Quantifying decoherence of quantum Markov semigroups via hypercontractivity.

Cambyse Rouzé (University of Cambridge) Joint work with Dr. Ivan Bardet (IHES)

Quantum Information Processing, Monday, January 15

• Assumption: all the QMS possess a full-rank invariant state ("decohering" / "non-primitive").

• Recall the modified logarithmic Sobolev inequality in the primitive case:

$$2\alpha_1 D(\rho \| \sigma) \leq \mathsf{EP}_{\mathcal{L}}(\rho)$$

 $(MLSI(\alpha_1))$

 Can be interpreted as limit p → 1 of a family of functional inequalities called (strong) p-logarithmic Sobolev inequalities [Diaconis Saloff Coste 96, Olkiewicz Zegarlinski 99, Kastoryano Temme 13, Temme Pastawski Kastoryano 14, Müller-Hermes Franca Wolf 16,...]: given X > 0,

$$\alpha_{\rho} \operatorname{Ent}_{\rho}(X) \leq \mathcal{E}_{\rho, \mathcal{L}}(X) \tag{sLSI}_{\rho}(\alpha_{\rho}))$$

- Assumption: all the QMS possess a full-rank invariant state ("decohering" / "non-primitive").
- Recall the modified logarithmic Sobolev inequality in the primitive case:

$$2\alpha_1 D(\rho \| \sigma) \leq \mathsf{EP}_{\mathcal{L}}(\rho)$$

 $(MLSI(\alpha_1))$

 Can be interpreted as limit p → 1 of a family of functional inequalities called (strong) p-logarithmic Sobolev inequalities [Diaconis Saloff Coste 96, Olkiewicz Zegarlinski 99, Kastoryano Temme 13, Temme Pastawski Kastoryano 14, Müller-Hermes Franca Wolf 16,...]: given X > 0,

$$\alpha_{\rho} \operatorname{Ent}_{\rho}(X) \leq \mathcal{E}_{\rho, \mathcal{L}}(X)$$
(sLSI_p(α_{ρ})

- Assumption: all the QMS possess a full-rank invariant state ("decohering" / "non-primitive").
- Recall the modified logarithmic Sobolev inequality in the primitive case:

$$2\alpha_1 D(\rho \| \sigma) \le \mathsf{EP}_{\mathcal{L}}(\rho) \tag{MLSI}(\alpha_1)$$

 Can be interpreted as limit p → 1 of a family of functional inequalities called (strong) p-logarithmic Sobolev inequalities [Diaconis Saloff Coste 96, Olkiewicz Zegarlinski 99, Kastoryano Temme 13, Temme Pastawski Kastoryano 14, Müller-Hermes Franca Wolf 16,...]: given X > 0,

$$\left| \alpha_{\rho} \operatorname{Ent}_{\rho}(X) \leq \mathcal{E}_{\rho, \mathcal{L}}(X) \right| \qquad (\mathsf{sLSI}_{\rho}(\alpha_{\rho}))$$

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$$
(sLSI₂(α_2))

Recall Ivan's talk, for a QMS satisfying the strong L₁-regularity,

$$0<\alpha_2\leq\alpha_1$$

• $sLSI_2(\alpha_2)$ related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \quad \|\mathcal{P}_t(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \quad \quad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99]

If $(\mathcal{P}_t)_{t>0}$ is strongly \mathbb{L}_p -regular, then $HC_q(\alpha_2) \Leftrightarrow sLSl_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived.

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

ightarrow Can we extend these concepts to estimate $lpha_{\mathcal{N}}(\mathcal{L})/\mathsf{decoherence}$ times?

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$$
(sLSI₂(α_2))

 $\bullet\,$ Recall Ivan's talk, for a QMS satisfying the strong $\mathbb{L}_1\text{-regularity},$

$$0 < \alpha_2 \le \alpha_1$$

• $sLSI_2(\alpha_2)$ related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \quad \|\mathcal{P}_t(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \qquad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99]

If $(\mathcal{P}_t)_{t>0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived.

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

ightarrow Can we extend these concepts to estimate $lpha_{\mathcal{N}}(\mathcal{L})/\mathsf{decoherence}$ times?

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$$
(sLSI₂(α_2))

 $\bullet\,$ Recall Ivan's talk, for a QMS satisfying the strong $\mathbb{L}_1\text{-regularity},$

$$0 < \alpha_2 \le \alpha_1$$

• $sLSI_2(\alpha_2)$ related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \quad \|\mathcal{P}_t(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \qquad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99]

If $(\mathcal{P}_t)_{t>0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived.

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

ightarrow Can we extend these concepts to estimate $lpha_{\mathcal{N}}(\mathcal{L})/\mathsf{decoherence}$ times?

