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Assumption: all the QMS possess a full-rank invariant state (“decohering”/“non-primitive”).

Recall the modified logarithmic Sobolev inequality in the primitive case:

2α1 D(ρ‖σ) ≤ EPL(ρ) (MLSI(α1))

Can be interpreted as limit p → 1 of a family of functional inequalities called (strong)
p-logarithmic Sobolev inequalities [Diaconis Saloff Coste 96, Olkiewicz Zegarlinski 99,
Kastoryano Temme 13,Temme Pastawski Kastoryano 14,Müller-Hermes Franca Wolf 16,...]:
given X > 0,

αp Entp(X ) ≤ Ep,L(X ) (sLSIp(αp))
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Logarithmic Sobolev inequalities and hypercontractivity

An important special case is sLSI2(α2):

α2 Ent2(X ) ≤ E2,L(X ) ≡ −〈X ,L(X )〉σ (sLSI2(α2))

Recall Ivan’s talk, for a QMS satisfying the strong L1-regularity,

0 < α2 ≤ α1

sLSI2(α2) related to the notion of hypercontractivity of the QMS:

∀1 ≤ q ≤ p <∞, ‖Pt(X )‖p,σ ≤ ‖X‖q,σ, t ≥
1

2α2
log

p − 1

q − 1
(HCq(α2))

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99] )

If (Pt)t≥0 is strongly Lp-regular, then HCq(α2)⇔ sLSI2(α2).

sLSI2 provides an estimate on α1 from which mixing times can be derived.

One can also derive mixing times directly from HC2 [Diaconis Saloff-Coste 96].

→ Can we extend these concepts to estimate αN (L)/decoherence times?
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The search for a convenient norm

Requirements: we are looking for a family of norms ‖.‖(q,p),N :

- reducing to ‖.‖p,σ for primitive QMS with unique full-rank invariant state σ.
- so that ‖X‖(q,p),N = ‖X‖q, σTr

for all X ∈ N (P).
- rendering QMS contractive for all 1 ≤ q ≤ p ≤ ∞.

For unital QMS with N (P) := B(HA)⊗ IHB
[Beigi King 16]: (normalized) Pisier norms

[Pisier 93] do the job. For 1 ≤ q ≤ p and 1
r = 1

q −
1
p :

‖X‖(q,p),N := inf
X=AYB

{
‖A‖2r,σTr

‖B‖2r,σTr
‖Y‖p,σTr

; A,B ∈ N (P), Y ∈ B(H)
}
,

where σTr :=
IAB

dA dB
. They proved that the quantum Gross lemma can be extended to this

case, for an appropriate associated notion of sLSI.

Problems:

The positivity of the (strong) log-Sobolev constant was not answered.
Can we find adequate norms to extend this setting to any non-primitive QMS?
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The search for a convenient norm

In [Junge Parcet 10], the authors defined augmented Lp norms: given a C∗-algebra
N ⊂ B(H), 1 ≤ q ≤ p and 1

r = 1
q −

1
p :

‖X‖(q,p),N := inf
X=AYB

{
‖A‖2r,σTr

‖B‖2r,σTr
‖Y‖p,σTr

; A,B ∈ N , Y ∈ B(H)
}

‖Y‖(p,q),N := sup
A, B∈N (P)

‖AYB‖q, σTr

‖A‖2r, σTr
‖B‖2r, σTr

Proposition (Properties of the augmented Lp norms)

1 Hölder’s inequality: |〈X ,Y 〉σTr
| ≤ ‖X‖(q,p)N ‖Y‖(q′,p′),N

2 Duality: ‖X‖(q,p),N = sup
{
|〈X ,Y 〉σTr

| : ‖Y‖(q′,p′),N = 1
}

3 Reduction to Lp(σ) norms: N = C I ⇒ ‖X‖(q,p),N = ‖X‖p, σTr

4 Collapse on N : ∀ X ∈ N , ‖X‖(q,p),N = ‖X‖q, σTr

5 Contractivity: for N ≡ N (P): ‖Pt(X )‖(q,p),N ≤ ‖X‖(q,p),N

6 ‖.‖(q,p),N constitutes an interpolating family of norms.
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Extension of the quantum Gross lemma to non-primitive QMS

