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Quantum advantage with shallow circuits



Are quantum computers more powerful than classical ones?

[A. Abbott and C. Calude, Limits of Quantum Computing: A Sceptic’s View
http://www.quantumforquants.org/quantum-computing/limits-of-quantum-computing/ ]

The development of a scientific field – A familiar cycle of seasons

…but will the progress flourish into a quantum summer?

Justified excitement, or overblown promise?

[… ] how realistic are such claims about the future of quantum computing? 

http://www.quantumforquants.org/quantum-computing/limits-of-quantum-computing/
http://www.quantumforquants.org/quantum-computing/limits-of-quantum-computing/


“three good reasons for thinking that quantum computers have 
capabilities surpassing what classical computers can do”

[J. Preskill, arXiv:1801.00862  (based on a keynote address at Quantum Computing for Business)]

(1) Quantum algorithms for classically intractable problems. First, we know of 

problems that are believed to be hard for classical computers, but for which quantum algorithms 
have been discovered that could solve these problems easily. The best known example is the 
problem of finding the prime factors of a large composite integer [1]. We believe factoring is hard 
because many smart people have tried for many decades to find better factoring algorithms and 
haven’t succeeded. Perhaps a fast classical factoring algorithm will be discovered in the future, but 
that would be a big surprise.

(2) Complexity theory arguments. The theoretical computer scientists have provided 

arguments, based on complexity theory, showing (under reasonable assumptions) that quantum 
states which are easy to prepare with a quantum computer have superclassical properties; specifically, 
if we measure all the qubits in such a state we are sampling from a correlated probability distribution 
that can’t be sampled from by any efficient classical means [2, 3].

(3) No known classical algorithm can simulate a quantum computer. But perhaps 

the most persuasive argument we have that quantum computing is powerful is simply that we don’t 
know how to simulate a quantum computer using a digital computer; that remains true even after 
many decades of effort by physicists to find better ways to simulate quantum systems.



Bernstein-Vazirani problem (1993)

𝑈ℓ|𝑥⟩ −1 𝑧𝑇𝑥|𝑥⟩
Linear Boolean function ℓ

parameterized by a “secret” bit

string 𝑧

Problem: Find 𝑧 ∈ {0,1}𝑛 using few queries to an oracle:

This problem shows a separation between classical and quantum algorithms
in terms of query complexity. 

𝐻⊗𝑛 𝐻⊗𝑛|0𝑛⟩ 𝑈ℓ 𝑧 ∈ {0,1}𝑛

• The following quantum circuit 
computes z using only 1 query to the 
quantum oracle:

• In contrast, any classical algorithm 
needs 𝒏 queries to a classical 
oracle computing ℓ to determine z. 

[Bernstein and Vazirani, Quantum 
complexity theory, SIAM Journal on 
Computing, 26(5):1411-1473, 1997]



“Black-box problems, where one is required to compute a function or property of a classical
input by querying a quantum box, are easier to prove speedups for because of their extra
formal structure. But this also means that they often have a somewhat artificial flavour and
their practical relevance is questionable.”

“One well-known such algorithm is Grover’s algorithm, [….] The cost of constructing the
quantum database could negate any advantage of the algorithm, and in many classical
scenarios one could do much better by simply creating (and maintaining) an ordered
database.”

[A. Abbott and C. Calude, Limits of Quantum Computing: A Sceptic’s View
http://www.quantumforquants.org/quantum-computing/limits-of-quantum-computing/ ]

Potential concerns about query complexity separations

𝑈ℓ|𝑥⟩ −1 𝑧𝑇𝑥|𝑥⟩

“Where’s my black-box?”

http://dx.doi.org/10.4086/toc.2014.v010a006
https://en.wikipedia.org/wiki/Grover's_algorithm
http://www.quantumforquants.org/quantum-computing/limits-of-quantum-computing/
http://www.quantumforquants.org/quantum-computing/limits-of-quantum-computing/


Our result

A provable, non-oracular quantum speedup,

attainable by a 

constant-depth

geometrically local (in a 2D),

circuit.



This talk: constant-depth (quantum) circuits

Example: depth-5 circuit

𝑘-bit input | ⟩𝑥 𝑛-bit output 𝑧…

output probability distribution for a given input 𝑥

Family of circuits 𝑈𝑛 𝑛 with depth 𝑶 𝟏 .

Fixed set of gates independent of 𝑛.

A depth-𝒅 quantum circuit consists of 𝑑 time steps.
Each time step contains one- and two-qubit gates acting on disjoint qubits.

Constant-depth or “Shallow”



Motivation for considering constant-depth quantum circuits:

The Noisy Intermediate-Scale Quantum (NISQ) Technology Era

[J. Preskill, Quantum Computing in the NISQ era and beyond, arXiv:1801.00862 ]



Circuit depth in the Noisy Intermediate-Scale 
Quantum Technology Era

Deep circuits → few qubits → efficient classical simulation. 

Noise sets a limit on the maximum size of a computation without error correction.

Rough estimate:

Shallow circuits → many qubits → potential for a quantum advantage.

1
…

𝑛
fault fault 

𝑛𝑑 ≪ 1/𝜖
𝑛 = number of qubits (width)
𝑑 = circuit depth
𝜖 = error rate



Shallow circuits and their potential

quantum
supremacy ?

good variational
states (MERA)

𝑝𝑜𝑙𝑦(𝑛)𝑑 ≤ 2

efficient
classical

simulation

BQP 
complete

𝑂(1) 𝑂(log 𝑛)
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Boixo et al 2016
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variational quantum 
eigensolver

toy models of
black holes ?



Constant-depth quantum circuits versus classical circuits

Quantum circuits (depth)

𝑝𝑜𝑙𝑦(𝑛)𝑂(1)

Classical computation (time)

Can constant-depth quantum 
circuits solve a computational 
problem that polynomial-time 
classical computations 
cannot?

?

Too difficult question… No hope for unconditional proof.

Positive answer would imply  P≠PSPACE.



Constant-depth quantum  versus classical circuits

Quantum circuits (depth)

𝑝𝑜𝑙𝑦(𝑛)𝑂(1)

Classical circuits (depth)

Can constant-depth quantum 
circuits solve a computational 
problem that constant-depth 
classical circuits cannot?

