Faster ground state preparation and high-precision ground energy estimation with fewer qubits

Yimin Ge, J. Tura, J.I. Cirac QIP 2018

arXiv:1712.03193*

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Quantum simulation

Quantum chemistry

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Quantum simulation

Quantum chemistry

Small quantum computers

H, t

 $|\psi_0
angle$

Many important applications: $|\psi_0\rangle$ ground state of another non-trivial Hamiltonian!

Many important applications: $|\psi_0\rangle$ ground state of another non-trivial Hamiltonian!

Ground state problems generally hard! But may not apply to *natural* systems

QIP 2016

1. General approaches for ground state preparation

2. Algorithms - details

3. Suitability for early quantum computers

Phase estimation

$$H(0) \xrightarrow{H(s)} H(1)$$

Adiabatic algorithms $H(0) \xrightarrow{H(s)} H(1)$

 $|\text{GS}(0)\rangle$

Phase estimation

Phase estimation

Paradigm: First heuristic method, then phase estimation

Paradigm: First heuristic method, then phase estimation

This work: Improves part of phase estimation

Paradigm: First heuristic method, then phase estimation

This work: Improves part of phase estimation

Problem: Project given trial state $|\phi\rangle$ onto its ground state component

Setup

 $N \times N$ Hamiltonian H, spectrum in [0, 1]

- Eigenstates $|\lambda_i\rangle$
- Ground energy $\lambda_0,$ ground state $|\lambda_0\rangle$
- All other eigenvalues: $\lambda_i \geq \lambda_0 + \Delta$
- Can efficiently perform time evolution of H

(eg sparse & oracle access, linear combination of easy unitaries, etc [BCK15,BCCKS15,LC16,LC17])

Setup

 $N \times N$ Hamiltonian H, spectrum in [0, 1]

- Eigenstates $|\lambda_i\rangle$
- Ground energy $\lambda_0,$ ground state $|\lambda_0\rangle$
- All other eigenvalues: $\lambda_i \geq \lambda_0 + \Delta$
- Can efficiently perform time evolution of H

(eg sparse & oracle access, linear combination of easy unitaries, etc [BCK15,BCCKS15,LC16,LC17])

Circuit \mathcal{C}_{ϕ} , prepares trial state $|\phi
angle$

- $\phi_0 := \langle \lambda_0 | \phi \rangle$ (generally unknown)
- Known lower bound $\chi \leq |\phi_0|$
- Trivial assumption: $\chi = e^{-O(\log N)}$

Setup

 $N \times N$ Hamiltonian H, spectrum in [0, 1]

- Eigenstates $|\lambda_i\rangle$
- Ground energy λ_0 , ground state $|\lambda_0
 angle$
- All other eigenvalues: $\lambda_i \geq \lambda_0 + \Delta$
- Can efficiently perform time evolution of H

(eg sparse & oracle access, linear combination of easy unitaries, etc [BCK15,BCCKS15,LC16,LC17])

Circuit \mathcal{C}_{ϕ} , prepares trial state $|\phi
angle$

- $\phi_0 := \langle \lambda_0 | \phi \rangle$ (generally unknown)
- Known lower bound $\chi \leq |\phi_0|$
- Trivial assumption: $\chi = e^{-O(\log N)}$

Aim: Extract state $|\lambda'_0\rangle$ st $|| |\lambda'_0\rangle - |\lambda_0\rangle || < \epsilon$ for given ϵ

Results & Comparisons

Results & Comparisons

Ground state preparation

Results & Comparisons

Ground state preparation

Ground energy known

Ground state preparation

- N = total dimension of H
- $\Delta =$ known lower bound on spectral gap
- $\epsilon = \text{allowed error}$

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$

Ground state preparation

- N = total dimension of H
- $\Delta =$ known lower bound on spectral gap
- ϵ = allowed error

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi=\mathrm{cost}$ of preparing trial state $|\phi
 angle$

