle \langle x|_X \otimes \rho_Y^{(x)}$.

This give *n*-shot bounds

$$R^*(n,\epsilon_n) \geq \sup_{P_{X^n}} \frac{1}{n} D_h^{\epsilon_n/2}(\pi_{X^nY^n} \| \pi_{X^n} \otimes \pi_{Y^n}) - \mathcal{O}(1/n),$$

$$R^*(n,\epsilon_n) \leq \inf_{\sigma^n} \sup_{\rho^n \in \operatorname{Im}(\mathcal{W}^{\otimes n})} \frac{1}{n} D_h^{2\epsilon_n}(\rho^n \| \sigma^n) + \mathcal{O}(1/n).$$

This now reduces the problem of proving a moderate deviation bound for channels to hypothesis testing.

Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration bounds. First we see it is related to tail bounds of the Nussbaum-Szkoła distributions¹

$$P^{
ho,\sigma}(a,b):=r_a|\langle \phi_a|\psi_b
angle|^2 \quad ext{and} \quad Q^{
ho,\sigma}(a,b):=s_b|\langle \phi_a|\psi_b
angle|^2,$$

where we have eigendecomposed our states $\rho := \sum_{a} r_{a} |\phi_{a}\rangle \langle \phi_{a}|$ and $\sigma := \sum_{b} s_{b} |\psi_{b}\rangle \langle \psi_{b}|$. These reproduce the first two moments of our states 1

$$D\left(P^{
ho,\sigma}\|Q^{
ho,\sigma}
ight)=D(
ho\|\sigma)\qquad ext{and}\qquad V\left(P^{
ho,\sigma}\|Q^{
ho,\sigma}
ight)=V(
ho\|\sigma).$$

$$\frac{1}{n} D_h^{\epsilon_n} \left(\rho^{\otimes n} \big\| \sigma^{\otimes n} \right) \ge \sup \left\{ R \left| \Pr\left[\sum_{i=1}^n Z_i \right] \le \epsilon_n / 2 \right\} - \mathcal{O}(\log 1 / \epsilon_n), \\ \frac{1}{n} D_h^{\epsilon_n} \left(\rho^{\otimes n} \big\| \sigma^{\otimes n} \right) \le \sup \left\{ R \left| \Pr\left[\sum_{i=1}^n Z_i \right] \le 2\epsilon_n \right\} + \mathcal{O}(\log 1 / \epsilon_n). \right.$$

¹Nussbaum and Szkoła 2009

Reducing hyp. testing to concentration inequalities

To give a moderate deviation analysis of the HTD, we will use concentration bounds. First we see it is related to tail bounds of the <u>Nussbaum-Szkoła</u> distributions¹

$$\mathcal{P}^{
ho,\sigma}(a,b):=r_a|\langle \phi_a|\psi_b
angle|^2 \quad ext{and} \quad Q^{
ho,\sigma}(a,b):=s_b|\langle \phi_a|\psi_b
angle|^2,$$

where we have eigendecomposed our states $\rho := \sum_{a} r_{a} |\phi_{a}\rangle\langle\phi_{a}|$ and $\sigma := \sum_{b} s_{b} |\psi_{b}\rangle\langle\psi_{b}|$. These reproduce the first two moments of our states $D(P^{\rho,\sigma} ||Q^{\rho,\sigma}) = D(\rho ||\sigma)$ and $V(P^{\rho,\sigma} ||Q^{\rho,\sigma}) = V(\rho ||\sigma)$.

Specifically for iid $Z_i = \log P^{
ho,\sigma}/Q^{
ho,\sigma}$ and $(a_i,b_i) \sim P^{
ho,\sigma}$, then²

$$\frac{1}{n} D_h^{\epsilon_n} \left(\rho^{\otimes n} \big\| \sigma^{\otimes n} \right) \ge \sup \left\{ R \left| \Pr\left[\sum_{i=1}^n Z_i \right] \le \epsilon_n / 2 \right\} - \mathcal{O}(\log 1 / \epsilon_n), \\ \frac{1}{n} D_h^{\epsilon_n} \left(\rho^{\otimes n} \big\| \sigma^{\otimes n} \right) \le \sup \left\{ R \left| \Pr\left[\sum_{i=1}^n Z_i \right] \le 2\epsilon_n \right\} + \mathcal{O}(\log 1 / \epsilon_n). \right.$$

¹Nussbaum and Szkoła 2009. ²Tomamichel and Hayashi 2013

Different regimes

From large deviation regime

Is the reliable communication possible as rate approaches capacity?