This talk: The answer is YES.



Classical circuits

We consider circuits composed of bounded fan-in gates, i.e., 𝑘 = 𝑂(1).

We do not restrict the fan-out.

A classical gate computes a Boolean function 𝑓: {0,1}𝑘 → {0,1}

Number of times the 
output is used is called 
the fan-outf

𝑥1
𝑥2

𝑥𝑘

𝑓(𝑥)

⋮
𝑓(𝑥)Number of input bits k

is called the fan-in



A depth-𝑑 classical circuit consists of 𝑑 layers (time steps) of gates. 

OR

AND

AND

OR

AND

OR

Time step 2

Constant-depth classical circuits

OR

AND

Time step 1



A depth-𝑑 classical circuit consists of 𝑑 layers (time steps) of gates. 

OR

AND

AND

OR

We consider constant-depth circuits composed of bounded fan-in gates.

We also allow the circuit to be probabilistic (random input bits are provided).

Constant-depth classical circuits



Decision problem 

Input Output

Bit-string x 𝑏𝑥 ∈ {0,1}

Causality: The marginal distribution of any output bit is determined by 
𝑂 1 input bits.

H

S

S

S

Example:

Can constant-depth quantum circuits solve a computational 
problem that constant-depth classical circuits cannot?

Simulation by a classical 

circuit of  size 𝑂(1)



Decision problem 

Input Output

Bit-string x 𝑧 ∈ {0,1}

𝑂𝑧

Support of 
size 
2𝑑 = 𝑂 1

Can constant-depth quantum circuits solve a computational 
problem that constant-depth classical circuits cannot?

H

S

S

S O(1)-local operator

Causality: The marginal distribution of any output bit is determined by 
𝑂 1 input bits.



Decision problem 

Input Output

Bit-string x 𝑏𝑥 ∈ {0,1}

Relation problem Bit-string x 𝑧 ∈ 𝑆𝑥 ⊆ {0,1}𝑛 (non-unique)

Can constant-depth quantum circuits solve a computational 
problem that constant-depth classical circuits cannot?

Example: combinatorial optimization, say 3-SAT 

system of equations
with binary variables 𝑥

set of bit strings 
satisfying all equations𝑆𝑥

a satisfying
assignment𝑧 ∈ 𝑆𝑥



Decision problem 

Input Output

Bit-string x 𝑏𝑥 ∈ {0,1}

Relation problem Bit-string x 𝑧 ∈ 𝑆𝑥 ⊆ {0,1}𝑛 (non-unique)

Can constant-depth quantum circuits solve a computational 
problem that constant-depth classical circuits cannot?

A (quantum) circuit solves a relation problem if

for any input 𝑥 it outputs a valid solution 𝑧 (with high probability) :



OR

AND

AND

OR
H

S
S
S

Quantum circuit 

depth 𝒅 = 𝑶(𝟏)
Classical needs depth 

𝐝 ≥ 𝒄𝐥𝐨𝐠 𝐧

Quantum advantage of constant-depth circuits



Our result: We describe a (relation) problem such that

• The problem is solved with certainty (𝜖 = 0) by a constant-depth quantum 
circuit (with geometrically local gates in 2D).

• Any probabilistic classical circuit composed of bounded fan-in gates 
(possibly non-local) which solves the problem with high probability (𝜖 < 1/8)
must have depth increasing logarithmically with input size.

The quantum speedup is unconditional: 
It is non-oracular and does not rely on complexity-theoretic conjectures.

Note: The problem can be solved in polynomial time classically.



The Hidden Linear Function (HLF) Problem 



The Bernstein-Vazirani speedup is relative to an oracle. 

𝑈ℓ|𝑥⟩ −1 𝑧𝑇𝑥|𝑥⟩

Linear Boolean function

parameterized by a “secret” bit

string 𝑧

Where else can we hide a linear function?



Suppose 𝐴 is a symmetric binary matrix of size 𝑛

Nullspace:

Quadratic form:

Binary quadratic forms

𝐴 =
1 1 0
1 0 1
0 1 1

Example: Ker 𝐴 = 000, 111𝐴𝑥 =
0
0
0

(mod 2)

𝑞 𝑥 = 𝑥𝑇𝐴 𝑥 mod 4 = 𝑥1 + 𝑥3 + 2𝑥1𝑥2 + 2𝑥2𝑥3 (mod 4)



𝑥 is binary: the restriction of 𝑞(𝑥) onto Ker 𝐴 can be non-zero

𝑞 111 = 1 + 1 + 2 + 2 mod 4 = 2

𝑥 is a real vector: 𝐴𝑥 = 0𝑛 implies           𝑥𝑇𝐴𝑥 = 0.

Real-valued  versus binary  quadratic forms

𝐴 =
1 1 0
1 0 1
0 1 1

Example: Ker 𝐴 = 000, 111𝐴𝑥 =
0
0
0

(mod 2)

𝑞 𝑥 = 𝑥𝑇𝐴 𝑥 mod 4 = 𝑥1 + 𝑥3 + 2𝑥1𝑥2 + 2𝑥2𝑥3 (mod 4)



Fact:
The restriction of 𝑞(𝑥)
onto the nullspace of 𝐴
is a linear function
(up to a factor of 2) 

Boolean linear function 

Proof sketch:

since

for



Fact:
The restriction of 𝑞(𝑥)
onto the nullspace of 𝐴
is a linear function
(up to a factor of 2) 

Boolean linear function 

A binary quadratic form hides a Boolean linear function (in a non-oracular way)



Fact:
The restriction of 𝑞(𝑥)
onto the nullspace of 𝐴
is a linear function
(up to a factor of 2) 

“secret” bit string

A binary quadratic form hides a Boolean linear function (in a non-oracular way)



Fact:
The restriction of 𝑞(𝑥)
onto the nullspace of 𝐴
is a linear function
(up to a factor of 2) 