Ground state preparation

- N = total dimension of H
- $\Delta =$ known lower bound on spectral gap
- $\epsilon = \text{allowed error}$

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$

Ground state preparation

Algorithm	Gates	Qubits
$Phase\ est + AA$	$ ilde{O}\left(rac{\Lambda}{ \phi_0 ^2\Delta\epsilon}+rac{\Phi}{ \phi_0 } ight)$	$O\left(\log N + \log rac{1}{\epsilon} + \log rac{1}{\Delta} ight)$
Multicopy PEA (eg [PW'09])	$ ilde{O}\left(rac{\Lambda}{ \phi_0 \Delta}+rac{\Phi}{ \phi_0 } ight)$	

- N = total dimension of H
- $\Delta = {\sf known \ lower \ bound \ on \ spectral \ gap}$
- $\epsilon = \text{allowed error}$

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi=\mathrm{cost}$ of preparing trial state $|\phi
 angle$

Ground state preparation

- N = total dimension of H
- $\Delta = {\sf known \ lower \ bound \ on \ spectral \ gap}$
- $\epsilon = \text{allowed error}$

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi=\mathrm{cost}$ of preparing trial state $|\phi
 angle$

Ground state preparation

- N = total dimension of H
- $\Delta = {\sf known \ lower \ bound \ on \ spectral \ gap}$
- $\epsilon = \text{allowed error}$

- $\phi_0 = \text{overlap of trial state with ground state}$
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$

Ground state preparation

Ground energy unknown

N = total dimension of H

- $\Delta = {\sf known \ lower \ bound \ on \ spectral \ gap}$
- ϵ = allowed error

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi=\mathrm{cost}$ of preparing trial state $|\phi
 angle$

Ground state preparation

- N = total dimension of H
- $\Delta =$ known lower bound on spectral gap
- $\epsilon = \text{allowed error}$

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$

Ground state preparation

- N = total dimension of H
- $\Delta = {\rm known \ lower \ bound \ on \ spectral \ gap}$
- $\epsilon = \text{allowed error}$

- $\phi_0 = \text{overlap of trial state with ground state}$
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$

Ground state preparation

- N =total dimension of H
- $\Delta = {\sf known \ lower \ bound \ on \ spectral \ gap}$
- $\epsilon = \text{allowed error}$

- $\phi_0 = \text{overlap of trial state with ground state}$
- $\chi =$ known lower bound on $|\phi_0|$
- $\Lambda = \text{base cost of Hamiltonian simulation}$
- $\Phi = {
 m cost}$ of preparing trial state $|\phi
 angle$

Ground energy estimation

- N = total dimension of H
- $\Delta =$ known lower bound on spectral gap
- $\epsilon = \text{allowed error}$

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi = \text{cost of preparing trial state } |\phi\rangle$

Ground energy estimation

Algorithm	Gates	Qubits
Phase est	$ ilde{O}\left(rac{\Lambda}{\chi^3\xi}+rac{\Phi}{\chi} ight)$	$O\left(\log N + \log \frac{1}{\xi}\right)$
Multicopy PEA (eg [PW'09])	$\tilde{O}\left(\frac{\Lambda}{\chi\xi^{3/2}}+\frac{\Phi}{\chi\sqrt{\xi}}\right)$	$O\left(\log \textit{N} + rac{\lograc{1}{\chi}}{\log\lograc{1}{\chi}} imes \lograc{1}{\xi} ight)$
This work	$ ilde{O}\left(rac{\Lambda}{\chi\xi^{3/2}}+rac{\Phi}{\chi\sqrt{\xi}} ight)$	$O\left(\log N + \log rac{1}{\xi} ight)$

- N = total dimension of H
- $\Delta = {\sf known \ lower \ bound \ on \ spectral \ gap}$
- $\epsilon = \mathsf{allowed} \; \mathsf{error}$
- ξ = required precision

