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Motivation

Quantum Teleportation Experiment [MHS+12]

Verified success by learning received state using 605 copies.
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Main Question

n copies of

(unknown) mixed state ρ ∈ Cd×d

Given a property f ,
how many copies of ρ do we need to estimate f up to ε-accuracy?

ρ⊗ ρ⊗ . . .⊗ ρ︸ ︷︷ ︸

Quantum measurement on n copies

Copy complexity:

C (f , d , ε)
def
= min

{
n : there exists f̂ such that f̂ (ρ⊗n) is an

± ε estimate of f (ρ) with probability > 0.9
}

[Montanaro and de Wolf ’13]
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Related Work

Testing if ρ is maximally mixed requires Θ(d/ε2) copies [OW15]

Quantum tomography: output ρ̂ close to ρ with respect to some
distance measure.

Requires Õ(d2) copies [HHJ+17,OW16,OW17]

Testing if ρ = σ for some known σ (next talk!)
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Requires Õ(d2) copies [HHJ+17,OW16,OW17]

Testing if ρ = σ for some known σ (next talk!)

4 / 24



Related Work

Testing if ρ is maximally mixed requires Θ(d/ε2) copies [OW15]

Quantum tomography: output ρ̂ close to ρ with respect to some
distance measure.
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Quantum Entropy

Given a property f , how many copies of ρ do we need to estimate f
up to ±ε-accuracy?

Properties of interest in this talk

von Neumann and Rényi entropies

Considered a measure of quantum entanglement [Car12]

von Neumann entropy:

S(ρ) = −tr (ρ log ρ)

Rényi entropy (α > 0, α 6= 1):

Sα(ρ) =
1

1− α
log tr(ρα)
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Quantum Entropy: Property of the Spectrum

Let η = (η1,η2, . . . ,ηd) be the spectrum of ρ

von Neumann entropy:

S(ρ) =
d∑

i=1

ηi log
1

ηi

Rényi entropy (α > 0, α 6= 1):

Sα(ρ) =
1

1− α
log

d∑
i=1

ηαi
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Results: Rényi Entropy for Integral α

Theorem (AISW ’17)

For α ∈ N\{1},

C (Sα, d , ε) = Θ

(
max

{
d1−1/α

ε2
,
d2−2/α

ε2/α

})

More efficient than quantum tomography

For α = 2, C (S2, d , ε) = Θ
(

max
{√

d
ε2 ,

d
ε

})

Sublinear in the size of the input (d2 is the natural dimensionality of
the input)

Classical estimation

C (Hα, d , ε) = Θ

(
d1−1/α

ε2

)
[AOST15]
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Results: von Neumann Entropy

Theorem (AISW ’17)

C (S , d , ε) ≤ O

(
d2

ε2
+

log2(1/ε)

ε2

)
.

Moreover, the empirical estimator (EYD) requires Ω
(
d2

ε

)
copies to

estimate von Neumann entropy.

Classical case [VV11,WY16,JVHW15]

C (H, d , ε) = Θ

(
d

ε log d
+

log2 d

ε2

)
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Preliminaries: Unitarily Invariant Properties

f (ρ) is unitarily invariant if

f (UρU†) = f (ρ)

for all unitary U

Equivalently, f is a property of the spectrum η of ρ

Examples: von Neumann and Rényi entropies, rank of ρ, etc.

A quantum measurement, called weak Schur sampling, is optimal for
estimating unitarily invariant properties [KW01,CHW07,Har05,CHr06].
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Preliminaries: Weak Schur Sampling

Weak Schur sampling output:

Consider a distribution over {1, 2, . . . , d}, where i has probability ηi .

Draw X n independently from this distribution.

Let λ = λ1 ≥ λ2 ≥ . . . be such that

λ1 is the length of the longest non-decreasing subsequence of X n

λ1 + λ2 is the largest sum of lengths of two disjoint non-decreasing
subsequences
. . .

Example: d = n = 3

X 3
1 = 132.

λ1 = 2, λ2 = 1 X 3
1 = 131. λ1 = 2, λ2 = 1

Histogram Young Diagram Histogram Young Diagram
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Preliminaries: Weak Schur Sampling

Weak Schur sampling output:

Denote the whole procedure as λ ∼ SWη

λ is a partition of n, denoted by λ ` n and represented by a Young
diagram:

Figure: English Young diagram for the partition λ = (6, 4, 3, 3, 1).