“secret” bit string

Hidden Linear Function (HLF) problem
Input: binary symmetric matrix 𝐴.  
Output: bitstring 𝑧 such that 𝑞 𝑥 = 2𝑧𝑇𝑥 (mod 4) for all 𝑥 ∈ Ker(𝐴)



• The solution is non-unique: 

if 𝑧 is a solution and  𝑦 ∈ Ker 𝐴 ⊥ then 𝑧 ⊕ 𝑦 is a solution

• The HLF problem can be solved classically in time 𝑂 𝑛3

1) Compute a basis 𝑏1, … , 𝑏𝑘 of the nullspace Ker(𝐴)
2) Solve a linear system 2 𝑧𝑇𝑏𝑖 = 𝑞(𝑏𝑖),   𝑖 = 1,… , 𝑘

Hidden Linear Function (HLF) problem
Input: binary symmetric matrix 𝐴.  
Output: bitstring 𝑧 such that 𝑞 𝑥 = 2𝑧𝑇𝑥 (mod 4) for all 𝑥 ∈ Ker(𝐴)

• This can be viewed as a non-oracular variant of the Bernstein-Vazirani problem.  



Consider a square grid of size 𝑛 × 𝑛

𝑛 sites
𝐴𝑖.𝑖 = 1𝑖

𝐴𝑖.𝑗 = 1𝑖 𝑗

Variables 𝑥1, … , 𝑥𝑛 live at sites

𝐴𝑖,𝑗 = 0 unless (𝑖, 𝑗) are nearest neighbors

The 2D HLF: quadratic forms on a square grid

The 2D HLF problem is the set of instances where the (off-diagonal part of the) matrix A 
is the adjacency matrix of a subgraph of the 𝑛 × 𝑛 grid graph.



• The hidden linear function (HLF) problem

• A quantum algorithm for the 2D HLF Problem (constant-depth circuit)

• Proof of hardness for constant-depth classical circuits

Remainder of the talk



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

Gate set: Clifford gates H, S, CZ with one (classical) control bit.

Solving the 2D HLF by a constant-depth quantum circuit



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

Solving the 2D HLF by a constant-depth quantum circuit

Fact 2: The circuit can be implemented in constant depth. 
(with nearest neighbor gates in 2D)

Fact 1: The string of measurement outcomes 𝑧 is a solution to the 2D HLF Problem.
(The distribution 𝑃(𝑧|𝐴) is uniform on the set of  all solutions.)



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

similar to IQP circuits
Bremner, Montanaro, Shepherd 2016

Solving the 2D HLF by a constant-depth quantum circuit

Fact 1: The string of measurement outcomes 𝑧 is a solution to the 2D HLF Problem.



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

Solving the 2D HLF by a constant-depth quantum circuit

Fact 1: The string of measurement outcomes 𝑧 is a solution to the 2D HLF Problem.

The unitary is diagonal and satisfies for all

Relationship to IQP circuits:

This (explicitly realized) unitary takes the place of an oracle in the Bernstein-Vazirani algorithm.



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

similar to IQP circuits
Bremner, Montanaro,Shepherd 2016

Solving the 2D HLF by a constant-depth quantum circuit

Fact 1: The string of measurement outcomes 𝑧 is a solution to the 2D HLF Problem.



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

use the fact that 

𝑞(𝑥) is a quadratic form

Solving the 2D HLF by a constant-depth quantum circuit

Fact 1: The string of measurement outcomes 𝑧 is a solution to the 2D HLF Problem.



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

use the fact that the restriction 

of  𝑞 𝑥 to Ker(𝐴) is linear

Solving the 2D HLF by a constant-depth quantum circuit

Fact 1: The string of measurement outcomes 𝑧 is a solution to the 2D HLF Problem.



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩

Apply CZ gates on 

edges with 𝐴𝑖,𝑗 = 1
Apply phase gates 𝑆𝑖 on 

vertices with 𝐴𝑖,𝑖 = 1

𝑧 ∈ {0,1}𝑛

similar to Bernstein-Vazirani

Solving the 2D HLF by a constant-depth quantum circuit

Fact 1: The string of measurement outcomes 𝑧 is a solution to the 2D HLF Problem.



1 time-step
1 time-step 1 time-step

Four layers of  CCZ gates.  

(even/odd vertical/horizontal edges)

Decompose CCZ gates into 1- and 2-qubit gates.

Solving the 2D HLF by a constant-depth quantum circuit

𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩ 𝑧 ∈ {0,1}𝑛

Fact 2: The circuit can be implemented in constant depth 
(with nearest neighbor gates in 2D)



A constant-depth quantum circuit for 2D HLF

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

Place a qubit at each vertex in 

Place input bits on vertices and edges:

|0⟩



𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻𝐻

𝐻 𝐻𝐻

𝐻 𝐻 𝐻 𝐻𝐻

𝐻 𝐻 𝐻 𝐻𝐻

𝐻

𝐻

𝐻 𝐻

A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 
Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

apply H to every qubit



A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 
Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

𝐶𝑍

𝐶𝑍

𝐶𝑍

apply a CZ to every pair (𝑖, 𝑗) of qubits 
with 𝐴𝑖,𝑗= 1



𝐶𝑍

A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 
Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

apply a CZ to every pair (𝑖, 𝑗) of qubits 
with 𝐴𝑖,𝑗= 1



𝐶𝑍 𝐶𝑍

A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 
Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

apply a CZ to every pair (𝑖, 𝑗) of qubits 
with 𝐴𝑖,𝑗= 1



𝐶𝑍

𝐶𝑍

A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 
Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

apply a CZ to every pair (𝑖, 𝑗) of qubits 
with 𝐴𝑖,𝑗= 1



𝑆

𝑆

𝑆

𝑆

𝑆

A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 
Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

apply S to every qubit 𝑖 with 𝐴𝑖,𝑖= 1



𝐻 𝐻 𝐻 𝐻

𝐻 𝐻 𝐻𝐻

𝐻 𝐻𝐻

𝐻 𝐻 𝐻 𝐻𝐻

𝐻 𝐻 𝐻 𝐻𝐻

𝐻

𝐻

𝐻 𝐻

A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 
Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

apply H to every qubit



A constant-depth quantum circuit for 2D HLF

Only requires classically controlled 

Clifford gates between nearest 
neighbor qubits on a 2D grid.