Entq,N (X ) :=
1

q
D(ρ‖ρN ), ρ := (Γ

1
q
σTr

(X ))q, ρN ≡ EN∗(ρ) (DF-Lq entropy)

Eq,L(X ) := −
q

2(q − 1)
〈Ip,q(X ),L(X )〉σTr

(DF-Lq Dirichlet form)

For a decohering QMS (Pt)t≥0, define

Weak q-DF logarithmic Sobolev inequality: for any X > 0,

Entq,N (X ) ≤ c Eq,L(X ) + d‖X‖qq,σTr
(wLSIq,N (c, d))

Weak q-DF hypercontractivity: for any 1 ≤ q ≤ p, any X ∈ B(H), and t ≥ c
2 log

(
p−1
q−1

)
:

‖Pt(X )‖(q,p),N ≤ exp

{
2d

(
1

q
−

1

p

)}
‖X‖q, σTr

(wHCq,N (c, d))

wHCq(c, 0) =HCq(αq), αq = c−1.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let (Pt)t≥0 a decohering QMS. Then,

(i) wHCq,N (c, d)⇒ wLSIq,N (c, d) for all q ≥ 1.

(ii) In the case when N (P) = B(HA)⊗ IHB
, and (Pt)t≥0 satisfies strong Lp regularity,

wLSI2,N (c, d)⇒ wHCq,N (c, d).

Intuition: wLSIq,N is the infinitesimal formulation of wHCq,N .

8 / 17



Extension of the quantum Gross lemma to non-primitive QMS

Entq,N (X ) :=
1

q
D(ρ‖ρN ), ρ := (Γ

1
q
σTr

(X ))q, ρN ≡ EN∗(ρ) (DF-Lq entropy)

Eq,L(X ) := −
q

2(q − 1)
〈Ip,q(X ),L(X )〉σTr

(DF-Lq Dirichlet form)

For a decohering QMS (Pt)t≥0, define

Weak q-DF logarithmic Sobolev inequality: for any X > 0,

Entq,N (X ) ≤ c Eq,L(X ) + d‖X‖qq,σTr
(wLSIq,N (c, d))

Weak q-DF hypercontractivity: for any 1 ≤ q ≤ p, any X ∈ B(H), and t ≥ c
2 log

(
p−1
q−1

)
:

‖Pt(X )‖(q,p),N ≤ exp

{
2d

(
1

q
−

1

p

)}
‖X‖q, σTr

(wHCq,N (c, d))

wHCq(c, 0) =HCq(αq), αq = c−1.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let (Pt)t≥0 a decohering QMS. Then,

(i) wHCq,N (c, d)⇒ wLSIq,N (c, d) for all q ≥ 1.

(ii) In the case when N (P) = B(HA)⊗ IHB
, and (Pt)t≥0 satisfies strong Lp regularity,

wLSI2,N (c, d)⇒ wHCq,N (c, d).

Intuition: wLSIq,N is the infinitesimal formulation of wHCq,N .

8 / 17



Extension of the quantum Gross lemma to non-primitive QMS

Entq,N (X ) :=
1

q
D(ρ‖ρN ), ρ := (Γ

1
q
σTr

(X ))q, ρN ≡ EN∗(ρ) (DF-Lq entropy)

Eq,L(X ) := −
q

2(q − 1)
〈Ip,q(X ),L(X )〉σTr

(DF-Lq Dirichlet form)

For a decohering QMS (Pt)t≥0, define

Weak q-DF logarithmic Sobolev inequality: for any X > 0,

Entq,N (X ) ≤ c Eq,L(X ) + d‖X‖qq,σTr
(wLSIq,N (c, d))

Weak q-DF hypercontractivity: for any 1 ≤ q ≤ p, any X ∈ B(H), and t ≥ c
2 log

(
p−1
q−1

)
:

‖Pt(X )‖(q,p),N ≤ exp

{
2d

(
1

q
−

1

p

)}
‖X‖q, σTr

(wHCq,N (c, d))

wHCq(c, 0) =HCq(αq), αq = c−1.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let (Pt)t≥0 a decohering QMS. Then,

(i) wHCq,N (c, d)⇒ wLSIq,N (c, d) for all q ≥ 1.