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$$
(sLSI₂(α_2))

• Recall Ivan's talk, for a QMS satisfying the strong \mathbb{L}_1 -regularity,

$$0 < \alpha_2 \le \alpha_1$$

sLSI₂(α₂) related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \hspace{0.2cm} \|\mathcal{P}_{\mathfrak{t}}(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \hspace{0.2cm} t \geq \frac{1}{2\alpha_2}\log \frac{p-1}{q-1} \hspace{0.2cm} (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99])

If $(\mathcal{P}_t)_{t\geq 0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived.

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

ightarrow Can we extend these concepts to estimate $lpha_{\mathcal{N}}(\mathcal{L})/$ decoherence times?

An important special case is sLSI₂(α₂):

 $\alpha_2 \operatorname{Ent}_2(X) \leq \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$

 $(sLSI_2(\alpha_2))$

 $\bullet\,$ Recall Ivan's talk, for a QMS satisfying the strong $\mathbb{L}_1\text{-}\text{regularity},$

$$0 < \alpha_2 \le \alpha_1$$

• $sLSI_2(\alpha_2)$ related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \quad \|\mathcal{P}_t(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \qquad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99]

If $(\mathcal{P}_t)_{t\geq 0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived.

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

ightarrow Can we extend these concepts to estimate $lpha_{\mathcal{N}}(\mathcal{L})/$ decoherence times?

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$$
(sLSI)

 $\bullet\,$ Recall Ivan's talk, for a QMS satisfying the strong $\mathbb{L}_1\text{-regularity},$

sLSI₂(α₂) related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \quad \|\mathcal{P}_t(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \quad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99])

If $(\mathcal{P}_t)_{t\geq 0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived.

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

ightarrow Can we extend these concepts to estimate $lpha_{\mathcal{N}}(\mathcal{L})/$ decoherence times?

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$$
(sLSl₂(α_2))

 $\bullet\,$ Recall Ivan's talk, for a QMS satisfying the strong $\mathbb{L}_1\text{-regularity},$

$$0 < \alpha_2 \le \alpha_1$$

• $sLSI_2(\alpha_2)$ related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \quad \|\mathcal{P}_t(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \quad \quad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99]

If $(\mathcal{P}_t)_{t\geq 0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived.

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

 \rightarrow Can we extend these concepts to estimate $\alpha_{\mathcal{N}}(\mathcal{L})$ /decoherence times?

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma}$$
(sLSI₂(α_2))

 $\bullet\,$ Recall Ivan's talk, for a QMS satisfying the strong $\mathbb{L}_1\text{-regularity},$

$$0 < \alpha_2 \le \alpha_1$$

• $sLSI_2(\alpha_2)$ related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq p < \infty, \quad \|\mathcal{P}_t(X)\|_{p,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \quad \quad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99]

If $(\mathcal{P}_t)_{t\geq 0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived ?

One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96].

 \rightarrow Can we extend these concepts to estimate $\alpha_{\mathcal{N}}(\mathcal{L})$ /decoherence times?

An important special case is sLSI₂(α₂):

$$\alpha_2 \operatorname{Ent}_2(X) \le \mathcal{E}_{2,\mathcal{L}}(X) \equiv -\langle X, \mathcal{L}(X) \rangle_{\sigma} \qquad (\mathsf{sLSI}_2(\alpha_2))$$

• Recall Ivan's talk, for a QMS satisfying the strong L₁-regularity,

$$0<\alpha_2\leq\alpha_1$$

• $sLSI_2(\alpha_2)$ related to the notion of hypercontractivity of the QMS:

$$\forall 1 \leq q \leq \rho < \infty, \quad \|\mathcal{P}_t(X)\|_{\rho,\sigma} \leq \|X\|_{q,\sigma}, \qquad t \geq \frac{1}{2\alpha_2} \log \frac{p-1}{q-1} \quad \quad (\mathsf{HC}_q(\alpha_2))$$

Theorem (Quantum Gross lemma [Olkiewicz Zegarlinski 99]

If $(\mathcal{P}_t)_{t>0}$ is strongly \mathbb{L}_p -regular, then $\mathsf{HC}_q(\alpha_2) \Leftrightarrow \mathsf{sLSI}_2(\alpha_2)$.

sLSI₂ provides an estimate on α_1 from which mixing times can be derived ? One can also derive mixing times directly from HC₂ [Diaconis Saloff-Coste 96] \checkmark Can we extend these concepts to estimate $\alpha_N(\mathcal{L})$ /decoherence times?

・ロト ・ 一下・ ・ ヨト・

1 The search for a convenient norm

Extension of the quantum Gross lemma to non-primitive QMS

Finding universal constants

Oecoherence times

5 Conclusion and open questions

<ロト < 部 > < 言 > < 言 > こ き < ら へ の へ の 4 / 17

• Requirements: we are looking for a family of norms $\|.\|_{(q,p), \mathcal{N}}$:

- reducing to $\|.\|_{p,\sigma}$ for primitive QMS with unique full-rank invariant state σ .
- so that $||X||_{(q,p),\mathcal{N}}^{(n-p),\mathcal{N}} = ||X||_{q,\sigma_{\mathsf{Tr}}}$ for all $X \in \mathcal{N}(\mathcal{P})$. rendering QMS contractive for all $1 \leq q \leq p \leq \infty$.