:   Edge with 𝐴𝑖,𝑗= 1

:   Vertex with 𝐴𝑖,𝑖 = 1

measure each qubit in the
computational basis 



𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩ 𝑧 ∈ {0,1}𝑛

Prepare the graph state
for a graph with adjacency 
matrix 𝐴

Measure qubit 𝑖 in the X basis if 𝐴𝑖,𝑖 = 0

Measure qubit 𝑖 in the Y basis if 𝐴𝑖,𝑖 = 1

The HLF circuit and graph states

Quantum algorithm solving the HLF :

M. Hein, J. Eisert, H.J. Briegel: Multi-party entanglement in graph states, Phys. Rev. A 69, 062311 (2004)
R. Raussendorf, D.E. Browne, H.J. Briegel: Measurement-based quantum computation on cluster states,

Phys. Rev. A 69, 062311 (2004)

https://arxiv.org/find/quant-ph/1/au:+Hein_M/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Eisert_J/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Briegel_H/0/1/0/all/0/1
https://arxiv.org/find/quant-ph/1/au:+Hein_M/0/1/0/all/0/1


𝐻⊗𝑛 𝐻⊗𝑛𝐶𝑍(𝐴) 𝑆(𝐴)

𝐴

|0𝑛⟩ 𝑧 ∈ {0,1}𝑛

Prepare the graph state
for a graph with adjacency 
matrix 𝐴

Measure qubit 𝑖 in the X basis if 𝐴𝑖,𝑖 = 0

Measure qubit 𝑖 in the Y basis if 𝐴𝑖,𝑖 = 1

The HLF circuit and graph states

Quantum algorithm solving the HLF :

measure X

measure Y

:   Ai,j = 1
:   A𝑖,𝑖 = 1

input:



• The hidden linear function (HLF) problem

• A quantum algorithm for the 2D HLF Problem (constant-depth circuit)

• Proof of hardness for constant-depth classical circuits

Remainder of the talk



Main result:  A lower bound on classical circuits 

For constant fan-in:

Random bits
(drawn from any 
joint distribution)

𝒞𝑛
𝐴

𝑟 ∈ {0,1}ℓ
𝑧 ∈ {0,1}𝑛

Solution with 
probability > 𝟕/𝟖

Input Output

Circuit must have 
depth 𝛀(𝐥𝐨𝐠 𝐧 )

Theorem: The following holds for all sufficiently large 𝑛. 

Let 𝒞𝑛 be a classical probabilistic circuit where each gate of 𝒞𝑛 has fan-in at 
most 𝑲. Suppose it solves size-𝒏 instances of the 2D HLF Problem with 
probability  > 𝟕/𝟖. Then

depth 𝒞𝑛 ≥
log(𝑛)

16 log(𝐾)



Proof idea

OR

AND

AND

OR

Locality in shallow classical circuits

Each output bit depends only on 
O(1) input bits.

versus

Quantum non-locality

Measurement statistics of 
entangled quantum states 
cannot be reproduced by 
local hidden variable models.

John Bell David Mermin



We will show that quantum nonlocality beats

(A) Strictly local classical circuits 
(local hidden variable models)

(B) Geometrically local classical circuits in 1D

(C) “Constant-depth local” classical circuits



OR

AND

AND

OR 𝑧2

𝑧1
𝑥1
𝑥2

𝑥3
𝑥4

AND
𝑥5
𝑥6

input output

Locality in classical circuits



OR

AND

AND

OR 𝑧2

The (forward) lightcone 𝐿 𝑥𝑘 of an input bit 𝑥𝑘 is the set of output bits 𝒛𝒊 that 
are causally connected to 𝒙𝒌.

𝑧1
𝑥1
𝑥2

𝑥3
𝑥4

AND
𝑥5
𝑥6

input

Locality in classical circuits

𝑧2

𝑧1

𝐿(𝑥5)



OR

AND

AND

OR 𝑧2

𝑧1
𝑥1
𝑥2

𝑥3
𝑥4

AND
𝑥5
𝑥6

output

Locality in classical circuits

The (backward) lightcone 𝐿 𝑧𝑘 of an output bit 𝑧𝑘 is the set of input bits 𝒙𝒊 that 
are causally connected to 𝒛𝒌.

𝐿(𝑧1)



We will show that quantum nonlocality beats

(A) Strictly local classical circuits 
(local hidden variable models)

(B) Geometrically local 
classical circuits in 1D

(C) “Constant-depth local” 
classical circuits

𝐿(𝑧𝑘) = {𝑥𝑘} for any output bit 𝑧𝑘

𝐿(𝑥𝑘) ⊂ 𝐵𝐷(𝑥𝑘) for any input bit 𝑥𝑘

|𝐿(𝑧𝑘)| ≤ 𝐾𝑑 for all output bits 𝑧𝑘



Strictly local classical circuits

A strictly local circuit has the property that 𝐿(𝑧𝑘) = {𝑥𝑘} for any output bit 𝑧𝑘

𝑥1

𝑧2

𝑧1
𝑥2

𝑥3 𝑧3

Note:  Every output bit 𝑧𝑘 is of the form 𝑧𝑘 = 𝑓𝑘 𝑥𝑘

(We assume here that there is a one-to-one correspondence between input- and output bits.)



Strictly local classical circuits

A strictly local circuit has the property that 𝐿(𝑧𝑘) = {𝑥𝑘} for any output bit 𝑧𝑘

𝑥1

𝑧2

𝑧1

𝑥2

𝑥3 𝑧3

𝑓1

𝑓2

𝑓3

(We assume here that there is a one-to-one correspondence between input- and output bits.)

Note:  Every output bit 𝑧𝑘 is of the form 𝑧𝑘 = 𝑓𝑘 𝑥𝑘



Strictly local classical circuits

A strictly local circuit has the property that 𝐿(𝑧𝑘) = {𝑥𝑘} for any output bit 𝑧𝑘

(We assume here that there is a one-to-one correspondence between input- and output bits.)