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi=\mathrm{cost}$ of preparing trial state $|\phi
 angle$

Ground energy estimation

Algorithm	Gates	Qubits
Phase est	$ ilde{O}\left(rac{\Lambda}{\chi^3\xi}+rac{\Phi}{\chi} ight)$	$O\left(\log N + \log \frac{1}{\xi}\right)$
Multicopy PEA (eg [PW'09])*	$\tilde{O}\left(\frac{\Lambda}{\chi\xi^{3/2}}+\frac{\Phi}{\chi\sqrt{\xi}}\right)$	$O\left(\log \textit{N} + rac{\lograc{1}{\chi}}{\log\lograc{1}{\chi}} imes \lograc{1}{\xi} ight)$
This work*	$\tilde{O}\left(\frac{\Lambda}{\chi\xi^{3/2}}+\frac{\Phi}{\chi\sqrt{\xi}}\right)$	$O\left(\log N + \log rac{1}{\xi} ight)$

 * for $\xi\ll\Delta$

- N = total dimension of H
- $\Delta = {\sf known \ lower \ bound \ on \ spectral \ gap}$
- $\epsilon = \mathsf{allowed} \; \mathsf{error}$
- ξ = required precision

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\chi =$ known lower bound on $|\phi_0|$
- Λ = base cost of Hamiltonian simulation
- $\Phi = {
 m cost}$ of preparing trial state $|\phi
 angle$

Idea:

Idea:

1. Approximate ground state projector

Idea:

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

Idea:

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

Implementing linear combination of unitaries

eg [CKS'15]

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

Implementing linear combination of unitaries

eg [CKS'15]

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude

Implementing linear combination of unitaries

eg [CKS'15]

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude

$$\begin{array}{c} 3\left|0\right\rangle = \frac{1}{\sqrt{\alpha}}\sum\sqrt{\alpha_{k}}\left|k\right\rangle, \quad \alpha = \sum\left|\alpha_{k}\right.\\ \left|0\right\rangle & \boxed{B} & \boxed{B^{\dagger}} & \left\langle0\right|\\ \left|\phi\right\rangle & \boxed{U_{k}} & V\left|\phi\right\rangle \end{array}$$

Implementing linear combination of unitaries

eg [CKS'15]

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude

$$\begin{array}{c} |0\rangle = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} |k\rangle, \quad \alpha = \sum |\alpha_k\rangle \\ |0\rangle & B & B^{\dagger} & \langle 0| \\ |\phi\rangle & U_k & V |\phi\rangle \end{array}$$

Postselection on ancilla: implement V deterministically

Implementing linear combination of unitaries

eg [CKS'15]

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude

$$\begin{array}{c} 3\left|0\right\rangle = \frac{1}{\sqrt{\alpha}}\sum\sqrt{\alpha_{k}}\left|k\right\rangle, \quad \alpha = \sum\left|\alpha_{k}\right\rangle\\ \left|0\right\rangle & B & B^{\dagger}\\ \left|\phi\right\rangle & U_{k} \end{array}\right\}\left|*\right\rangle \end{array}$$

$$|*
angle = rac{1}{lpha} \left|0
ight
angle \, oldsymbol{V} \left|\phi
ight
angle + \sqrt{1 - rac{1}{lpha^2}} \left|R
ight
angle, \qquad \qquad \langle 0|R
angle = 0$$

Implementing linear combination of unitaries

eg [CKS'15]

LCU Lemma: Able to perform unitaries $U_k \Rightarrow$ can perform $V := \sum_k \alpha_k U_k$