• For unital QMS with $\mathcal{N}(\mathcal{P}) := \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_B}$ [Beigi King 16]: (normalized) Pisier norms

$$\|X\|_{(q,p),\mathcal{N}} := \inf_{X=AYB} \left\{ \|A\|_{2r,\sigma_{\mathsf{Tr}}} \|B\|_{2r,\sigma_{\mathsf{Tr}}} \|Y\|_{p,\sigma_{\mathsf{Tr}}}; A, B \in \mathcal{N}(\mathcal{P}), \ Y \in \mathcal{B}(\mathcal{H}) \right\},$$

- **Requirements:** we are looking for a family of norms $\|.\|_{(q,p),\mathcal{N}}$:
 - reducing to $\|.\|_{p,\sigma}$ for primitive QMS with unique full-rank invariant state σ .
 - so that $||X||_{(q,p),\mathcal{N}} = ||X||_{q,\sigma_{\mathrm{Tr}}}$ for all $X \in \mathcal{N}(\mathcal{P})$. rendering QMS contractive for all $1 \leq q \leq p \leq \infty$.
- For unital QMS with $\mathcal{N}(\mathcal{P}) := \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_P}$ [Beigi King 16]: (normalized) Pisier norms [Pisier 93] do the job. For $1 \le q \le p$ and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$:

$$\|X\|_{(q,p),\mathcal{N}} := \inf_{X=AYB} \left\{ \|A\|_{2r,\sigma_{\mathsf{Tr}}} \|B\|_{2r,\sigma_{\mathsf{Tr}}} \|Y\|_{p,\sigma_{\mathsf{Tr}}}; A, B \in \mathcal{N}(\mathcal{P}), \ Y \in \mathcal{B}(\mathcal{H}) \right\},$$

where $\sigma_{Tr} := \frac{\mathbb{I}_{AB}}{d_A d_B}$. They proved that the quantum Gross lemma can be extended to this case, for an appropriate associated notion of sLSI.

- **Requirements:** we are looking for a family of norms $\|.\|_{(q,p), \mathcal{N}}$:
 - reducing to $\|.\|_{p,\sigma}$ for primitive QMS with unique full-rank invariant state σ .
 - so that $||X||_{(q,p),\mathcal{N}} = ||X||_{q,\sigma_{\mathsf{Tr}}}$ for all $X \in \mathcal{N}(\mathcal{P})$.
 - rendering QMS contractive for all $1 \le q \le p \le \infty$.
- For unital QMS with $\mathcal{N}(\mathcal{P}) := \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_B}$ [Beigi King 16]: (normalized) Pisier norms [Pisier 93] do the job. For $1 \leq q \leq p$ and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$:

$$\|X\|_{(q,p),\mathcal{N}} := \inf_{X=AYB} \left\{ \|A\|_{2r,\sigma_{\mathsf{Tr}}} \|B\|_{2r,\sigma_{\mathsf{Tr}}} \|Y\|_{p,\sigma_{\mathsf{Tr}}}; A, B \in \mathcal{N}(\mathcal{P}), \ Y \in \mathcal{B}(\mathcal{H}) \right\},$$

where $\sigma_{\text{Tr}} := \frac{1_{AB_B}}{d_A d_B}$. They proved that the quantum Gross lemma can be extended to this case, for an appropriate associated notion of sLSI.

Problems:

The positivity of the (strong) log-Sobolev constant was not answered. Can we find adequate norms to extend this setting to any non-primitive QMS? • In [Junge Parcet 10], the authors defined augmented \mathbb{L}_p norms: given a C^* -algebra $\mathcal{N} \subset \mathcal{B}(\mathcal{H}), 1 \leq q \leq p$ and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$: $\|X\|_{(q,p), \mathcal{N}} := \inf_{X = AYB} \{\|A\|_{2r, \sigma_{\mathrm{Tr}}} \|B\|_{2r, \sigma_{\mathrm{Tr}}} \|Y\|_{p, \sigma_{\mathrm{Tr}}}; A, B \in \mathcal{N}, Y \in \mathcal{B}(\mathcal{H})\}$ $\|Y\|_{(p,q), \mathcal{N}} := \sup_{A, B \in \mathcal{N}(\mathcal{P})} \frac{\|AYB\|_{q, \sigma_{\mathrm{Tr}}}}{\|A\|_{2r, \sigma_{\mathrm{Tr}}} \|B\|_{2r, \sigma_{\mathrm{Tr}}}}$

Proposition (Properties of the augmented \mathbb{L}_{P} norms)

- 1 Hölder's inequality: $|\langle X, Y \rangle_{\sigma_{\text{Tr}}}| \leq ||X||_{(q,p)\mathcal{N}} ||Y||_{(q',p'),\mathcal{N}}$
- 2 Duality: $||X||_{(q,p), \mathcal{N}} = \sup \left\{ |\langle X, Y \rangle_{\sigma_{\mathsf{Tr}}} | : ||Y||_{(q',p'), \mathcal{N}} = 1 \right\}$