𝑥1

𝑧2

𝑧1

𝑥2

𝑥3 𝑧3

𝑓1

𝑓2

𝑓3
𝑟

Note: If the circuit is probabilistic, 

every output bit 𝑧𝑘 is of the form 𝑧𝑘 = 𝑓𝑘 𝑥𝑘 , 𝑟

where 𝑟 is shared randomness   

𝑟 = shared random bit string



𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒛𝟏𝒛𝟐𝒛𝟑

𝟎 𝟎 𝟎 1

𝟏 𝟏 𝟎 −1

𝟏 𝟎 𝟏 −1

𝟎 𝟏 𝟏 −1

GHZ-relation:

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3

𝒞3

Suppose 𝑪 obeys the GHZ relation for any input 𝑥. 

What can be said about its locality ? 

[Greenburger et al. 1990][Mermin 1990]
Circuits and the GHZ relation

Compact form

𝑅 𝑥, 𝑧 = 1

𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 = 0

whenever

inputs 𝑥𝑖 ∈ 0,1
outputs    𝑧𝑖 ∈ {+1,−1}



𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒛𝟏𝒛𝟐𝒛𝟑

𝟎 𝟎 𝟎 1

𝟏 𝟏 𝟎 −1

𝟏 𝟎 𝟏 −1

𝟎 𝟏 𝟏 −1

GHZ-relation:

[Greenburger et al. 1990][Mermin 1990]

inputs 𝑥𝑖 ∈ 0,1
outputs    𝑧𝑖 ∈ {+1,−1}

𝑟

Impossible for 
Local Hidden 
Variable Models!

Corollary: There is no strictly local classical circuit 
outputting z satisfying the GHZ relation on all inputs x.

reinterpeted as
a limitation of strictly local circuits:

Strictly local circuits and the GHZ relation

𝑟 = shared random bit string



Circuits and the GHZ relation

Corollary: There is no strictly local classical circuit 
outputting z satisfying the GHZ relation on all inputs x.

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3𝒞3

Lemma: Suppose a classical 
probabilistic circuit satisfies the GHZ
relation with probability > 7/8. 

Then the lightcone 𝐿(𝑥𝑖) of some input
bit 𝑥𝑖 contains a distinct output bit 𝑧𝑘, 
that is, 𝑖 ≠ 𝑘



Circuits and the GHZ relation

Corollary: There is no strictly local classical circuit 
outputting z satisfying the GHZ relation on all inputs x.

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3𝒞3

Lemma: Suppose a classical 
probabilistic circuit satisfies the GHZ
relation with probability > 7/8. 

Then the lightcone 𝐿(𝑥𝑖) of some input
bit 𝑥𝑖 contains a distinct output bit 𝑧𝑘, 
that is, 𝑖 ≠ 𝑘



𝐺𝐻𝑍 =
1

√2
000 + |111⟩

Outcomes 𝒛𝒋 ∈ −𝟏,+𝟏

satisfy the GHZ relation

Satisfying the GHZ relation with quantum non-locality
[Greenburger et al. 1990][Mermin 1990]

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3

|𝐺𝐻𝑍〉

1) Prepare |GHZ⟩

2) Measure each qubit of |GHZ⟩
in either the X basis (if 𝑥𝑗 = 0) 

or the Y basis (if 𝑥𝑗 = 1).



Quantum nonlocality beats strictly local circuits

Lemma: Suppose a classical 
probabilistic circuit satisfies the GHZ
relation with probability > 7/8. 

Then the lightcone 𝐿(𝑥𝑖) of some input
bit 𝑥𝑖 contains a distinct output bit 𝑧𝑘, 
that is, 𝑖 ≠ 𝑘

Lemma: This quantum algorithm 
produces an element z satisfying the 
GHZ relation with probability 1:

1) Prepare |GHZ⟩
2) Measure each qubit of |GHZ⟩

in either the X basis (if 𝑥𝑗 = 0) 
or the Y basis (if 𝑥𝑗 = 1).

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3

|𝐺𝐻𝑍〉

𝑥1

𝑥2

𝑥3

𝑧1

𝑧2

𝑧3
𝒞3

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒛𝟏𝒛𝟐𝒛𝟑

𝟎 𝟎 𝟎 1

𝟏 𝟏 𝟎 −1

𝟏 𝟎 𝟏 −1

𝟎 𝟏 𝟏 −1

GHZ-relation:



We will show that quantum nonlocality beats

(A) Strictly local classical circuits 
(local hidden variable models)

(B) Geometrically local 
classical circuits in 1D

(C) “Constant-depth local” 
classical circuits

𝐿(𝑧𝑘) = {𝑥𝑘} for any output bit 𝑧𝑘

𝐿(𝑥𝑘) ⊂ 𝐵𝐷(𝑥𝑘) for any input bit 𝑥𝑘

|𝐿(𝑧𝑘)| ≤ 𝐾𝑑 for all output bits 𝑧𝑘



Geometrically local circuits
Assumption: Input- and Output bits are associated with vertices of a graph

A geometrically 𝑫 −local circuit satisfies 𝐿(𝑥𝑘) ⊂ 𝐵𝐷(𝑥𝑘) for any input bit 𝑥𝑘

𝐵𝐷(𝑥) ≔ 𝑦 𝛿(𝑥, 𝑦) ≤ 𝐷}

𝛿(𝑥, 𝑦) ≔ Graph distance between 𝑥 und 𝑦

𝑥1

𝑥2

𝑥𝑛

𝑧1

𝑧2

𝑧𝑛

Example:   geometric locality in 1 dimension

depth 𝑑 = 𝑂 1

𝐿(𝑥𝑘)𝐿(𝑥𝑘)
𝐷 = 𝑂(1)

Shallow circuit
with nearest-neighbor gates in 1D

𝑥𝑘



Quantum nonlocality beats geometrically local circuits

Simulating the measurement statistics resulting from a graph state 
cannot be achieved with limited-distance classical communication 
between nodes

Here we reinterpret this result as a limitation of geometrically local circuits.

J. Barret, C. Caves, B. Eastin, M. Elliot, S. Pironio: Modeling Pauli measurements on graph 
states with nearest-neighbor classical communication, PRA 75, 012103, 2007.