(ii) In the case when N (P) = B(HA)⊗ IHB
, and (Pt)t≥0 satisfies strong Lp regularity,

wLSI2,N (c, d)⇒ wHCq,N (c, d).

Intuition: wLSIq,N is the infinitesimal formulation of wHCq,N .

8 / 17



Extension of the quantum Gross lemma to non-primitive QMS

Entq,N (X ) :=
1

q
D(ρ‖ρN ), ρ := (Γ

1
q
σTr

(X ))q, ρN ≡ EN∗(ρ) (DF-Lq entropy)

Eq,L(X ) := −
q

2(q − 1)
〈Ip,q(X ),L(X )〉σTr

(DF-Lq Dirichlet form)

For a decohering QMS (Pt)t≥0, define

Weak q-DF logarithmic Sobolev inequality: for any X > 0,

Entq,N (X ) ≤ c Eq,L(X ) + d‖X‖qq,σTr
(wLSIq,N (c, d))

Weak q-DF hypercontractivity: for any 1 ≤ q ≤ p, any X ∈ B(H), and t ≥ c
2 log

(
p−1
q−1

)
:

‖Pt(X )‖(q,p),N ≤ exp

{
2d

(
1

q
−

1

p

)}
‖X‖q, σTr

(wHCq,N (c, d))

wHCq(c, 0) =HCq(αq), αq = c−1.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let (Pt)t≥0 a decohering QMS. Then,

(i) wHCq,N (c, d)⇒ wLSIq,N (c, d) for all q ≥ 1.

(ii) In the case when N (P) = B(HA)⊗ IHB
, and (Pt)t≥0 satisfies strong Lp regularity,

wLSI2,N (c, d)⇒ wHCq,N (c, d).

Intuition: wLSIq,N is the infinitesimal formulation of wHCq,N .

8 / 17



Extension of the quantum Gross lemma to non-primitive QMS

Entq,N (X ) :=
1

q
D(ρ‖ρN ), ρ := (Γ

1
q
σTr

(X ))q, ρN ≡ EN∗(ρ) (DF-Lq entropy)

Eq,L(X ) := −
q

2(q − 1)
〈Ip,q(X ),L(X )〉σTr

(DF-Lq Dirichlet form)

For a decohering QMS (Pt)t≥0, define

Weak q-DF logarithmic Sobolev inequality: for any X > 0,

Entq,N (X ) ≤ c Eq,L(X ) + d‖X‖qq,σTr
(wLSIq,N (c, d))

Weak q-DF hypercontractivity: for any 1 ≤ q ≤ p, any X ∈ B(H), and t ≥ c
2 log

(
p−1
q−1

)
:

‖Pt(X )‖(q,p),N ≤ exp

{
2d

(
1

q
−

1

p

)}
‖X‖q, σTr

(wHCq,N (c, d))

wHCq(c, 0) =HCq(αq), αq = c−1.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let (Pt)t≥0 a decohering QMS. Then,

(i) wHCq,N (c, d)⇒ wLSIq,N (c, d) for all q ≥ 1.

(ii) In the case when N (P) = B(HA)⊗ IHB
, and (Pt)t≥0 satisfies strong Lp regularity,

wLSI2,N (c, d)⇒ wHCq,N (c, d).

Intuition: wLSIq,N is the infinitesimal formulation of wHCq,N .

8 / 17



Extension of the quantum Gross lemma to non-primitive QMS

Entq,N (X ) :=
1

q
D(ρ‖ρN ), ρ := (Γ

1
q
σTr

(X ))q, ρN ≡ EN∗(ρ) (DF-Lq entropy)

Eq,L(X ) := −
q

2(q − 1)
〈Ip,q(X ),L(X )〉σTr

(DF-Lq Dirichlet form)

For a decohering QMS (Pt)t≥0, define

Weak q-DF logarithmic Sobolev inequality: for any X > 0,

Entq,N (X ) ≤ c Eq,L(X ) + d‖X‖qq,σTr
(wLSIq,N (c, d))

Weak q-DF hypercontractivity: for any 1 ≤ q ≤ p, any X ∈ B(H), and t ≥ c
2 log

(
p−1
q−1

)
:

‖Pt(X )‖(q,p),N ≤ exp

{
2d

(
1

q
−

1

p

)}
‖X‖q, σTr

(wHCq,N (c, d))

wHCq(c, 0) =HCq(αq), αq = c−1.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let (Pt)t≥0 a decohering QMS. Then,

(i) wHCq,N (c, d)⇒ wLSIq,N (c, d) for all q ≥ 1.