<□> <@> < 注→ < 注→ < 注→ < 注→ ○ 注 → ○

- 3 Reduction to $\mathbb{L}_p(\sigma)$ norms: $\mathcal{N} = \mathbb{CI} \Rightarrow ||X||_{(q,p), \mathcal{N}} = ||X||_{p, \sigma_{\mathrm{Tr}}}$
- 4 Collapse on \mathcal{N} : $\forall X \in \mathcal{N}, \|X\|_{(q,p), \mathcal{N}} = \|X\|_{q, \sigma_{\mathrm{Tr}}}$
- 5 Contractivity: for $\mathcal{N} \equiv \mathcal{N}(\mathcal{P})$: $\|\mathcal{P}_t(X)\|_{(q,p), \mathcal{N}} \leq \|X\|_{(q,p), \mathcal{N}}$
- 6 $\|.\|_{(q,p),\mathcal{N}}$ constitutes an interpolating family of norms.

• In [Junge Parcet 10], the authors defined augmented \mathbb{L}_p norms: given a C^* -algebra $\mathcal{N} \subset \mathcal{B}(\mathcal{H}), 1 \leq q \leq p$ and $\frac{1}{r} = \frac{1}{q} - \frac{1}{p}$: $\|X\|_{(q,p), \mathcal{N}} := \inf_{X = AYB} \{\|A\|_{2r, \sigma_{\mathrm{Tr}}} \|B\|_{2r, \sigma_{\mathrm{Tr}}} \|Y\|_{p, \sigma_{\mathrm{Tr}}}; A, B \in \mathcal{N}, Y \in \mathcal{B}(\mathcal{H})\}$ $\|Y\|_{(p,q), \mathcal{N}} := \sup_{A, B \in \mathcal{N}(\mathcal{P})} \frac{\|AYB\|_{q, \sigma_{\mathrm{Tr}}}}{\|A\|_{2r, \sigma_{\mathrm{Tr}}} \|B\|_{2r, \sigma_{\mathrm{Tr}}}}$

Proposition (Properties of the augmented \mathbb{L}_p norms)

1 Hölder's inequality: $|\langle X, Y \rangle_{\sigma_{\mathsf{Tr}}}| \leq ||X||_{(q,p)\mathcal{N}} ||Y||_{(q',p'),\mathcal{N}}$

2 Duality:
$$\|X\|_{(q,p),\mathcal{N}} = \sup\left\{|\langle X,Y\rangle_{\sigma_{\mathrm{Tr}}}|: \|Y\|_{(q',p'),\mathcal{N}} = 1\right\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 3 Reduction to $\mathbb{L}_{p}(\sigma)$ norms: $\mathcal{N} = \mathbb{CI} \Rightarrow ||X||_{(q,p), \mathcal{N}} = ||X||_{p, \sigma_{\mathsf{Tr}}}$
- 4 Collapse on \mathcal{N} : $\forall X \in \mathcal{N}, \|X\|_{(q,p), \mathcal{N}} = \|X\|_{q, \sigma_{\mathsf{Tr}}}$
- 5 Contractivity: for $\mathcal{N} \equiv \mathcal{N}(\mathcal{P})$: $\|\mathcal{P}_t(X)\|_{(q,p), \mathcal{N}} \leq \|X\|_{(q,p), \mathcal{N}}$
- 6 $\|.\|_{(q,p),\mathcal{N}}$ constitutes an interpolating family of norms.

Extension of the quantum Gross lemma to non-primitive QMS

Finding universal constants

Oecoherence times

5 Conclusion and open questions

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{p,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q, \mathcal{N}}(X) \leq c \, \mathcal{E}_{q, \mathcal{L}}(X) + d \|X\|_{q, \sigma_{\mathsf{Tr}}}^{q}$$

$$(\mathsf{wLSI}_{q, \mathcal{N}}(c, d))$$

・ロト ・ 一下・ ・ ヨト・

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p),\,\mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q,\,\sigma_{\mathsf{Tr}}} \tag{wHC}_{q,\,\mathcal{N}}(c,d)$$

• wHC_q(c, 0) =HC_q(
$$\alpha_q$$
), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

- (i) wHC_q, $\mathcal{N}(c, d) \Rightarrow$ wLSI_q, $\mathcal{N}(c, d)$ for all $q \ge 1$.
- (ii) In the case when N(P) = B(H_A) ⊗ I_{H_B}, and (P_t)_{t≥0} satisfies strong L_p regularity, wLSl_{2, N}(c, d) ⇒ wHC_{q, N}(c, d).

