QUANTUM ALGORITHMS FOR TREE SIZE ESTIMATION, WITH APPLICATIONS

Andris Ambainis, Mārtiņš Kokainis

University of Latvia

SEARCH TREE OF UNKNOWN STRUCTURE

We are given:
Root r;
Black box which takes vertex v, outputs all children of v.
Black box for testing if v is a leaf.

APPLICATION 1

 3-COLORING: Can we colour vertices with 3 colours so that no edge is monochromatic?

• NP-complete.

Algorithm: attempt to colour vertices one by one.

TREE OF PARTIAL COLORINGS

No vertices coloured

vertex l coloured

vertices 1, 2 coloured

vertices 1, 2, 3 coloured

APPLICATION 2

TREE OF POSITIONS

Current position

After 1 move

After 2 moves

After 3 moves

How large is this tree (up to 1%)?

OUR QUANTUM ALGORITHM • T – size of the tree. • Produces an estimate T' such that $|\mathbf{T}-\mathbf{T}'| \leq \varepsilon |\mathbf{T}|.$ • Time: $O(\sqrt{Tn})$, n – depth of the tree.

APPLICATION 1: BACKTRACKING

MONTANARO, 2015

Tree of unknown structure.
Some leaves marked.
Quantum algorithm for finding a marked leaf in time O(√Tn).

 Useful for speeding up backtracking (e.g., 3-colouring).

OPEN PROBLEM

Classical algorithm may examine the most promising branches first.
Running time T' much smaller than tree size T.

OUR RESULT

Quantum algorithm with running time
O(√T'n^{1.5}) where
T' - number of vertices visited by classical search algorithm;
n - depth of the tree.

OUR ALGORITHM

 T_i – subtree consisting of first 2ⁱ vertices visited by the classical algorithm.

• Montanaro's algorithm on $T_1, T_2, ..., T_k$ until $T' \leq 2^k$.

• Running time: $O(\sqrt{2^k n}) = O(\sqrt{T'n})$.

CONSTRUCTING SUBTREES

• Example: need subtree with 16 first vertices.

• Tree size estimation on every child of the root.

APPLICATION 2: 2-PLAYER GAMES

POSITION TREE

EVALUATING BOOLEAN FORMULAS

• AND/OR formula of size T can be evaluated by evaluating $O(\sqrt{T})$ leaves [Reichardt, 2010].

Not applicable to game trees!

A, CHILDS, ŠPALEK, REICHARDT, ZHANG, 2007

OR

OR

AND

OR

AND

Basis states: u, v, uv – edge.
Coin flip transformation C_u on
u, v₁, u, v_k with the same u.

• C_u depends on sizes of subtrees rooted at $v_1, ..., v_k$.

Trim the tree!

EVALUATING UNKNOWN FORMULAS

ALGORITHM A

Explore tree with tree size estimation to determine T'.
Run AC+ algorithm on T', with recursive calls to A at the leaves.

OUR RESULT

• AND-OR trees of unknown structure with size T, depth $d=T^{o(1)}$ can be evaluated in $O(T^{1/2+o(1)})$ quantum steps.

TREE SIZE ESTIMATION

OUR RESULT

T - size of the tree.
Estimate T' such that

T-T' ≤ ε T.

Running time: O(√Tn), n - depth of the tree.

GENERALIZATION

Directed acyclic graph.
All edges from level i to i+1.

• Estimate number of edges.

OUR RESULT

 Can estimate number of edges T within a factor of 1±ε.

• Time: $O(\sqrt{Tn})$.

OUR QUANTUM ALGORITHM

• Quantum walk on the tree/DAG. • Eigenvalues closest to $1: e^{\pm i\theta}$, $\theta \in \left[(1 - \varepsilon) \frac{c}{\sqrt{Tn}}, (1 + \varepsilon) \frac{c}{\sqrt{Tn}}\right]$. • Eigenvalue estimation

• Eigenvalue estimation.

QUANTUM WALK (MONTANARO, 2015)

Basis states: |u>.
Different transformations at odd, even steps.

ODD STEPS

S, :odd-level vertex v with all its children.
Transformation C, on |u⟩, u∈S,.

EVEN STEPS

 $u \in S_v$

S_v: even-level vertex v
 with all its children.

• Transformation C_v on $|u\rangle$,

ANALYSIS

Reduce quantum walk to a classical random walk.
Matrix of quantum walk → Fundamental matrix of classical walk.

Bound matrix entries using electric resistances.

Result: exact expression for elements of the matrix.

SUMMARY

• Quantum algorithm for estimating size of a tree/DAG.

- Applications:
 - Backtracking;
 - Game trees;

OPEN QUESTIONS (GAME TREES)

Our algorithm: trees of size T, depth $T^{o(1)}$ in time $O(T^{1/2+o(1)})$.

1. Algorithm for trees of larger depth?

2. Algorithm with small memory?

OPEN QUESTIONS (GENERAL)

Is time O(\sqrt{Tn}) for tree size estimation optimal?
 Applications for evaluating size of DAGs?
 Other algorithms for «estimating size of ...»?