Since η − X n − λ(X n) is a Markov chain,

Estimating a quantum state property is at least as hard as estimating the
same property in the classical setting
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Preliminaries: Definitions

“Semi-standard” Young tableau: filled diagram with strictly increasing
columns (top-to-bottom) and non-decreasing rows (left-to-right)

“Standard” Young tableau: semi-standard with strictly increasing rows

Schur polynomial

sλ(x1, x2, . . . , xd) =
∑

T :semi-standard tableau
of shape λ

d∏
i=1

x
{# of occurences of i in T}
i

SWη(λ) = (#of standard Young tableaus of shape λ) · sλ(η)
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Results: Rényi Entropy for Integral α

Theorem (AISW ’17)

For α ∈ N\{1},

C (Sα, d , ε) = Θ

(
max

{
d1−1/α

ε2
,
d2−2/α

ε2/α

})

Classical estimation

C (Hα, d , ε) = Θ

(
d1−1/α

ε2

)
[AOST15]
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Rényi Entropy Sα(ρ) for Integral α: Converse

Design two density matrices ρ and σ with spectrums η and ν,
respectively, such that

|Sα(η)− Sα(ν)| > 2ε

Subproblem: generate λ from either η or ν, and distinguish between
the two cases
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Rényi Entropy Sα(ρ) for Integral α: Converse

Generate λ from either η or ν, and distinguish between the two cases

Unless n = Ω
(
d2−2/α

ε2/α

)
, we cannot tell them apart since

2dTV (SWη,SWν)2 ≤ χ2 (SWη,SWν) ≤ 0.01

In classical case,
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Rényi Entropy Sα(ρ) for Integral α: Converse

Generate λ from either η or ν, and distinguish between the two cases

Unless n = Ω
(
d2−2/α

ε2/α

)
, we cannot tell them apart since

2dTV (SWη, SWν)2 ≤ χ2 (SWη,SWν) ≤ 0.01

In classical case,

15 / 24
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Results: von Neumann Entropy

Theorem (AISW ’17)

C (S , d , ε) ≤ O

(
d2

ε2
+

log2(1/ε)

ε2

)
.

Moreover, the empirical estimator (EYD) requires Ω
(
d2

ε

)
copies to

estimate von Neumann entropy.
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Empirical Estimator (EYD)

Assume the eigenvalues of ρ are sorted: η1 ≥ η2 ≥ . . .

λ ∼ SWη

The empirical Young diagram algorithm sets

η̂i :=
λi

n

It is known that [ARS88,KW01]

ESWη

[
λ

n

]
n→∞−−−→ η

17 / 24



Empirical Estimator (EYD)

Assume the eigenvalues of ρ are sorted: η1 ≥ η2 ≥ . . .
λ ∼ SWη

The empirical Young diagram algorithm sets

η̂i :=
λi

n

It is known that [ARS88,KW01]

ESWη

[
λ

n

]
n→∞−−−→ η

17 / 24



Empirical Estimator (EYD)

Assume the eigenvalues of ρ are sorted: η1 ≥ η2 ≥ . . .
λ ∼ SWη

The empirical Young diagram algorithm sets

η̂i :=
λi

n

It is known that [ARS88,KW01]

ESWη

[
λ

n

]
n→∞−−−→ η

17 / 24



Empirical Estimator (EYD)

Assume the eigenvalues of ρ are sorted: η1 ≥ η2 ≥ . . .
λ ∼ SWη

The empirical Young diagram algorithm sets

η̂i :=
λi

n

It is known that [ARS88,KW01]

ESWη

[
λ

n

]
n→∞−−−→ η

17 / 24



von Neumann Entropy

The empirical estimate Ŝ(λ) is

Ŝ(λ) =
d∑

i=1

λi

n
log

n

λi

Theorem

The empirical entropy estimate satisfies:

E

[(
Ŝ(λ)− S(ρ)

)2
]
≤ O

(
d4

n2
+

d2

n
+

log2 n

n

)
.