Intuition: wLSI_q, N is the infinitesimal formulation of wHC_q, N

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q, \mathcal{N}}(X) \leq c \, \mathcal{E}_{q, \, \mathcal{L}}(X) + d \|X\|_{q, \, \sigma_{\operatorname{Tr}}}^{q}$$

$$(\mathsf{wLSI}_{q, \mathcal{N}}(c, d))$$

・ ロ ト ・ 雪 ト ・ 目 ト

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p),\mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wHC}_{q,\mathcal{N}}(c,c))$$

• wHC_q(c, 0) =HC_q(
$$\alpha_q$$
), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

- (i) wHC_q, $\mathcal{N}(c, d) \Rightarrow$ wLSI_q, $\mathcal{N}(c, d)$ for all $q \ge 1$.
- (ii) In the case when N(P) = B(H_A) ⊗ I_{H_B}, and (P_t)_{t≥0} satisfies strong L_p regularity, wLSl_{2, N}(c, d) ⇒ wHC_{q, N}(c, d).

Intuition: wLSI_q, N is the infinitesimal formulation of wHC_q, N

8/17

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF}-\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF}-\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q, \mathcal{N}}(X) \leq c \, \mathcal{E}_{q, \, \mathcal{L}}(X) + d \|X\|_{q, \sigma_{\operatorname{Tr}}}^{q}$$

$$(\mathsf{wLSI}_{q, \mathcal{N}}(c, d))$$

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p), \mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q, \sigma_{\mathsf{Tr}}}$$

 $(wHC_{q, \mathcal{N}}(c, d))$

イロト 不得 トイヨト イヨト

• wHC_q(c, 0) =HC_q(α_q), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

- (i) wHC_{q, N}(c, d) \Rightarrow wLSI_{q,N}(c, d) for all $q \ge 1$.
- (ii) In the case when N(P) = B(H_A) ⊗ I_{H_B}, and (P_t)_{t≥0} satisfies strong L_p regularity, wLSl_{2, N}(c, d) ⇒ wHC_q, N(c, d).

Intuition: wLSI_q, N is the infinitesimal formulation of wHC_q, N

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q,\,\mathcal{N}}(X) \leq c\,\mathcal{E}_{q,\,\mathcal{L}}(X) + d\|X\|^{q}_{q,\,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wLSI}_{q,\,\mathcal{N}}(c,d))$$

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_{t}(X)\|_{(q,p),\mathcal{N}} \leq \exp\left\{2d\left(\frac{1}{q}-\frac{1}{p}\right)\right\}\|X\|_{q,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wHC}_{q,\mathcal{N}}(c,d))$$

• wHC_q(
$$c$$
, 0) =HC_q(α_q), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

- (i) wHC_{q, N}(c, d) \Rightarrow wLSI_{q,N}(c, d) for all $q \ge 1$.
- (ii) In the case when N(P) = B(H_A) ⊗ I_{H_B}, and (P_t)_{t≥0} satisfies strong L_p regularity, wLSl_{2, N}(c, d) ⇒ wHC_q, N(c, d).

Intuition: wLSI_q, N is the infinitesimal formulation of wHC_q, N

8/17

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q,\,\mathcal{N}}(X) \leq c\,\mathcal{E}_{q,\,\mathcal{L}}(X) + d\|X\|^{q}_{q,\,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wLSI}_{q,\,\mathcal{N}}(c,d))$$

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p),\mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wHC}_{q,\mathcal{N}}(c,d))$$

• wHC_q(c, 0) =HC_q(
$$\alpha_q$$
), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

- (i) wHC_{q, N}(c, d) \Rightarrow wLSI_{q,N}(c, d) for all $q \ge 1$.
- (ii) In the case when $\mathcal{N}(\mathcal{P}) = \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_B}$, and $(\mathcal{P}_t)_{t \geq 0}$ satisfies strong \mathbb{L}_p regularity, wLSl₂, $\mathcal{N}(c, d) \Rightarrow wHC_{q, \mathcal{N}}(c, d)$.

Intuition: wLSI_q, N is the infinitesimal formulation of wHC_q, N

8/17

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q,\,\mathcal{N}}(X) \leq c\,\mathcal{E}_{q,\,\mathcal{L}}(X) + d\|X\|^{q}_{q,\,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wLSI}_{q,\,\mathcal{N}}(c,d))$$

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p),\mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wHC}_{q,\mathcal{N}}(c,d))$$

• wHC_q(c, 0) =HC_q(
$$\alpha_q$$
), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

(i) wHC_{q, N}(c, d)
$$\Rightarrow$$
 wLSI_{q,N}(c, d) for all $q \ge 1$.

 (ii) In the case when N(P) = B(H_A) ⊗ I_{H_B}, and (P_t)_{t≥0} satisfies strong L_p regularity, wLSl_{2, N}(c, d) ⇒ wHC_{q, N}(c, d).

Intuition: wLSI_q, N is the infinitesimal formulation of wHC_q, N

8/17

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q,\,\mathcal{N}}(X) \leq c\,\mathcal{E}_{q,\,\mathcal{L}}(X) + d\|X\|^{q}_{q,\,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wLSI}_{q,\,\mathcal{N}}(c,d))$$

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p),\mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wHC}_{q,\mathcal{N}}(c,d))$$

• wHC_q(c, 0) =HC_q(
$$\alpha_q$$
), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

(i) wHC_{q, N}(c, d)
$$\Rightarrow$$
 wLSI_{q,N}(c, d) for all $q \ge 1$.

