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Phase classification
Classification task:
• set of systems to classify

• Hamiltonians , unitary operators
• further constraints: spectral gap, locality, symmetry

• allowed operations
• continuous deformations
• local perturbations

Classification:
• Is the classification non-trivial?
• Which properties distinguish the phases?
• Bulk-boundary correspondence?



Different flavours of topological order

• Gaped local Hamiltonians (free/interacting)
• only one phase in 1D
• non-trivial classification in higher dimension

• Gaped local Hamilontians (free/interacting) with symmetry 
constraints (ten-fold way)
• non-trivial classification also for 1D 

• Floquet systems (time-periodic Hamiltonians) with symmetry
• non-trivial classification also for 1D

• Here: Quantum walks (QWs)

Kitaev (2009); Bravyi et al (2010);  Schuch et al (2011); Affleck et al. (1987); Zirnbauer (1998); 

Altland and Zirnbauer (1997); Kitagawa et al. (2010); Potter et al. (2016)



1. QWs in a nutshell

2. Topological classification
3. Completeness of the invariants



QWs in a Nutshell
• discrete time unitary evolution of a 

single particle on a lattice
• with internal degree of freedom
• strictly local
simple class of examples: Shift-Coin-QWs
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QWs in a Nutshell
• discrete time unitary evolution of a 

single particle on a lattice
• with internal degree of freedom
• essentially-local:                compact

•

Quantum Walk (QW):
• essentially local unitary operator 

local:                compact

X X+2X+1X-2 X-1 X+3X-3

X X+2X+1X-2 X-1 X+3X-3

X X+2X+1X-2 X-1 X+3X-3



QWs in a Nutshell
• discrete time unitary evolution of a 

single particle on a lattice
• with internal degree of freedom
• quasi- local:                compact

•
•

Quantum Walk (QW):
• quasi-local unitary operator 
Gap condition:
• essentially gaped at 

local:                compact



Motivitation for QWs
• single particle time-discrete quantum simulator

• Exhibits many single particle quantum effects
• ballistic transport, Anderson localization
• electric & magnetic fields

• quantum algorithms (Grover search)
• experimental implementations are available (cold atoms, trapped ions, …)

• Index theory for QWs & QCAs 
• non-trivial classification even without symmetries in 1D
• gives rise to a locally computable invariant: Imbalance of left/right-shift

• Nice explicit examples of symmetric trans. inv. QWs 
• Split-step Walk

Joye (2011); Ahlbrecht et al. (2011); Gross et al. (2012); Kitagawa, Takuya, et al. (2010); Asbóth, and Hideaki (2013)  
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Symmetric QWs
• System
• Symmetry

• (anti-) unitary operator
• involutive
• acts „trivally“ on each cell

• 10-fold way

QW admissible for a subset of
• satisfies all required 

commutation relations
• is essentially gaped 

particle-hole time-reversal chiral

anit-unitary anti-unitary unitary

Zirnbauer (1998); Altland and Zirnbauer (1997)
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Allowed operations/Perturbations
• System
• admissible operators
• is a

• gentle perturbation if there exists 
continuous & symmetric path

• compact perturbation if
is compact

• local perturbation if 
is local



Allowed operations/Perturbations
• System
• admissible operators
• is a

• gentle perturbation if there exists 
continuous & symmetric path

• compact perturbation if
is compact

• local perturbation if 
is local

Hamilontians:  
all local perturbations are gentle

Fails for unitary operators

Example: 



Intuition from particle-hole symmetry
admissible for 

Invariant: parity of the dimension of eigenspaces

Obervations
• additive under direct sums
• even parity balanced: connected 

to gaped operator
• reduced problem to finite 

dimension



Symmetry index
Example generalizes to 10-fold way
• for any subsets of

• characterizes      eigenspace 
• additive under direct sums
• for balanced eigenspaces
• reduced problem to finite dimension
• independent of spatial structure

characterizes      eigenspace 



Homotopy invariance

Symmetry index 



Invariants dependent on spatial structure

gentle decoupling:                              is a gentle perturbation of

can be transformed continuously to

:                              is a gentle perturbation of



Invariants dependent on spatial structure

gentle decoupling:                              is a gentle perturbation of

can be transformed continuously to

:                              is a gentle perturbation of



Invariants dependent on spatial structure

Symmetry index is additive:

with:



Compact Invariance



Compact Invariance



Homotopy vs. Spatial Invariants

stable w.r.t 
compact pert.

homotopy
stable



Bulk-edge correspondence
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1. Quantum walks in a nutshell
2. Topological classification of symmetric QWs
3. Completeness of the invariants



Completeness of the Invariants
Question: Can two walks with the same indices be connected by a           

symmetric and continuous path?
Three scenarios

(I) quantum walk, gentle perturbations, 
(II) quantum walk, gentle and compact perturbations

(III) all essentially local and admissable unitary operators, 
gentle perturbations
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Outlook
• explicit formulae for invariants in translation invariant setting
• extend construction to higher spatial dimensions
• self-averaging invariants
• extension to quantum cellular automatons



Summary
particle-hole time-reversal chiral
anit-unitary anti-unitary unitary

non-gentle perturbations

homotopy
stable

compactly stable



Summary
particle-hole time-reversal chiral
anit-unitary anti-unitary unitary

non-gentle perturbations

homotopy
stable

compactly stable

Comletness of the invariants in three scenerios
arXiv:1611.04439
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