Hence,

C (S , d , ε) ≤ O

(
d2

ε2
+

log2(1/ε)

ε2

)
.
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von Neumann Entropy - Proof Sketch

E
[(

Ŝ(λ)− S(ρ)
)2
]

=
(
S(ρ)− E

[
Ŝ(λ)

])2

︸ ︷︷ ︸
bias

+Var
(
Ŝ(λ)

)

Var
(
Ŝ(λ)

)
≤ log2 n

n

Proof similar to Lipschitzness of empirical entropy

Bias is small by concentration results [OW17]

χ2(λ/n,η) ≤ d2/n

|ηi − E [(η̂i )]| ≤ 2
√

min{1,ηid}
n
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Ŝ(λ)

)

Var
(
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Lower Bounds for Empirical Estimator

Strong error probability bound:

Theorem (AISW ’17)

For small enough ε, if ρ is maximally mixed and n ≤ O(d2/ε2), then

Pr

(
d∑

i=1

∣∣∣∣λi

n
− 1

d

∣∣∣∣ > ε

)
> 1− e−Ω(d).

Previously the best known lower bound was a constant (0.01) [OW15].

20 / 24



Lower Bounds for Empirical Estimator

Strong error probability bound:

Theorem (AISW ’17)

For small enough ε, if ρ is maximally mixed and n ≤ O(d2/ε2), then

Pr

(
d∑

i=1

∣∣∣∣λi

n
− 1

d

∣∣∣∣ > ε

)
> 1− e−Ω(d).

Previously the best known lower bound was a constant (0.01) [OW15].

20 / 24



Lower Bounds for Empirical Estimator

Strong error probability bound:

Theorem (AISW ’17)

For small enough ε, if ρ is maximally mixed and n ≤ O(d2/ε2), then

Pr

(
d∑

i=1

∣∣∣∣λi

n
− 1

d

∣∣∣∣ > ε

)
> 1− e−Ω(d).

Previously the best known lower bound was a constant (0.01) [OW15].

20 / 24



Lower Bounds for Empirical Estimator

An important consequence of the concentration result

Theorem

For small enough ε, the empirical estimator requires Ω(d2/ε) copies to
estimate von Neumann entropy

, and any Rényi entropy of order α > 1.

Our upper bound for the empirical estimator O(d2/ε2) is therefore
tight in terms of the dependence on d
Proof: suppose ρ is maximally mixed. Then S(ρ) = Sα(ρ) = log d

log d − Ŝα(λ) ≥ log d − Ŝ(λ)

= dKL

(
λ

n
,η

)
≥ 2d2

TV

(
λ

n
,η

)
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Our upper bound for the empirical estimator O(d2/ε2) is therefore
tight in terms of the dependence on d
Proof: suppose ρ is maximally mixed. Then S(ρ) = Sα(ρ) = log d
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Results: Non-integral Rényi Entropy

Theorem (AISW ’17)

For α > 1,

C (S , d , ε) ≤ O

(
d2

ε2

)
.

Moreover, the empirical estimator (EYD) requires Ω
(
d2

ε

)
copies to

estimate Sα(ρ).

Theorem (AISW ’17)

For α < 1,

C (S , d , ε) ≤ O

(
d2/α

ε2/α

)
.

Moreover, the empirical estimator (EYD) requires Ω
(
d1+1/α

ε1/α

)
copies to

estimate Sα(ρ).

22 / 24



Results: Non-integral Rényi Entropy
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Summary

Integral Rényi entropy with α > 1:

C (Sα, d , ε) = Θ

(
max

{
d1−1/α

ε2
,
d2−2/α

ε2/α

})

von Neumann and non-integral Rényi entropies:

Table: Copy complexity of empirical estimators

α Upper Bound Lower Bound

von Neumann O(d2/ε2) Ω(d2/ε)

α > 1 O(d2/ε2) Ω(d2/ε)

α < 1 O(d2/α/ε2/α) Ω(d1+1/α/ε1/α)
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Open Questions

Exact characterization of the copy complexity of von Neumann
entropy, and Rényi entropy for non-integer α

Characterization of the copy complexity for restricted quantum
measurements

Example: non-adaptive measurements

Conjecture: S2(ρ) is the easiest entropy to estimate
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entropy, and Rényi entropy for non-integer α

Characterization of the copy complexity for restricted quantum
measurements

Example: non-adaptive measurements

Conjecture: S2(ρ) is the easiest entropy to estimate

24 / 24



Open Questions

Exact characterization of the copy complexity of von Neumann
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