 (ii) In the case when N(P) = B(H_A) ⊗ I_{H_B}, and (P_t)_{t≥0} satisfies strong L_p regularity, wLSl_{2, N}(c, d) ⇒ wHC_{q, N}(c, d).

Intuition: wLSI_q, N is the infinitesimal formulation of wHC_q, N

8/17

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q,\,\mathcal{N}}(X) \leq c\,\mathcal{E}_{q,\,\mathcal{L}}(X) + d\|X\|^{q}_{q,\,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wLSI}_{q,\,\mathcal{N}}(c,d))$$

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p),\mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wHC}_{q,\mathcal{N}}(c,d))$$

• wHC_q(c, 0) =HC_q(
$$\alpha_q$$
), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

(i) wHC_{q, N}(c, d)
$$\Rightarrow$$
 wLSI_{q,N}(c, d) for all $q \ge 1$.

(ii) In the case when $\mathcal{N}(\mathcal{P}) = \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_B}$, and $(\mathcal{P}_t)_{t \geq 0}$ satisfies strong \mathbb{L}_p regularity, wLSl_{2, $\mathcal{N}(c, d) \Rightarrow$ wHC_{q, $\mathcal{N}(c, d)$}.}

Intuition: wLSI_{*a*, \mathcal{N} is the infinitesimal formulation of wHC_{*a*, \mathcal{N}}}

$$\begin{aligned} \mathsf{Ent}_{q,\,\mathcal{N}}(X) &:= \frac{1}{q} D(\rho \| \rho_{\mathcal{N}}), \quad \rho := (\Gamma_{\sigma_{\mathsf{Tr}}}^{\frac{1}{q}}(X))^{q}, \quad \rho_{\mathcal{N}} \equiv E_{\mathcal{N}*}(\rho) \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ entropy}) \\ \mathcal{E}_{q,\,\mathcal{L}}(X) &:= -\frac{q}{2(q-1)} \langle I_{\rho,q}(X), \mathcal{L}(X) \rangle_{\sigma_{\mathsf{Tr}}} \qquad (\mathsf{DF}\text{-}\mathbb{L}_{q} \text{ Dirichlet form}) \end{aligned}$$

• Weak q-DF logarithmic Sobolev inequality: for any X > 0,

$$\operatorname{Ent}_{q,\,\mathcal{N}}(X) \leq c\,\mathcal{E}_{q,\,\mathcal{L}}(X) + d\|X\|^{q}_{q,\,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wLSI}_{q,\,\mathcal{N}}(c,d))$$

• Weak q-DF hypercontractivity: for any $1 \le q \le p$, any $X \in \mathcal{B}(\mathcal{H})$, and $t \ge \frac{c}{2} \log \left(\frac{p-1}{q-1}\right)$:

$$\|\mathcal{P}_t(X)\|_{(q,p),\mathcal{N}} \le \exp\left\{2d\left(\frac{1}{q} - \frac{1}{p}\right)\right\} \|X\|_{q,\sigma_{\mathsf{Tr}}} \qquad (\mathsf{wHC}_{q,\mathcal{N}}(c,d))$$

• wHC_q(c, 0) =HC_q(
$$\alpha_q$$
), $\alpha_q = c^{-1}$.

Theorem (Extension of the quantum Gross lemma to non-primitive QMS)

Let $(\mathcal{P}_t)_{t>0}$ a decohering QMS. Then,

(i) wHC_{q, N}(c, d)
$$\Rightarrow$$
 wLSI_{q,N}(c, d) for all $q \ge 1$.

 (ii) In the case when N(P) = B(H_A) ⊗ I_{H_B}, and (P_t)_{t≥0} satisfies strong L_p regularity, wLSl₂, N(c, d) ⇒ wHC_q, N(c, d).

Intuition: $wLSI_{q, \mathcal{N}}$ is the infinitesimal formulation of $wHC_{q, \mathcal{N}}$.

Extension of the quantum Gross lemma to non-primitive QMS

Finding universal constants

Oecoherence times

5 Conclusion and open questions

• In [Temme Pastawski Kastoryano 14] it was shown that $LSI_2(\alpha)$ always holds for

$$0 < \frac{2\lambda(\mathcal{L})}{\log \|\sigma^{-1}\|_{\infty} + 2} \leq \alpha_2(\mathcal{L}) \leq \lambda(\mathcal{L}).$$

• In the non-primitive case, one can recover a weaker result:

Theorem

For any reversible QMS, wLSI_{2, N}

• In [Temme Pastawski Kastoryano 14] it was shown that $LSI_2(\alpha)$ always holds for

$$0 < \frac{2\lambda(\mathcal{L})}{\log \|\sigma^{-1}\|_{\infty} + 2} \leq \alpha_2(\mathcal{L}) \leq \lambda(\mathcal{L}).$$