GHZ generalized: the cycle relation
𝑛 even. Consider the 𝑛-cycle and

𝑥 = (𝑥𝑢, 𝑥𝑣, 𝑥𝑤) ∈ {0,1}3“Input”:

“Output”: z ∈ {−1,1}|𝑉|= {−1,1}𝑛

𝑢 𝑣

𝑤
𝑢, 𝑣, 𝑤 on the even sublattice

𝑠1

𝑠3

𝑡3

𝑡1

𝑟1 𝑟3

Define the “cycle relation”: 𝑅 𝑥, 𝑧 = 1 whenever

Fact: Satisfying the cycle relation 
(classically) requires communication.

[Barrett et al. 2007]

Fact: The cycle relation is satisfied when 
(appropriately) measuring the cycle graph state.



𝑧𝑘

𝑥𝑖

𝑢

𝑤

𝑣More precisely:      𝛿(𝑥𝑖 , 𝑧𝑘) > 𝐷, 𝐷 = min{ 𝛿 𝑢, 𝑣 , 𝛿 𝑣, 𝑤 , 𝛿 𝑤, 𝑣 }/2

Lemma: Suppose a classical circuit satisfies the cycle relation
with probability > 7/8 for each input.   Then the lightcone 𝐿(𝑥𝑖) of 
some input bit 𝑥𝑖 , 𝑖 ∈ {𝑢, 𝑣, 𝑤} contains a distant output bit 𝑧𝑘.

Corollary: There is no geometrically 𝑫-local (probabilistic) classical circuit giving an output 𝑧
satisfying the cycle relation R 𝑥, 𝑧 = 1 for all inputs 𝑥 ∈ 0,1 3.

(Geometrically local) circuits and the cycle relation



(Geometrically local) circuits and the cycle relation

Proof idea: Assume this is not the case. Then the (relevant part of)
the output of the circuit can be described by four functions

such that 

𝑧𝑘

𝑥𝑖

𝑢

𝑤

𝑣More precisely:      𝛿(𝑥𝑖, 𝑧𝑘) > 𝐷, 𝐷 = min{ 𝛿 𝑢, 𝑣 , 𝛿 𝑣, 𝑤 , 𝛿 𝑤, 𝑣 }/2

𝑢 𝑣

𝑤

𝑠1

𝑠3

𝑡3

𝑡1

𝑟1 𝑟3

𝑠1

𝑠33

Lemma: Suppose a classical circuit satisfies the cycle relation
with probability > 7/8 for each input.   Then the lightcone 𝐿(𝑥𝑖) of 
some input bit 𝑥𝑖 , 𝑖 ∈ {𝑢, 𝑣, 𝑤} contains a distant output bit 𝑧𝑘.



Satisfying the cycle relation with quantum non-locality [Barrett et al. 2007]

Fact: This quantum algorithm produces outcomes z satisfying the cycle relation 𝑅 𝑥, 𝑧 = 1

𝑋
𝑋

𝑋 𝑋

𝑋
𝑋

𝑋𝑋𝑋

𝑋/𝑌

𝑋/𝑌 𝑋/𝑌

𝑢

𝑤

𝑣

Intuition: the reduced state of 𝑢𝑣𝑤 (after all green qubits are measured) is 
the GHZ state modulo a Pauli correction that depends on the measurement 
outcomes.

1) Prepare the graph state
associated with the cyle

Φ𝑛 = ෑ

𝑗=1

𝑛

𝐶𝑍𝑗,𝑗+1 𝐻⊗𝑛|0𝑛⟩

Call 𝑧𝑗 the measurement outcome for qubit 𝑗.

2) For each qubit 𝑗 ∈ {𝑢, 𝑣, 𝑤} measure

for any other qubit measure



Quantum nonlocality beats geometrically local circuits

Lemma: This quantum algorithm 
produces an element z satisfying the 
cycle relation with probability 1:

1) Prepare the cycle graph state
2) Measure each qubit 
• in the Y basis if 𝑗 ∈ 𝑢, 𝑣, 𝑤 and 𝑥𝑗 = 1

• in the X basis otherwise

Cycle-relation

Lemma: Suppose a classical circuit 
satisfies the cycle relation with 
probability > 7/8 for each input.  

Then the lightcone 𝐿(𝑥𝑖) of some input 
bit 𝑥𝑖 contains a distant output bit 𝑧𝑘.

𝑧𝑘

𝑥𝑖

𝑢

𝑤

𝑣
𝑋
𝑋
𝑋 𝑋

𝑋
𝑋
𝑋𝑋𝑋

𝑋/𝑌

𝑋/𝑌 𝑋/𝑌
𝑢

𝑤

𝑣

𝑅 𝑥, 𝑧 = 1 whenever



The cycle relation and the HLF problem associated with a cycle

𝑋
𝑋
𝑋 𝑋

𝑋
𝑋
𝑋𝑋𝑋

𝑋/𝑌

𝑋/𝑌 𝑋/𝑌

The measurement pattern of the quantum algorithm is
identical to that used when solving one of 8 special
instances of the HLF

(A=adjacency matrix of cycle graph)

In fact:   Satisfying the cycle relation on input 𝑥 = (𝑥𝑢, 𝑥𝑣, 𝑥𝑤) ∈ {0,1}3

amounts to solving the associated HLF with 𝐴𝑗,𝑗 = 𝑥𝑗 for 𝑗 ∈ {𝑢, 𝑣, 𝑤}

𝑢

𝑣

𝑤



We will show that quantum nonlocality beats

(A) Strictly local classical circuits 
(local hidden variable models)

(B) Geometrically local 
classical circuits in 1D

(C) “Constant-depth local” 
classical circuits

𝐿(𝑧𝑘) = {𝑥𝑘} for any output bit 𝑧𝑘

𝐿(𝑥𝑘) ⊂ 𝐵𝐷(𝑥𝑘) for any input bit 𝑥𝑘

|𝐿(𝑧𝑘)| ≤ 𝐾𝑑 for all output bits 𝑧𝑘



Locality in constant-depth classical circuits

general shallow circuit

depth 𝑑 = 𝑂 1

𝐿(𝑧𝑘)

𝑧𝑘



Locality in constant-depth classical circuits

depth 𝑑 = 𝑂 1

𝐿(𝑧𝑘)

𝑧𝑘

“Constant-depth locality” |𝐿(𝑧𝑘)| ≤ 𝐾𝑑 for all output bits 𝑧𝑘

Example:     Any circuit whose depth is 𝑑 whose gates have fan-in ≤ 𝐾.