From large deviation regime

Is the reliable communication possible as rate approaches capacity?

• Let
$$R_n = \mathsf{C} - a_n$$
, where
$$\begin{cases} (i) \lim_{n \to \infty} a_n = 0 \\ (ii) \lim_{n \to \infty} \sqrt{n} a_n = \infty \end{cases}$$

From large deviation regime

Is the reliable communication possible as rate approaches capacity?

• Let
$$R_n = \mathsf{C} - a_n$$
, where
$$\begin{cases} (i) \lim_{n \to \infty} a_n = 0 \\ (ii) \lim_{n \to \infty} \sqrt{n} a_n = \infty \end{cases}$$

$$\epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\} \to 0$$

$$R^*(n, \epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}}a_n + o(a_n)$$
$$\epsilon_n = \exp\{-na_n^2\}$$

Channel coding

$$\epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}$$
$$R_n = \mathsf{C} - a_n$$

$$R^{*}(n, \epsilon_{n}) = C - \sqrt{2V}a_{n} + o(a_{n})$$

$$\epsilon_{n} = \exp\{-na_{n}^{2}\}$$
Channel coding
$$R_{n} = C - a_{n}$$

$$R_{n} = C - a_{n}$$

$$R_{n} = C - a_{n}$$

$$\frac{1}{n}\log\beta_{n}^{*} \rightarrow D - \sqrt{2V}a_{n},$$

$$\alpha_{n} \le \exp\{-na_{n}^{2}\}$$
Hypothesis testing
$$\alpha_{n} \le \exp\{-n[D - a_{n}]\}$$

Moderate deviations for hypothesis testing

• Type-I, -II errors: $\alpha_n := \operatorname{Tr} \left[(\mathbbm{1} - A_n) \rho^{\otimes n} \right]$ $\beta_n := \operatorname{Tr} \left[A_n \sigma^{\otimes n} \right]$

• Given
$$\beta_n \leq \exp\{-nR\}$$

Quantum Stein's lemma (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

$$\alpha_n^* \to \begin{cases} 0, & R < D(\rho \| \sigma) \\ 1, & R > D(\rho \| \sigma) \end{cases}$$

Moderate deviations for hypothesis testing

• Type-I, -II errors: $\alpha_n := \operatorname{Tr} \left[(\mathbbm{1} - A_n) \rho^{\otimes n} \right]$ $\beta_n := \operatorname{Tr} \left[A_n \sigma^{\otimes n} \right]$

• Given
$$\beta_n \leq \exp\{-nR\}$$

Quantum Stein's lemma (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

$$\alpha_n^* \to \begin{cases} 0, & R < D(\rho \| \sigma) \\ 1, & R > D(\rho \| \sigma) \end{cases}$$

• Question: $\alpha_n^* \to 0$? given $\beta_n \le \exp\{-n[D(\rho \| \sigma) - a_n]\}$

Moderate deviations for hypothesis testing

• Type-I, -II errors:
$$\alpha_n := \operatorname{Tr} \left[(\mathbbm{1} - A_n) \rho^{\otimes n} \right]$$

 $\beta_n := \operatorname{Tr} \left[A_n \sigma^{\otimes n} \right]$

• Given
$$\beta_n \leq \exp\{-nR\}$$

Quantum Stein's lemma (Hiai and Petz 1991, Ogawa and Nagaoka 1999)

$$\alpha_n^* \to \begin{cases} 0, & R < D(\rho \| \sigma) \\ 1, & R > D(\rho \| \sigma) \end{cases}$$

• Question: $\alpha_n^* \to 0$? given $\beta_n \le \exp\{-n[D(\rho \| \sigma) - a_n]\}$

Answer:
$$\alpha_n^* = \exp\left\{-\frac{na_n^2}{2V(\rho\|\sigma)} + o(na_n^2)\right\} \to 0$$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0 < \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{\alpha}(\rho \| \sigma) - R \right)$$