• In the non-primitive case, one can recover a weaker result:

Theorem

 $\textit{For any reversible QMS, wLSI}_{2, \ \mathcal{N}}\left(\frac{2 + \log (\|\sigma_{T_{1}}^{-1}\|_{\infty})}{2\lambda(\mathcal{L})}, \log \sqrt{2}\right) \textit{ holds}.$

• In [Temme Pastawski Kastoryano 14] it was shown that $LSI_2(\alpha)$ always holds for

$$0 < \frac{2\lambda(\mathcal{L})}{\log \|\sigma^{-1}\|_{\infty} + 2} \leq \alpha_2(\mathcal{L}) \leq \lambda(\mathcal{L}).$$

• In the non-primitive case, one can recover a weaker result:

Theorem

 $\textit{For any reversible QMS, wLSI}_{2, \ \mathcal{N}}\left(\frac{2 + \log (\|\sigma_{T_{1}}^{-1}\|_{\infty})}{2\lambda(\mathcal{L})}, \log \sqrt{2}\right) \textit{ holds}.$

Extension of the quantum Gross lemma to non-primitive QMS

Finding universal constants

Decoherence times

5 Conclusion and open questions

<ロ> <昂> < 言> < 言> < 言> < 言> こののの 11/17

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{\|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty}} \, \mathrm{e}^{-\lambda(\mathcal{L}) \, t}$$

• Bounds via Pinsker's inequality:

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{2\log \|\sigma_{\mathsf{Tr}}\|_{\infty}} e^{-\alpha_1 t}$$

- If d = 0, this is a good technique to get mixing/decoherence times. But we only derived weak universal constants (d ≠ 0 in general) in the non-primitive case.
- Fortunately, one can derive better bounds via weak <u>hypercontractivity</u> [Diaconis Saloff-Coste 96]:

Theorem

If HC_{2, N}(c, d) holds for a reversible QMS and $\|\sigma_{Tr}^{-1}\|_{\infty} \ge e$, then

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \le e^{1+d} (\log \|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty})^{\frac{c}{2\lambda(\mathcal{L})}} e^{-\lambda(\mathcal{L})t}$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{\|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty}} \, \mathrm{e}^{-\lambda(\mathcal{L}) \, t}$$

Bounds via Pinsker's inequality:

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{2\log \|\sigma_{\mathsf{Tr}}\|_\infty} \mathrm{e}^{-\alpha_1 t}$$

- If d = 0, this is a good technique to get mixing/decoherence times. But we only derived weak universal constants (d ≠ 0 in general) in the non-primitive case.
- Fortunately, one can derive better bounds via weak <u>hypercontractivity</u> [Diaconis Saloff-Coste 96]:

Theorem

If HC_{2, $\mathcal{N}(c, d)$ holds for a reversible QMS and $\|\sigma_{Tr}^{-1}\|_{\infty} \ge e$, then}

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \le e^{1+d} (\log \|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty})^{\frac{c}{2\lambda(\mathcal{L})}} e^{-\lambda(\mathcal{L})t}$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{\|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty}} \, \mathrm{e}^{-\lambda(\mathcal{L}) \, t}$$

Bounds via Pinsker's inequality:

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{2\log \|\sigma_{\mathsf{Tr}}\|_\infty} \mathsf{e}^{-\alpha_1 t}$$

- If d = 0, this is a good technique to get mixing/decoherence times. But we only derived weak universal constants (d ≠ 0 in general) in the non-primitive case.
- Fortunately, one can derive better bounds via weak <u>hypercontractivity</u> [Diaconis Saloff-Coste 96]:

Theorem

If HC_{2, $\mathcal{N}(c, d)$ holds for a reversible QMS and $\|\sigma_{Tr}^{-1}\|_{\infty} \ge e$, then}

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq e^{1+d} (\log \|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty})^{\frac{c}{2\lambda(\mathcal{L})}} e^{-\lambda(\mathcal{L})t}$$

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{\|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty}} \, \mathrm{e}^{-\lambda(\mathcal{L}) \, t}$$

Bounds via Pinsker's inequality:

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{2\log \|\sigma_{\mathsf{Tr}}\|_\infty} \mathsf{e}^{-\alpha_1 t}$$

- If d = 0, this is a good technique to get mixing/decoherence times. But we only derived weak universal constants (d ≠ 0 in general) in the non-primitive case.
- Fortunately, one can derive better bounds via weak <u>hypercontractivity</u> [Diaconis Saloff-Coste 96]:

Theorem

If HC_{2, $\mathcal{N}(c, d)$ holds for a reversible QMS and $\|\sigma_{Tr}^{-1}\|_{\infty} \ge e$, then}

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq e^{1+d} (\log \|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty})^{\frac{c}{2\lambda(\mathcal{L})}} e^{-\lambda(\mathcal{L})t}$$

