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Outline

1. General approaches for ground state preparation

2. Algorithms – details

3. Suitability for early quantum computers
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Setup

N×N Hamiltonian H, spectrum in [0, 1]

• Eigenstates |λi 〉
• Ground energy λ0, ground state |λ0〉
• All other eigenvalues: λi ≥ λ0 + ∆

• Can efficiently perform time evolution of H
(eg sparse & oracle access, linear combination of easy unitaries, etc [BCK15,BCCKS15,LC16,LC17])

Circuit Cφ, prepares trial state |φ〉

• φ0 := 〈λ0|φ〉 (generally unknown)

• Known lower bound χ ≤ |φ0|
• Trivial assumption: χ = e−O(log N)

Aim: Extract state |λ′0〉 st ‖ |λ′0〉 − |λ0〉 ‖ < ε for given ε
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χ = known lower bound on |φ0|

Λ = base cost of Hamiltonian simulation

Φ = cost of preparing trial state |φ〉
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(

Λ
|φ0|∆

+ Φ
|φ0|

)
O
(
log N + log log 1

ε
+ log 1

∆

)

N = total dimension of H

∆ = known lower bound on spectral gap

ε = allowed error

ξ = required precision

φ0 = overlap of trial state with ground state

χ = known lower bound on |φ0|

Λ = base cost of Hamiltonian simulation

Φ = cost of preparing trial state |φ〉



Results & Comparisons

Ground state preparation
Ground energy known

Algorithm Gates Qubits

Phase est + AA Õ
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(
Λ

χ3∆
+ Φ

χ

)

N = total dimension of H

∆ = known lower bound on spectral gap

ε = allowed error

ξ = required precision

φ0 = overlap of trial state with ground state

χ = known lower bound on |φ0|

Λ = base cost of Hamiltonian simulation

Φ = cost of preparing trial state |φ〉



Results & Comparisons

Ground energy estimation

Ground energy unknown

N = total dimension of H

∆ = known lower bound on spectral gap

ε = allowed error

ξ = required precision

φ0 = overlap of trial state with ground state

χ = known lower bound on |φ0|

Λ = base cost of Hamiltonian simulation

Φ = cost of preparing trial state |φ〉



Results & Comparisons

Ground energy estimation

Ground energy unknown

Algorithm Gates Qubits

Phase est Õ
(

Λ
χ3ξ

+ Φ
χ

)
O
(

log N + log 1
ξ

)
Multicopy PEA (eg [PW’09])

*

Õ
(

Λ
χξ3/2 + Φ

χ
√
ξ

)
O

(
log N +

log 1
χ

log log 1
χ

× log 1
ξ

)
This work

*

Õ
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−2iH′k , αk :=

1

22m

(
2m

m + k

)

, m0 ≈
√
m

3. Use LCU Lemma

Alternative: 1. (1− H′2)2m as approximate ground state projector

2. Expand in Chebyshev polynomials

3. Quantum walks

Implementing linear combination of unitaries eg [CKS’15]
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Algorithm – ground energy unknown

Previous algorithm:

• Requires knowing ground energy up to precision Õ(∆)

• Smaller values OK, but exponentially small prob of success

Naive approach: run with increasing values for λ0, step size Õ(∆), stop when

successful → overall runtime factor Õ(1/∆).

Quantum search: Õ(1/
√

∆)

Lemma (Minimum label finding)

• L unitaries Uj |0〉|0〉 = |0〉|Φj〉+ |Rj〉, 〈0|Rj〉 = 0

• |Φ〉 := 1√
L

∑
j |0〉|j〉|Φj〉+ |R〉, 〈0|R〉 = 0

⇒ Given χ, can approximately find smallest j s.t. ‖|Φj〉‖ ≥ χ
using Õ(

√
L/χ) calls to U =

∑
j |j〉〈j | ⊗ Uj

Idea: Binary search on label ancilla using amplitude amplification



Algorithm – ground energy unknown

Previous algorithm:

• Requires knowing ground energy up to precision Õ(∆)
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∆ only required to be lower bound on gap

⇒ general ground energy estimation algorithm for high precisions

Alternative: first use PEA to find ground energy

→ better scaling in ∆ but worse scaling in overlap



Algorithm – ground energy unknown

Lemma (Minimum label finding)

• L unitaries Uj |0〉|0〉 = |0〉|Φj〉+ |Rj〉, 〈0|Rj〉 = 0

• |Φ〉 := 1√
L

∑
j |0〉|j〉|Φj〉+ |R〉, 〈0|R〉 = 0

⇒ Given χ, can approximately find smallest j s.t. ‖|Φj〉‖ ≥ χ
using Õ(
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∆ only required to be lower bound on gap

⇒ general ground energy estimation algorithm for high precisions

Alternative: first use PEA to find ground energy

→ better scaling in ∆ but worse scaling in overlap



Algorithm – ground energy unknown

Lemma (Minimum label finding)

• L unitaries Uj |0〉|0〉 = |0〉|Φj〉+ |Rj〉, 〈0|Rj〉 = 0

• |Φ〉 := 1√
L

∑
j |0〉|j〉|Φj〉+ |R〉, 〈0|R〉 = 0

⇒ Given χ, can approximately find smallest j s.t. ‖|Φj〉‖ ≥ χ
using Õ(
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Early quantum computers

Adaption for early quantum computers:

Amplitude amplification Repeated measurements

NISQ: devices with ≈ 100 qubits, ≈ 104 − 105 (?) gates reliably

Limiting factor: number of gates coherently in single-run, not total runtime!

Ground state preparation algorithms, ground energy known

Algorithm

Gates Gates Gates
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N = total dimension of H

∆ = known lower bound on spectral gap

ε = allowed error

φ0 = overlap of trial state with ground state

Λ = base cost of Hamiltonian simulation

Φ = cost of preparing trial state |φ〉
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Õ
(

Λ
|φ0|∆ε

+ Φ
)

Õ
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Õ
(

Λ
|φ0|2∆ε

+ Φ
|φ0|

)
Õ
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Õ
(

Λ
|φ0|2∆

+ Φ
|φ0|2

)
Õ
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Õ
(

1
|φ0|2

)

This work Õ
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Summary

Ground state preparation algorithm

• Faster than naive phase estimation

• Fewer qubits than improved phase estimation

• Known and unknown ground energy

• Estimates ground energy to high precision

Applications

• Quantum simulation of many-body systems (quenches!)

• Quantum chemistry

• Single-copy tomography, QMA witnesses, optimisation

problems, quantum machine learning, . . .

Potential applications for early quantum computers!
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