Achievability (Audenaert et al. 2007, Hayashi 2007, Audenaert, Nussbaum, Szkola, Verstraete 2008)

$$\alpha_n^* \leq \exp\{-n\mathsf{E}(R)\}$$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0 < \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{\alpha}(\rho \| \sigma) - R \right)$$

$$\left(\begin{array}{c} \frac{\mathsf{E}(D(\rho \| \sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho \| \sigma)} \end{array}\right)$$

Achievability (Audenaert et al. 2007, Hayashi 2007, Audenaert, Nussbaum, Szkola, Verstraete 2008)

$$\alpha_n^* \le \exp\{-n\mathsf{E}(R)\} \qquad \Rightarrow \alpha_n^* \le \exp\left\{-\frac{na_n^2}{2V(\rho\|\sigma)} + o(na_n^2)\right\}$$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0 < \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{\alpha}(\rho \| \sigma) - R \right)$$

$$\boxed{\frac{\mathsf{E}(D(\rho \| \sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho \| \sigma)}}$$

 $\alpha_n^* \ge \exp\{-n\mathsf{E}(R) + O(\sqrt{n})\}$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0 < \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{\alpha}(\rho \| \sigma) - R \right)$$

$$\boxed{ \frac{\mathsf{E}(D(\rho \| \sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho \| \sigma)} }$$

• Quantum Hoeffding bound ($\beta_n \leq \exp\{-nR\}$)

$$\alpha_n^* = \exp\{-n\mathsf{E}(R) + o(n)\}$$

$$\sup_{0 < \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{\alpha}(\rho \| \sigma) - R \right)$$

$$\boxed{ \frac{\mathsf{E}(D(\rho \| \sigma) - a_n)}{a_n^2} \to \frac{1}{2V(\rho \| \sigma)} }$$

Converse (Nagaoka 2006)

Moderate deviations

Channel coding

• Goal: for $R_n = \mathsf{C} - a_n$,

$$\Rightarrow \epsilon^*(n, R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}$$

Information variance
$$\mathsf{V} := \sup_{\rho_X: I(X:B)_\rho = \mathsf{C}} V(\rho_{XB} \| \rho_X \otimes \rho_B)$$

- Challenges:
 - The optimal error exponent is still open
 - Need a tight finite blocklength analysis for the optimal error probability

Achievability

• Hayashi 2007: $\epsilon^*(n, R) \le 4 \exp\left\{-n \mathsf{E}_{\mathbf{r}}^{\downarrow}(R)\right\}$

$$\max_{\frac{1}{2} \le \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{2 - \frac{1}{\alpha}}(\rho_{XB} \| \rho_X \otimes \rho_B) - R \right)$$

Achievability

• Hayashi 2007: $\epsilon^*(n, R) \le 4 \exp\left\{-n\mathsf{E}^{\downarrow}_{\mathbf{r}}(R)\right\}$

$$\max_{\frac{1}{2} \le \alpha \le 1} \frac{1 - \alpha}{\alpha} \left(D_{2 - \frac{1}{\alpha}}(\rho_{XB} \| \rho_X \otimes \rho_B) - R \right)$$

• Asymptotic expansion:

$$\frac{\mathsf{E}_{\mathrm{r}}^{\downarrow}(\mathsf{C}-a_n)}{a_n^2} \to \frac{1}{2\mathsf{V}}$$

$$\epsilon^*(n, \mathbf{R}_n) \le \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}$$

• Winter 1999:

$$\lim_{n \to \infty} -\frac{1}{n} \log \epsilon^*(n, R) \le \widetilde{\mathsf{E}}_{\mathrm{sp}}(R) := \max_{\rho_X} \min_{\sigma_X B : \sigma_X = \rho_X} \left\{ D(\sigma_{XB} \| \rho_{XB}) : \mathsf{I}(X : B)_{\sigma} \le R \right\}$$

Dalai 2013:

$$\lim_{n \to \infty} -\frac{1}{n} \log \epsilon^*(n, R) \le \mathsf{E}_{\mathrm{sp}}(R) := \max_{\rho_X} \sup_{0 < \alpha \le 1} \min_{\sigma_B} \frac{1 - \alpha}{\alpha} \left(D_\alpha(\rho_{XB} \| \rho_X \otimes \sigma_B) - R \right)$$

- Questions:
 - What is the right exponent?
 - Finite blocklength bound with tight prefactor?