Classical circuits solving the 2D HLF

Recall: 
The 2D HLF problem is the set of 
instances where the matrix A is the 
adjacency matrix of a subgraph of the 
𝑛 × 𝑛 grid graph.

𝑛 sites

𝐴𝑖.𝑖 = 1𝑖

𝐴𝑖.𝑗 = 1𝑖 𝑗

𝐴𝑖,𝑗 = 0 unless 
(𝑖, 𝑗) are nearest neighbors

Suppose 𝑪 solves every instance of the 2D HLF problem 
with probability >7/8.              What can be said about its locality ? 

𝒞𝑛
𝐴

𝑟 ∈ {0,1}ℓ
𝑧 ∈ {0,1}𝑛

Solution with 

probability > 𝟕/𝟖

Input Output



𝐴𝑖.𝑖 = 𝑥𝑖𝑖

𝐴𝑖.𝑗 = 1𝑖 𝑗

Cycle relations contained in the 2D HLF

𝑥𝑖

𝑢

𝑣

𝑧𝑘 𝐴𝑖.𝑖 = 𝑥𝑖𝑖
Choose 𝐴𝑖,𝑖 = 𝑥𝑖 for 𝑖 ∈ 𝑢, 𝑣, 𝑤 to 
specify X or Y measurement 
and 𝐴𝑗,𝑗= 0 for all other j

⇒ There is an input bit 𝑥𝑖 such that 𝐿(𝑥𝑖) contains a distant output bit 𝑧𝑘

Lemma
We infer (from Barrett et al.) a cycle relation satisfied by input/output:  

Choose 𝐴 to describe the adjacency 
matrix of a cycle (subgraph of the 
gridgraph)



Many locality constraints on 2D HLF-solving circuits

A classical circuit 
which solves the 2D 
HLF must satisfy all 
such cycle relations…. 𝑢

𝑣

𝑤

𝑢

𝑣
𝑤

𝑢

𝑣

𝑤

…….

…and thus satisfies 
constraints on the 
lightcones of 
certain input bits

…….

We show that constant-depth locality is incompatible with these constraints.

|𝐿(𝑧𝑘)| ≤ 𝐾𝑑 for all output bits 𝑧𝑘



The circuit does not w.h.p solve all instances of 2D HLF 
problem where 𝐴 is the adjacency matrix of Γ. 

Statement for 
geometrically local circuits

Corollary (Main result):  Any classical circuit which solves the 2D HLF problem with

probability >7
8

must have depth > log(𝑛)

16 log(𝐾)
.

Quantum non-locality beats “constant-depth local” circuits

Lemma: There are vertices 𝑢, 𝑣, 𝑤 on the even sublattice and a cycle Γ
passing through them such that
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣, 𝑤}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪.

𝑢

𝑤

𝑣

Proof of Corollary: Suppose the depth is smaller. Let Γ be as in the Lemma.

Contradiction!

Suppose a classical circuit has 
fan-in ≤ K and  depth < log(n)

16 log(K)
.



Proving existence of a suitable cycle: some ingredients

Proof: Based on a probabilistic argument.

𝑢

𝑤

𝑣Lemma: There are vertices 𝑢, 𝑣, 𝑤 on the even sublattice and a cycle Γ
passing through them such that 
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣, 𝑤}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪.

Suppose a classical circuit has 
fan-in ≤ K and  depth < log(n)

16 log(K)
.



Proving existence of a suitable cycle: some ingredients

𝑢 𝑢

𝐿(𝑥𝑢) 𝐿(𝑥𝑣)

𝑣 𝑣

𝐿 𝑥𝑢 ≤ 𝐾𝑑 and   𝐿 𝑥𝑣 ≤ 𝐾𝑑

(bounded fan-out) 

Lemma: There are vertices 𝑢, 𝑣 on the even sublattice and a path 𝛤
connecting them such that 
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪.

𝑣

Suppose a classical circuit has 
fan-out ≤ K and  depth < log(𝑛)

16 log(𝐾)
.

𝑢



Proving existence of a suitable cycle: some ingredients

𝐿(𝑥𝑢) 𝐿(𝑥𝑣)

Example of a “good” path Γ:

no distant output bits in 
lightcones on path

𝑢 𝑢

𝑣 𝑣

Lemma: There are vertices 𝑢, 𝑣 on the even sublattice and a path Γ
connecting them such that 
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪.

𝑣

Suppose a classical circuit has 
fan-out ≤ K and  depth < log(𝑛)

16 log(𝐾)
.

𝑢



Proving existence of a suitable cycle: some ingredients
𝑢

𝐿(𝑥𝑢) 𝐿(𝑥𝑣)

Example of a “bad” path Γ:

distant output bits in 
lightcones on path!

𝑢 𝑢

𝑣 𝑣

Lemma: There are vertices 𝑢, 𝑣 on the even sublattice and a path Γ
connecting them such that 
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪.

𝑣

Suppose a classical circuit has 
fan-out ≤ K and  depth < log(𝑛)

16 log(𝐾)
.



Proving existence of a suitable cycle: some ingredients

Lemma: There are vertices 𝑢, 𝑣 on the even sublattice and a path Γ
connecting them such that
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪.

𝑣

𝑢

𝐿(𝑥𝑢) 𝐿(𝑥𝑣)

𝑢 𝑢

𝑣 𝑣

Example of a “bad” path Γ:

distant output bits on path!

Suppose a classical circuit has 
fan-out ≤ K and  depth < log(𝑛)

16 log(𝐾)
.



Proving existence of a suitable cycle: some ingredients

𝐵𝑜𝑥(𝑣)

𝐵𝑜𝑥(𝑢)

𝑛1/4
Suppose a classical circuit has 

fan-out ≤ 𝐾 and  depth < log(𝑛)

16 log(𝐾)
.