1. Implement V with some amplitude

$$\begin{array}{c} |0\rangle = \frac{1}{\sqrt{\alpha}} \sum \sqrt{\alpha_k} |k\rangle, \quad \alpha = \sum |\alpha_k\rangle \\ |0\rangle & B & B^{\dagger} \\ |\phi\rangle & U_k\rangle \\ |\phi\rangle & U_k\rangle \\ \end{array} \right\} |*\rangle$$

$$|*
angle = rac{1}{lpha} \ket{0} oldsymbol{V} \ket{\phi} + \sqrt{1 - rac{1}{lpha^2}} \ket{R}, \qquad \qquad \langle 0 | R
angle = 0$$

2. Amplitude amplification:

$$\left\| \frac{1}{\alpha} \left| 0 \right\rangle \mathbf{V} \left| \psi \right\rangle \right\| \to 1$$

Idea:

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

2. Approximate as linear combination of easy unitaries

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

 $\cos^{2m} H'$

2. Approximate as linear combination of easy unitaries

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

 $\cos^{2m}H'\ket{\phi} \stackrel{\propto}{_\sim} \ket{\lambda_0}$ for $m pprox 1/\Delta^2$

2. Approximate as linear combination of easy unitaries

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

 $\cos^{2m}H'\ket{\phi} \stackrel{\propto}{_\sim} \ket{\lambda_0}$ for $m pprox 1/\Delta^2$

2. Approximate as linear combination of easy unitaries

$$\cos^{2m} H' = \sum_{k=-m}^{m} \alpha_k e^{-2iH'k}, \quad \alpha_k := \frac{1}{2^{2m}} \binom{2m}{m+k}$$

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

 $\cos^{2m} H' \ket{\phi} \stackrel{\propto}{_\sim} \ket{\lambda_0}$ for $m pprox 1/\Delta^2$

2. Approximate as linear combination of easy unitaries

$$\cos^{2m} H' \approx \sum_{k=-m_0}^{m_0} \alpha_k e^{-2iH'k}, \quad \alpha_k := \frac{1}{2^{2m}} \binom{2m}{m+k}, \quad m_0 \approx \sqrt{m}$$

Assume: ground energy known. $H' := H - \lambda_0$

1. Approximate ground state projector

 $\cos^{2m} H' \ket{\phi} \stackrel{\propto}{_\sim} \ket{\lambda_0}$ for $m pprox 1/\Delta^2$

2. Approximate as linear combination of easy unitaries

$$\cos^{2m} H' \approx \sum_{k=-m_0}^{m_0} \alpha_k e^{-2iH'k}, \quad \alpha_k := \frac{1}{2^{2m}} \binom{2m}{m+k}, \quad m_0 \approx \sqrt{m}$$

3. Use LCU Lemma

Alternative: 1. $(1 - H'^2)^{2m}$ as approximate ground state projector

- 2. Expand in Chebyshev polynomials
- 3. Quantum walks

Algorithm – ground energy unknown

Algorithm – ground energy unknown

Previous algorithm:

 \bigcirc

• Requires knowing ground energy up to precision $\tilde{O}(\Delta)$

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Ð

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0 , step size $\tilde{O}(\Delta)$, stop when successful \rightarrow overall runtime factor $\tilde{O}(1/\Delta)$.

Ð

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0 , step size $\tilde{O}(\Delta)$, stop when successful \rightarrow overall runtime factor $\tilde{O}(1/\sqrt{\Delta})$. Quantum search: $\tilde{O}(1/\sqrt{\Delta})$

 \bigcirc

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0 , step size $\tilde{O}(\Delta)$, stop when successful \rightarrow overall runtime factor $\tilde{O}(1/\sqrt{\Delta})$. Quantum search: $\tilde{O}(1/\sqrt{\Delta})$

Lemma (Minimum label finding)

- L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j\rangle = 0$
- $|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_{j} |0\rangle |j\rangle |\Phi_{j}\rangle + |R\rangle$, $\langle 0|R\rangle = 0$

 $\Rightarrow \text{ Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } \||\Phi_j\rangle\| \ge \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$
Previous algorithm:

 \bigcirc

- Requires knowing ground energy up to precision $\tilde{O}(\Delta)$
- Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ_0 , step size $\tilde{O}(\Delta)$, stop when successful \rightarrow overall runtime factor $\tilde{O}(1/\sqrt{\Delta})$. Quantum search: $\tilde{O}(1/\sqrt{\Delta})$

Lemma (Minimum label finding)

- L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j\rangle = 0$
- $|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_{j} |0\rangle |j\rangle |\Phi_{j}\rangle + |R\rangle$, $\langle 0|R\rangle = 0$

 $\Rightarrow \text{ Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } \||\Phi_j\rangle\| \geq \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$

Idea: Binary search on label ancilla using amplitude amplification

Lemma (Minimum label finding)

• L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j\rangle = 0$

•
$$|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_{j} |0\rangle |j\rangle |\Phi_{j}\rangle + |R\rangle, \qquad \langle 0|R\rangle = 0$$

 $\Rightarrow \text{ Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } \||\Phi_j\rangle\| \ge \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$

Lemma (Minimum label finding)

• L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j\rangle = 0$

•
$$|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_{j} |0\rangle |j\rangle |\Phi_{j}\rangle + |R\rangle, \qquad \langle 0|R\rangle = 0$$

 $\Rightarrow \text{ Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } \||\Phi_j\rangle\| \ge \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$

- $U_j =$ previous algorithm, assuming ground energy is $E_j \gtrsim j\Delta$
- U essentially same cost as $U_j \Rightarrow$ overall runtime factor $\sqrt{L} \approx \frac{1}{\sqrt{\Lambda}}$
- Runtime dependence on χ , not $|\phi_0|$

Lemma (Minimum label finding)

• L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j\rangle = 0$

•
$$|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_{j} |0\rangle |j\rangle |\Phi_{j}\rangle + |R\rangle, \qquad \langle 0|R\rangle = 0$$

 $\Rightarrow \text{ Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } \||\Phi_j\rangle\| \geq \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$

- $U_j =$ previous algorithm, assuming ground energy is $E_j \gtrsim j\Delta$
- U essentially same cost as $U_j \Rightarrow$ overall runtime factor $\sqrt{L} \approx \frac{1}{\sqrt{\Lambda}}$
- Runtime dependence on χ , not $|\phi_0|$

Bonus: Also find ground energy to precision $\tilde{O}(\Delta)$

 Δ only required to be lower bound on gap

 $\Rightarrow~$ general ground energy estimation algorithm for high precisions

Lemma (Minimum label finding)

• L unitaries $U_j |0\rangle |0\rangle = |0\rangle |\Phi_j\rangle + |R_j\rangle$, $\langle 0|R_j\rangle = 0$

•
$$|\Phi\rangle := \frac{1}{\sqrt{L}} \sum_{j} |0\rangle |j\rangle |\Phi_{j}\rangle + |R\rangle, \qquad \langle 0|R\rangle = 0$$

 $\Rightarrow \text{ Given } \chi, \text{ can approximately find smallest } j \text{ s.t. } \||\Phi_j\rangle\| \geq \chi$ using $\tilde{O}(\sqrt{L}/\chi)$ calls to $U = \sum_j |j\rangle\langle j| \otimes U_j$

- $U_j =$ previous algorithm, assuming ground energy is $E_j \stackrel{\propto}{\sim} j\Delta$
- U essentially same cost as $U_j \Rightarrow$ overall runtime factor $\sqrt{L} \approx \frac{1}{\sqrt{\Lambda}}$
- Runtime dependence on χ , not $|\phi_0|$

Bonus: Also find ground energy to precision $\tilde{O}(\Delta)$

 Δ only required to be lower bound on gap

 $\Rightarrow~$ general ground energy estimation algorithm for high precisions

Alternative: first use PEA to find ground energy

 $\rightarrow~$ better scaling in Δ but worse scaling in overlap

Adaption for early quantum computers:

Adaption for early quantum computers: Amplitude amplification

Adaption for early quantum computers: <u>Amplitude amplification</u> Repeated measurements

Adaption for early quantum computers: Amplitude amplification Repeated measurements

NISQ: devices with $\approx 100~\text{qubits}$

Adaption for early quantum computers: <u>Amplitude amplification</u> Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably

Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!