Bounds via <u>Poincaré</u>:

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{\|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty}} \, \mathrm{e}^{-\lambda(\mathcal{L}) \, t}$$

Bounds via Pinsker's inequality:

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \sqrt{2\log \|\sigma_{\mathsf{Tr}}\|_\infty} \mathsf{e}^{-\alpha_1 t}$$

- If d = 0, this is a good technique to get mixing/decoherence times. But we only derived weak universal constants (d ≠ 0 in general) in the non-primitive case.
- Fortunately, one can derive better bounds via weak <u>hypercontractivity</u> [Diaconis Saloff-Coste 96]:

Theorem

If HC_2, $_{\mathcal{N}}(c,d)$ holds for a reversible QMS and $\|\sigma_{Tr}^{-1}\|_{\infty}\geq$ e, then

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \mathsf{e}^{1+d} (\log \|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty})^{\frac{\mathsf{c}}{2\lambda(\mathcal{L})}} \mathsf{e}^{-\lambda(\mathcal{L})t}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

- wHC₂, N(0, √log ||σ_{Tr}⁻¹||∞) always holds, but provides rather loose bounds on decoherence times (exact same as Poincaré).
- Since we showed that wLSI_{2,N} $(c, \log \sqrt{2})$ always holds for

$$c:=rac{2+\log\|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty}}{2\lambda(\mathcal{L})}$$

and $\mathsf{wLSI}_{2,\mathcal{N}}(c,\log\sqrt{2}) \Rightarrow \mathsf{wHC}_{2,\mathcal{N}}(c,\log\sqrt{2})$ in the case $\mathcal{N}(\mathcal{P}) = \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_B}$. Hence

Corollary

When $\mathcal{N}(\mathcal{P}) = \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_B}$, and under $\sigma_{Tr} - DBC$,

$$\|\rho_t - \rho_{\mathcal{N}}\|_1 \leq \mathsf{e}^{1 + \log \sqrt{2}} (\log \|\sigma_{\mathsf{Tr}}^{-1}\|_{\infty})^{\frac{\mathsf{c}}{2\lambda(\mathcal{L})}} \mathsf{e}^{-\lambda(\mathcal{L})t}$$

Extension of the quantum Gross lemma to non-primitive QMS

Finding universal constants

6 Conclusion and open questions

<ロ><日><日><日><日><日><日><日><日><日><日</td>14/17

Summary:

We extended functional analytical tools (HC,LSI) to the case of non-primitive QMS.

Weak version of $LSI_{2, \mathcal{N}}$ holds generically in finite dimensions, with universal constants.

We used wHC $_{2,\mathcal{N}}$ to derive bounds on the times to decoherence of non-primitive QMS.

These bounds are tighter than the ones derived from Poincaré's inequality in the case when $\mathcal{N}(\mathcal{P}) = \mathcal{B}(\mathcal{H}_A) \otimes \mathbb{I}_{\mathcal{H}_B}$.

Open questions:

Finding optimal weak constants $HC_{2, \mathcal{N}}(c, d)$ depending on $\mathcal{N}(\mathcal{P})$.

Can we get the converse of Gross' lemma for a general non-primitive QMS?

Thank you for your attention.

[Bardet 17] I. Bardet, Estimating the decoherence time using non-commutative Functional Inequalities, arXiv:1710.01039v1

[Beigi King 16] S. Beigi and C. King, Hypercontractivity and the logarithmic Sobolev inequality for the completely bounded norm, Journal of Mathematical Physics 57, 015206 (2016)

[Diaconis Saloff-Coste 96] P. Diaconis and L. Saloff-Coste, Logarithmic Sobolev inequalities for finite Markov chains, The Annals of Applied Probability, Vol. 6, No. 3, 695-750 (1996)

[Junge Parcet 10] M. Junge and J. Parcet, Mixed-norm inequalities and operator space Lp embedding theory, Memoirs of the American Mathematical Society, 203 953 (2010)

[Kastoryano Temme 13] M. J. Kastoryano and K. Temme, Quantum logarithmic Sobolev inequalities and rapid mixing, Journal of Mathematical Physics 54, 052202 (2013)

[Müller-Hermes Franca Wolf 16] A. Müller-Hermes and D. Stilck França and M.M. Wolf, Entropy production of doubly stochastic quantum channels, Journal of Mathematical Physics, 57, 2, 022203 (2016)

[Olkiewicz Zegarlinski 99] R. Olkiewicz and B. Zegarlinski, Hypercontractivity in Noncommutative Lp spaces, Journal of Functional Analysis 161, 246-285 (1999)

[Pisier 93] G. Pisier, Noncommutative vector valued Lp spaces and completely p-summing maps, Astérisque (Soc. Math. France) 247 1-131 (1998)

[Temme Pastawski Kastoryano 14] K. Temme, F. Pastawski and M. J. Kastoryano, Hypercontractivity of quasi-free quantum semigroups, Journal of Physics A: Mathematical and Theoretical, 47 405303 (2014)