(ii) In the case when N (P) = B(HA)⊗ IHB
, and (Pt)t≥0 satisfies strong Lp regularity,

wLSI2,N (c, d)⇒ wHCq,N (c, d).

Intuition: wLSIq,N is the infinitesimal formulation of wHCq,N .
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Finding universal constants

In [Temme Pastawski Kastoryano 14] it was shown that LSI2(α) always holds for

0 <
2λ(L)

log ‖σ−1‖∞ + 2
≤ α2(L) ≤ λ(L).

In the non-primitive case, one can recover a weaker result:

Theorem

For any reversible QMS, wLSI2,N

(
2+log(‖σ−1

Tr
‖∞)

2λ(L) , log
√

2

)
holds.
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Decoherence times

Bounds via Poincaré:

‖ρt − ρN ‖1 ≤
√
‖σ−1

Tr ‖∞ e−λ(L) t

Bounds via Pinsker’s inequality:

‖ρt − ρN ‖1 ≤
√

2 log ‖σTr‖∞e−α1t

If d = 0, this is a good technique to get mixing/decoherence times. But we only derived
weak universal constants (d 6= 0 in general) in the non-primitive case.

Fortunately, one can derive better bounds via weak hypercontractivity [Diaconis Saloff-Coste

96]:

Theorem

If HC2,N (c, d) holds for a reversible QMS and ‖σ−1
Tr ‖∞ ≥ e, then

‖ρt − ρN ‖1 ≤ e1+d (log ‖σ−1
Tr ‖∞)

c
2λ(L) e−λ(L)t
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‖ρt − ρN ‖1 ≤
√
‖σ−1

Tr ‖∞ e−λ(L) t

Bounds via Pinsker’s inequality:

‖ρt − ρN ‖1 ≤
√

2 log ‖σTr‖∞e−α1t

If d = 0, this is a good technique to get mixing/decoherence times. But we only derived
weak universal constants (d 6= 0 in general) in the non-primitive case.

Fortunately, one can derive better bounds via weak hypercontractivity [Diaconis Saloff-Coste

96]:

Theorem

If HC2,N (c, d) holds for a reversible QMS and ‖σ−1
Tr ‖∞ ≥ e, then

‖ρt − ρN ‖1 ≤ e1+d (log ‖σ−1
Tr ‖∞)

c
2λ(L) e−λ(L)t

12 / 17



Decoherence times

Bounds via Poincaré:
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Decoherence times

wHC2,N (0,
√

log ‖σ−1
Tr ‖∞) always holds, but provides rather loose bounds on decoherence

times (exact same as Poincaré).

Since we showed that wLSI2,N (c, log
√

2) always holds for

c :=
2 + log ‖σ−1

Tr ‖∞
2λ(L)

and wLSI2,N (c, log
√

2)⇒ wHC2,N (c, log
√

2) in the case N (P) = B(HA)⊗ IHB
. Hence

Corollary

When N (P) = B(HA)⊗ IHB
, and under σTr−DBC,

‖ρt − ρN ‖1 ≤ e1+log
√

2(log ‖σ−1
Tr ‖∞)

c
2λ(L) e−λ(L)t
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Conclusion and open questions

Summary:

We extended functional analytical tools (HC,LSI) to the case of non-primitive QMS.

Weak version of LSI2,N holds generically in finite dimensions, with universal constants.

We used wHC2,N to derive bounds on the times to decoherence of non-primitive QMS.

These bounds are tighter than the ones derived from Poincaré’s inequality in the case
when N (P) = B(HA)⊗ IHB

.

Open questions:

Finding optimal weak constants HC2,N (c, d) depending on N (P).

Can we get the converse of Gross’ lemma for a general non-primitive QMS?

15 / 17



Conclusion and open questions

Thank you for your attention.
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