Adaption for early quantum computers: Amplitude amplification Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!

Ground state preparation algorithms, ground energy known

Algorithm

Multicopy PEA

Phase est

This work

- N = total dimension of H
- $\Delta = {\rm known \ lower \ bound \ on \ spectral \ gap}$

 ϵ = allowed error

- $\phi_{\rm 0}={\rm overlap}$ of trial state with ground state
- Λ = base cost of Hamiltonian simulation
- $\Phi=\mathrm{cost}$ of preparing trial state $|\phi\rangle$

Adaption for early quantum computers: <u>Amplitude amplification</u> Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!

Alg	orithm			
Multicopy PEA Too many		Too many o	qubits	
Pha	ase est			
Thi	is work			
	N = total dimension of $H\Delta = known lower bound on spectral gap\epsilon = allowed error$		ϕ_0 = overlap of trial state with ground state Λ = base cost of Hamiltonian simulation Φ = cost of preparing trial state $ \phi\rangle$	

Adaption for early quantum computers: <u>Amplitude amplification</u> Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!

Alac	rithm	Gates		
Aigc	gorithm	Ampl amplif		
Multicopy PEA		EA	Too many qubits	
Pha	se est	$ ilde{O}\left(rac{\Lambda}{ \phi_0 ^2\Delta\epsilon}+rac{\Phi}{ \phi_0 } ight)$		
This	s work	$ ilde{O}\left(rac{\Lambda}{ \phi_0 \Delta}+rac{\Phi}{ \phi_0 } ight)$		
	N = total dimension of H		$\phi_{\rm O}={\rm overlap}$ of trial state with ground state	
$\Delta = know$		lower bound on spectral gap	$\Lambda=$ base cost of Hamiltonian simulation	
	$\epsilon = allowed$	error	$\Phi={\sf cost}$ of preparing trial state $ \phi angle$	

Adaption for early quantum computers: Amplitude amplification Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!

Algorithm	Gates	Gates
Algorithm	Ampl amplif	Repeated mmt
Multicopy PEA		Too many qubits
Phase est	$ ilde{O}\left(rac{\Lambda}{ \phi_0 ^2\Delta\epsilon}+rac{\Phi}{ \phi_0 } ight)$	$ ilde{O}\left(rac{\Lambda}{ \phi_0 ^3\Delta\epsilon}+rac{\Phi}{ \phi_0 ^2} ight)$
This work	$ ilde{O}\left(rac{\Lambda}{ \phi_0 \Delta}+rac{\Phi}{ \phi_0 } ight)$	$ ilde{O}\left(rac{\Lambda}{ \phi_0 ^2\Delta}+rac{\Phi}{ \phi_0 ^2} ight)$
N = tota	dimension of H	$\phi_0=$ overlap of trial state with ground state
$\Delta = know$	wn lower bound on spectral gap	$\Lambda =$ base cost of Hamiltonian simulation
$\epsilon = \text{allow}$	ed error	$\Phi={ m cost}$ of preparing trial state $ \phi angle$

Adaption for early quantum computers: Amplitude amplification Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!

