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The world is made of atoms. Chemistry arises from interactions of their electrons.

The electronic structure problem: compute the ground state energy of these systems
Accurate solutions provide us with rates/mechanisms of chemical reactions

The prospect of more efficient solutions is both scientifically exciting and valuable
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Algorithms for the 2020s and the 2030s face same problems

Variational eigensolver for chemistry (Peruzzo 2014) is favored paradigm for near-term

Recent experiments (O’Malley 2016, Kandala 2017) represent significant progress
Repetitions required is quadratic in number of Hamiltonian terms (Wecker 2015)
Circuit depth for popular adiabatic state prep ansatz similar to cost of Trotter step

Dominant cost is time-evolution; (Reiher 2017) estimates 1015 T gates to solve Fe
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With error rates at surface code threshold and 1M physical qubits, limit is ~10B T gates
Trotterization bottlenecked by O(N4) terms in chemistry Hamiltonians

“Phase estimation to good guess” approach (Aspuru-Guzik 2005) requires error-correction



Hamiltonian representation is tied to cost

Classically it is critical to choose grid where ground state is “compact”
Molecular orbitals (from mean-field solution) are near-optimal for single-molecules

To represent wavefunctions on computer one must discretize space (confine to grid)
If η electrons confined to N grid points, there are (N choose η) configurations!

Discretization in MOs leads to O(N4) Hamiltonian terms at all sizes

A spatially disjoint basis leads to O(N2) terms
But such basis sets are not compatible with Galerkin discretization



The plane wave basis with N3 terms

Ideal for periodic systems

Asymptotically determined by wavefunction cusps (Kato 1957)

Gaussians centered on nuclei: suppress errors at nuclear cusp as O(exp[-ᶓ N1/2])
Pseudopotentials restore analyticity at nuclei: Fourier transform error scales as O(e-Ṋ N)

The real problem is the electron-electron cusp; single-particle bases converge as O(1/N)
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Ideal for periodic systems
Twice as many PWs required for 
each non-periodic dimension

Asymptotically determined by wavefunction cusps (Kato 1957)
What about basis set discretization error?



The dual basis with N2 terms

Jordan-Wigner Hamiltonian still looks challenging to simulate

What happens when we Fourier transform the plane wave basis?

O(N) depth Trotter step possible for H = T + V; T diagonal in plane waves, V diagonal in dual
Fourier transform on mode operators in O(N) depth on planar lattice
We bound number of Trotter steps at O(N5/2)

We get “dual basis” with diagonal potential and N2 terms!



Linear Trotter steps by fermionic swap network (arXiv:1711.04789)

Our strategy makes use of the fermionic swap:

Both fswap and T
pq

 term are 2-local qubit operators 
if applied to neighbor orbitals under Jordan-Wigner

We can fswap and simulate at the same time:

N2/2 gates, fully parallel on linear array = N depth
Appears optimal even for arbitrary connectivity!

TL;DR: We can also implement arbitrary orbital basis change on linear array in depth N/2!
O(N1/2) depth Trotter step / state prep for Hubbard model on linear array



Cost of post-Trotter methods depends on term structure
Post-Trotter methods like Tayor series (Berry 2015) and signal processing (Low 2017) 
have no explicit polynomial dependence on number of Hamiltonian terms

(Babbush 2015) showed SELECT with Õ(N) gates for molecular orbital chemistry
Costly part is PREPARE because coefficients were determined by integrals

With λ t queries to SELECT and 2 λ t queries to PREPARE one can exactly implement 
evolution under arcsin(H) for time t; this is sufficient for PEA (arXiv:1711.10460)

Only O(N) unique coefficients; index with O(log N) ancilla; PREPARE costs O(N)
We prove λ = O(N8/3) but [unpublished] numerics indicate this is very loose!



Summary

By changing the basis we quadratically reduced number of Hamiltonian terms
Non-periodic system (e.g. single molecules) requires constant factor more qubits
We extended quantum simulation methods for this problem to periodic systems

Practical and asymptotic improvements for all known approaches
Best rigorous Trotter PEA circuit size improved from O(N8) to O(N9/2)
Best empirical Trotter PEA circuit size improved from O(~N5.5) to O(~N3.5) [unpublished]
Best post-trotter PEA circuit size improved from Õ(N5) to Õ(N11/3) [empirically loose]
Circuit repetitions for measurements required reduced from O(N8) to O(N4)
Trotter based variational ansatz reduced from O(N5) to O(N) depth on linear array

We suggest jellium as target for first useful supremacy in electronic structure
System has deep connections to study of FQHE and DFT, plane waves are optimal
Canonical benchmark for classical methods, unbiased solution intractable at 100 qubits
Trotter/PEA algorithm require fewer than 1 billion T gates [unpublished]





Jellium as target for supremacy in electronic structure
The uniform electron gas (jellium) is a canonical benchmark for new classical methods
System has deep connections to study of FQHE and DFT, plane waves are optimal

Classically intractable jellium 
requires about 100 qubits

Trotter/PEA algorithm require fewer 
than 1 billion T gates

Compelling variational algorithm 
requires about 150 layers of gates 

Jellium as target for supremacy in electronic structure
The uniform electron gas (jellium) is a canonical benchmark for new classical methods
System has deep connections to study of FQHE and DFT, plane waves are optimal

Classically intractable jellium 
requires about 100 qubits

 