Lemma: Suppose 𝑢 ∈ U, v ∈ V are on the even sublattice. Then there 
is a path Γ connecting them such that 
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪 ∖ 𝑩𝒐𝒙 𝒖 ∪ 𝑩𝒐𝒙 𝒗 .

𝑛/3 

𝑛/3 U

V

Pick 𝑢, v from certain regions:

and exclude square-shaped boxes of size 𝑛1/4 × 𝑛1/4around 𝑢, v



Proving existence of a suitable cycle: some ingredients

Proof sketch:       Boxes are of size 𝑛1/4 × 𝑛1/4 ⇒ Any pair of boxes can be connected by 𝑛1/4

pairwise disjoint paths
Picking a random path Γ gives

Pr 𝐿 𝑥𝑢 ∩ Γ ≠ ∅ ≤
𝐾𝑑

𝑛1/4
→ 0 for n large

since 𝑳 𝒙𝒖 intersects at most 𝑲𝒅 paths.

⇒ There is a path Γ which does not intersect 𝐿 𝑥𝑢 outside of 𝐵𝑜𝑥(𝑢) ∪ 𝐵𝑜𝑥(𝑣). 

𝑣

𝑢

𝐵𝑜𝑥(𝑣)

𝐵𝑜𝑥(𝑢)

𝑛1/4
Suppose a classical circuit has 

fan-out ≤ 𝐾 and  depth < log(𝑛)

16 log(𝐾)
.

Lemma: Suppose 𝑢 ∈ U, v ∈ V are on the even sublattice. Then there 
is a path Γ connecting them such that 
the light cones of the input bits 𝑥𝑖 ≡ 𝐴𝑖,𝑖 with 𝑖 ∈ {𝑢, 𝑣}

do not contain any distant output bits 𝒛𝒋 ∈ 𝚪 ∖ 𝑩𝒐𝒙 𝒖 ∪ 𝑩𝒐𝒙 𝒗 .



Main result:  A lower bound on classical circuits 

For constant fan-in:

Random bits
(drawn from any 
joint distribution)

𝒞𝑛
𝐴

𝑟 ∈ {0,1}ℓ
𝑧 ∈ {0,1}𝑛

Solution with 
probability > 𝟕/𝟖

Input Output

Circuit must have 
depth 𝛀(𝐥𝐨𝐠 𝐧 )

Theorem: The following holds for all sufficiently large 𝑛. 

Let 𝒞𝑛 be a classical probabilistic circuit where each gate of 𝒞𝑛 has fan-in at 
most 𝑲. Suppose it solves size-𝒏 instances of the 2D HLF Problem with 
probability  > 𝟕/𝟖. Then

depth 𝒞𝑛 ≥
log(𝑛)

16 log(𝐾)



On the (classical) time complexity of the HLF

The general HLF problem 
can be solved classically
in time 𝐎 𝐧𝟑

1) Compute a basis 𝑏1, … , 𝑏𝑘 of
the nullspace Ker 𝐴

2) Solve the linear system
2 𝑧𝑇𝑏𝑖 = 𝑞(𝑏𝑖),   𝑖 = 1, … , 𝑘

Algorithm for general HLF: use 
Gottesman-Knill Theorem to 
simulate the quantum algorithm 
in time 𝐎 𝐧𝟑

# used in 
circuit
(general HLF)

Simulation 
cost (each)

measurement 𝑛 𝑂(𝑛2)

Clifford gate
≤
𝑛
2

𝑂(𝑛)

[S. Aaronson and D. Gottesman,PRA 70, 052328 (2004)]

Hidden Linear Function (HLF) problem
Input: binary symmetric matrix 𝐴
Output: bit string 𝑧 such that 𝑞 𝑥 = 2𝑧𝑇𝑥 (mod 4) for all 𝑥 ∈ Ker(𝐴)

Improved algorithm for 
2D HLF: simulate the 
quantum algorithm
in time 𝐎 𝐧𝟐

# used in 
circuit
(2D HLF)

improved 
simulation cost 
(each)

𝑛 𝑂(𝑛)

𝑛 𝑂( 𝑛)



On the (classical) time complexity of the HLF

The general HLF problem 
can be solved classically
in time 𝐎 𝐧𝟑

1) Compute a basis 𝑏1,… , 𝑏𝑘 of
the nullspace Ker 𝐴

2) Solve the linear system
2 𝑧𝑇𝑏𝑖 = 𝑞(𝑏𝑖),   𝑖 = 1, … , 𝑘

Algorithm for general HLF: use 
Gottesman-Knill Theorem to 
simulate the quantum algorithm 
in time 𝐎 𝐧𝟑

# used in 
circuit
(general HLF)

Simulation 
cost (each)

measurement 𝑛 𝑂(𝑛2)

Clifford gate
≤
𝑛
2

𝑂(𝑛)

Hidden Linear Function (HLF) problem
Input: binary symmetric matrix 𝐴
Output: bit string 𝑧 such that 𝑞 𝑥 = 2𝑧𝑇𝑥 (mod 4) for all 𝑥 ∈ Ker(𝐴)

Improved algorithm for 
2D HLF: simulate the 
quantum algorithm
in time 𝐎 𝐧𝟐

# used in 
circuit
(2D HLF)

improved 
simulation cost 
(each)

𝑛 𝑂(𝑛)

𝑛 𝑂( 𝑛)

“sliding window” of
size O(1) × 𝑛

[S. Aaronson and D. Gottesman,PRA 70, 052328 (2004)]



Some open problems

Is this a polynomial quantum (time) speedup with constant-depth circuits?

• The quantum algorithm solves the 2D HLF Problem in time 𝑂(𝑛).

• The best-known classical algorithm takes time 𝑂(𝑛2). 

Does the advantage persist if we permit stronger classical circuits?

• Can the 2D HLF be solved by 𝐴𝐶0 circuits? (constant depth unbounded fan-in)

Can the quantum advantage be made robust to noise?

• Different computational problems related to the HLF?
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