Almonithms	Gates	Gates	Gates	Depatition	
Algorithm	Ampl amplif	Repeated mmt	single run	Repetitions	
Multicopy PEA		Too many qubits			
Phase est	$\tilde{O}\left(\frac{\Lambda}{ \phi_0 ^2\Delta\epsilon}+\frac{\Phi}{ \phi_0 } ight)$	$\tilde{O}\left(rac{\Lambda}{ \phi_0 ^3\Delta\epsilon}+rac{\Phi}{ \phi_0 ^2} ight)$	$\tilde{O}\left(rac{\Lambda}{ \phi_0 \Delta\epsilon}+\Phi ight)$	$\tilde{O}\left(rac{1}{ \phi_0 ^2} ight)$	
This work	$ ilde{O}\left(rac{\Lambda}{ \phi_0 \Delta}+rac{\Phi}{ \phi_0 } ight)$	$ ilde{O}\left(rac{\Lambda}{ \phi_0 ^2\Delta}+rac{\Phi}{ \phi_0 ^2} ight)$	$ ilde{O}\left(rac{\Lambda}{\Delta}+\Phi ight)$	$ ilde{O}\left(rac{1}{ \phi_0 ^2} ight)$	
N = total	dimension of H	$\phi_0 = or$	verlap of trial state with g	round state	
$\Delta = know$	vn lower bound on spectral gap	$\Lambda = bas$	se cost of Hamiltonian sim	ulation	
$\epsilon = \text{allowe}$	ed error	$\Phi = \cos \theta$	st of preparing trial state	$ \phi\rangle$	

Adaption for early quantum computers: <u>Amplitude amplification</u> Repeated measurements

NISQ: devices with ≈ 100 qubits, $\approx 10^4 - 10^5$ (?) gates reliably Limiting factor: number of gates coherently in *single-run*, **not** *total* runtime!

Algorithm	Gates Ampl amplif	Gates Repeated mmt	Gates single run	Repetitions
Phase est	$ ilde{O}\left(rac{\Lambda}{ \phi_0 ^2\Delta\epsilon}+rac{\Phi}{ \phi_0 } ight)$	$\tilde{O}\left(rac{\Lambda}{ \phi_0 ^3\Delta\epsilon}+rac{\Phi}{ \phi_0 ^2} ight)$	$ ilde{O}\left(rac{\Lambda}{ \phi_0 \Delta\epsilon}+\Phi ight)$	$\tilde{O}\left(rac{1}{ \phi_0 ^2} ight)$
This work	$ ilde{O}\left(rac{\Lambda}{ \phi_0 \Delta}+rac{\Phi}{ \phi_0 } ight)$	$\tilde{O}\left(\frac{\Lambda}{ \phi_0 ^2\Delta}+\frac{\Phi}{ \phi_0 ^2}\right)$	$ ilde{O}\left(rac{\Lambda}{\Delta}+\Phi ight)$	$\tilde{O}\left(rac{1}{ \phi_0 ^2} ight)$

- N = total dimension of H
- $\Delta = \mathsf{known} \ \mathsf{lower} \ \mathsf{bound} \ \mathsf{on} \ \mathsf{spectral} \ \mathsf{gap}$
- $\epsilon = \mathsf{allowed} \; \mathsf{error}$

- $\phi_0={\rm overlap}$ of trial state with ground state
- $\Lambda=$ base cost of Hamiltonian simulation
- $\Phi=\mathrm{cost}$ of preparing trial state $|\phi\rangle$

Ground state preparation algorithm

- Faster than naive phase estimation
- Fewer qubits than improved phase estimation
- Known and unknown ground energy
- Estimates ground energy to high precision

Ground state preparation algorithm

- Faster than naive phase estimation
- Fewer qubits than improved phase estimation
- Known and unknown ground energy
- Estimates ground energy to high precision

Applications

- Quantum simulation of many-body systems (quenches!)
- Quantum chemistry
- Single-copy tomography, QMA witnesses, optimisation problems, quantum machine learning, ...

Ground state preparation algorithm

- Faster than naive phase estimation
- Fewer qubits than improved phase estimation
- Known and unknown ground energy
- Estimates ground energy to high precision

Applications

- Quantum simulation of many-body systems (quenches!)
- Quantum chemistry
- Single-copy tomography, QMA witnesses, optimisation problems, quantum machine learning, ...

Potential applications for early quantum computers!