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

• Asymptotic expansion:

$$\frac{\widetilde{\mathsf{E}}_{\rm sp}(\mathsf{C}-a_n)}{a_n^2} \to \frac{1}{2\widetilde{\mathsf{V}}}$$

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

$$V(\rho \| \sigma) := \operatorname{Tr} \left[\rho (\log \rho - \log \sigma)^2 \right] - D(\rho \| \sigma)^2 \quad \text{[Li12, Tomamichel, Hayashi12]}$$
$$\widetilde{V}(\rho \| \sigma) := \int_0^1 \mathrm{d}t \operatorname{Tr} \left[\rho^{1-t} (\log \rho - \log \sigma) \rho^t (\log \rho - \log \sigma) \right] - D(\rho \| \sigma)^2$$

• Asymptotic expansion:

$$\frac{\widetilde{\mathsf{E}}_{\rm sp}(\mathsf{C}-a_n)}{a_n^2} \to \frac{1}{2\widetilde{\mathsf{V}}} \ge \frac{1}{2\mathsf{V}}$$

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

$$V(\rho \| \sigma) := \operatorname{Tr} \left[\rho(\log \rho - \log \sigma)^2 \right] - D(\rho \| \sigma)^2 \quad \text{[Li12, Tomamichel, Hayashi12]}$$
$$\widetilde{V}(\rho \| \sigma) := \int_0^1 \mathrm{d}t \operatorname{Tr} \left[\rho^{1-t} (\log \rho - \log \sigma) \rho^t (\log \rho - \log \sigma) \right] - D(\rho \| \sigma)^2$$

- Asymptotic expansion: $\frac{\widetilde{\mathsf{E}}_{\mathrm{sp}}(\mathsf{C}-a_n)}{a_n^2} \to \frac{1}{2\widetilde{\mathsf{V}}} \ge \frac{1}{2\mathsf{V}}$
- Result: a tight sphere-packing bound

Dalai:
$$\exp\{O(\sqrt{n})\}$$

$$\epsilon^*(n, R) \ge \frac{A}{(1 - \alpha^*)\sqrt{n}} \exp\{-n\mathsf{E}_{\mathrm{sp}}(R)\}$$

[arXiv:1704.05703]

Classical approach (Altug, Wagner 2014)

$$\epsilon^*(n, R_n) \ge \exp\left\{-n\widetilde{\mathsf{E}}_{\mathrm{sp}}(R) + o(na_n^2)\right\}$$

$$V(\rho \| \sigma) := \operatorname{Tr} \left[\rho(\log \rho - \log \sigma)^2 \right] - D(\rho \| \sigma)^2 \quad \text{[Li12, Tomamichel, Hayashi12]}$$
$$\widetilde{V}(\rho \| \sigma) := \int_0^1 \mathrm{d}t \operatorname{Tr} \left[\rho^{1-t} (\log \rho - \log \sigma) \rho^t (\log \rho - \log \sigma) \right] - D(\rho \| \sigma)^2$$

- Asymptotic expansion: $\frac{\widetilde{\mathsf{E}}_{\mathrm{sp}}(\mathsf{C}-a_n)}{a_n^2} \to \frac{1}{2\widetilde{\mathsf{V}}} \ge \frac{1}{2\mathsf{V}}$
- Result: a tight sphere-packing bound

Dalai:
$$\exp\{O(\sqrt{n})\}$$

$$\epsilon^*(n, R) \ge \frac{A}{(1 - \alpha^*)\sqrt{n}} \exp\{-n\mathsf{E}_{\mathrm{sp}}(R)\}$$

[arXiv:1704.05703]

$$\epsilon^*(n, R_n) \ge \exp\left\{-rac{na_n^2}{2\mathsf{V}} + o(na_n^2)
ight\}$$

Conclusions

- We study the fundamental trade-off between error, rate, and blocklength
 - How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

Conclusions

- We study the fundamental trade-off between error, rate, and blocklength
 - ▶ How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

$$\begin{cases} R^*(n,\epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}}a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n,R_n) = \exp\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\}, & R_n = \mathsf{C} - a_n \end{cases}$$

Conclusions

- We study the fundamental trade-off between error, rate, and blocklength
 - ▶ How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

$$\begin{cases} R^*(n,\epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}}a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n,R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}, & R_n = \mathsf{C} - a_n \end{cases}$$

Moderate deviations for hypothesis testing

$$\begin{cases} \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)} a_n + o(a_n), \quad \epsilon_n := \exp\{-na_n^2\} \\ \frac{1}{n} D_h^{\exp\{-nR_n\}}(\rho^{\otimes n} \| \sigma^{\otimes n}) = \frac{a_n^2}{V(\rho \| \sigma)} + o(a_n^2), \quad R_n := D(\rho \| \sigma) - a_n \end{cases}$$
Conclusions

- We study the fundamental trade-off between error, rate, and blocklength
 - ▶ How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

$$\begin{cases} R^*(n,\epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}}a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n,R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}, & R_n = \mathsf{C} - a_n \end{cases}$$

Moderate deviations for hypothesis testing

$$\begin{cases} \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)} a_n + o(a_n), \quad \epsilon_n := \exp\{-na_n^2\} \\ \frac{1}{n} D_h^{\exp\{-nR_n\}}(\rho^{\otimes n} \| \sigma^{\otimes n}) = \frac{a_n^2}{V(\rho \| \sigma)} + o(a_n^2), \quad R_n := D(\rho \| \sigma) - a_n \end{cases}$$

Extension to image-additive channels – What about other channels (entanglementbreaking) or capacities (entanglement-assisted)?

Conclusions

- We study the fundamental trade-off between error, rate, and blocklength
 - ▶ How fast are the convergences $R \to C$ or $\epsilon \to 0$ as $n \to \infty$?

$$\begin{cases} R^*(n,\epsilon_n) = \mathsf{C} - \sqrt{2\mathsf{V}}a_n + o(a_n), & \epsilon_n = \exp\{-na_n^2\} \\ \epsilon^*(n,R_n) = \exp\left\{-\frac{na_n^2}{2\mathsf{V}} + o(na_n^2)\right\}, & R_n = \mathsf{C} - a_n \end{cases}$$

Moderate deviations for hypothesis testing

$$\begin{cases} \frac{1}{n} D_h^{\epsilon_n}(\rho^{\otimes n} \| \sigma^{\otimes n}) = D(\rho \| \sigma) - \sqrt{2V(\rho \| \sigma)} a_n + o(a_n), \quad \epsilon_n := \exp\{-na_n^2\} \\ \frac{1}{n} D_h^{\exp\{-nR_n\}}(\rho^{\otimes n} \| \sigma^{\otimes n}) = \frac{a_n^2}{V(\rho \| \sigma)} + o(a_n^2), \quad R_n := D(\rho \| \sigma) - a_n \end{cases}$$

- Extension to image-additive channels What about other channels (entanglementbreaking) or capacities (entanglement-assisted)?
- Other applications private communications, classical data compression with quantum side information, etc.

Different concentration regimes

Regimes	Channel Coding	Concentration
Small deviation	$\epsilon^*\left(n,C-\frac{A}{\sqrt{n}}\right)\sim \Phi\left(\frac{A}{\sqrt{V}}\right)$	$\Pr\left[\bar{X}_n \ge \frac{1}{\sqrt{n}}t\right] \sim 1 - Q\left(\frac{x}{\sqrt{V}}\right)$
Moderate deviation	$\epsilon^*(n, C - a_n) = e^{-\frac{na_n^2}{2V} + o(na_n^2)}$	$\Pr\left[\bar{X}_n \ge a_n t\right] = e^{-\frac{na_n^2}{2V}x + o(na_n^2)}$
Large deviation	$\epsilon^*(n,R) = \mathrm{e}^{-nE(R) + o(n)}$	$\Pr\left[\bar{X}_n \ge t\right] = e^{-nI(x) + o(n)}$
Second-order AnalysisError Exponent AnalysisInterplay between R and n Interplay between ε and n		
	given a fixed <i>ɛ</i> [Small deviation]	given a fixed <i>R</i> [Large deviation]

Hao-Chung Cheng

Moderate deviations