
QUANTUM ALGORITHMS FOR QUANTUM ALGORITHMS FOR
TREE SIZE ESTIMATION, TREE SIZE ESTIMATION, TREE SIZE ESTIMATION,

WITH APPLICATIONS
Andris Ambainis, MAndris Ambainis, MAndris Ambainis, MāAndris Ambainis, MAndris Ambainis, Māārtirtirtirtirtiņrtirtiņš Kokainis

University of Latvia

SEARCH TREE OF UNKNOWN STRUCTURE

••We are given:
•• Root Root Root rr;

•• Black box which takes vertex Black box which takes vertex vv,
outputs all children of outputs all children of outputs all children of vv.

•• Black box for testing if Black box for testing if Black box for testing if Black box for testing if vv is a leaf.

APPLICATION 1

• 3-COLORING: Can we
colour vertices with 3
colours so that no edge is
monochromatic?

• NP-complete.

Algorithm: attempt to colour vertices one by one.

No vertices coloured

vertex 1 coloured

vertices 1, 2 coloured

vertices 1, 2, 3 coloured

TREE OF PARTIAL COLORINGS

APPLICATION 2

Current position

After 1 move

After 2 moves

After 3 moves

TREE OF POSITIONS

How large is this tree (up to 1%)?

OUR QUANTUM ALGORITHM

••TTT ––– size of the tree.

••Produces an estimate Produces an estimate T’T’T’ such that
|T|T|T|T-|T|T-|T-|T T’| ≤ T’| ≤ T’| ≤  TTTTTTT.

••Time: Time: 𝑂 𝑇𝑛𝑇𝑛 , , nn ––– depth of the

tree.

APPLICATION 1: BACKTRACKING

MONTANARO, 2015

••Tree of unknown structure.

••Some leaves marked.

••Quantum algorithm for finding a

marked leaf in time marked leaf in time marked leaf in time 𝑂 𝑇𝑛𝑇𝑛 .

••Useful for speeding up Useful for speeding up Useful for speeding up
backtracking (e.g., 3
Useful for speeding up
backtracking (e.g., 3backtracking (e.g., 3-
Useful for speeding up Useful for speeding up
backtracking (e.g., 3backtracking (e.g., 3-colouring).

OPEN PROBLEM

••Classical algorithm may examine Classical algorithm may examine Classical algorithm may examine
the most promising branches first.

••Running time Running time T’ T’ T’ much smaller than Running time Running time
tree size
Running time
tree size tree size T
Running time Running time Running time

TT.

OUR RESULT

••Quantum algorithm with running time

𝑂 𝑇′𝑇′𝑛𝑛𝑛1.11111.5 where

•• T’T’T’ -- number of vertices visited by classical number of vertices visited by classical number of vertices visited by classical
search algorithm;

•• nnn -- depth of the tree.

OUR ALGORITHM

••TTiTTTTi –––– subtree consisting of first subtree consisting of first 22i2ii vertices visited i subtree consisting of first subtree consisting of first
by the classical algorithm.

••Montanaro’s algorithm on Montanaro’s algorithm on Montanaro’s algorithm on TT1TTT11, T, T2, T, T2, ..., T, ..., Tkk untilMontanaro’s algorithm on Montanaro’s algorithm on

T’ ≤ 2

Montanaro’s algorithm on

T’ ≤ 2T’ ≤ 2k

Montanaro’s algorithm on Montanaro’s algorithm on Montanaro’s algorithm on Montanaro’s algorithm on

T’ ≤ 2T’ ≤ 2kk.

••Running time: Running time: 𝑂 22𝑘𝑘𝑛 == 𝑂 𝑇′𝑛 .

CONSTRUCTING SUBTREES

••Example: Example: need subtree with 16 first Example: Example:
vertices
Example: Example:
verticesvertices.

••Tree size estimation on every child Tree size estimation on every child Tree size estimation on every child
of the root.

11 8 14

include

recurse

APPLICATION 2: 2APPLICATION 2: 2-APPLICATION 2: 2-PLAYER GAMES

POSITION TREE

••Position tree = formula;

••Output = YES if 1st Output = YES if 1st Output = YES if 1st
player wins;AND

OR

OR

AND

AND

OR

1st player

2nd player

EVALUATING BOOLEAN FORMULAS

•• AND/OR formula of size AND/OR formula of size TT can be evaluated by
evaluating evaluating evaluating O(O(O(O(O(O(O(T)

can be evaluated by can be evaluated by
T)T)T)T) leaves [Reichardt, 2010].

Not applicable to game trees!

AND

OR

OR

AND

AND

OR

A, CHILDS, ŠPALEK, REICHARDT, ZHANG, A, CHILDS, ŠPALEK, REICHARDT, ZHANG,
2007

••Basis states: Basis states: |u, v|u, v|u, v, , uvuv ––– edge.

••Coin flip transformation Coin flip transformation CCCuu on Coin flip transformation Coin flip transformation
|u, v|u, v|u, v1

Coin flip transformation Coin flip transformation
|u, v|u, v|u, v 

Coin flip transformation Coin flip transformation Coin flip transformation

1, ..., |
Coin flip transformation

, ..., |, ..., |u,
Coin flip transformation Coin flip transformation

u, u, vvk

Coin flip transformation Coin flip transformation Coin flip transformation
vkk

Coin flip transformation Coin flip transformation uCoin flip transformation Coin flip transformation

k with the same with the same with the same uu.

••CCCuu depends on sizes of subtrees u depends on sizes of subtrees depends on sizes of subtrees depends on sizes of subtrees
rooted at

depends on sizes of subtrees
rooted at rooted at vv1

depends on sizes of subtrees depends on sizes of subtrees depends on sizes of subtrees
v11, ..., v, ..., vk

depends on sizes of subtrees depends on sizes of subtrees
, ..., vk.

Trim the tree!

EVALUATING UNKNOWN FORMULAS

•• TTT ––– size of the tree;

•• Vertex Vertex vv ––– heavy if heavy if SSv

contains
heavy if heavy if

contains contains 
heavy if heavy if heavy if

 T/c
heavy if heavy if vvheavy if
T/cT/c vertices.

•• Subtree Subtree T’T’T’ ––– heavy vertices heavy vertices heavy vertices
and their children.

ALGORITHM A

•• Explore tree with tree size Explore tree with tree size Explore tree with tree size
estimation to determine
Explore tree with tree size
estimation to determine estimation to determine T’

Explore tree with tree size Explore tree with tree size
T’T’T’T’.

•• Run AC+ algorithm on Run AC+ algorithm on T’T’T’, Run AC+ algorithm on Run AC+ algorithm on
with recursive calls to
Run AC+ algorithm on Run AC+ algorithm on
with recursive calls to with recursive calls to with recursive calls to A

,
AAA at

the leaves.

OUR RESULT

••ANDAND-AND-OR trees of unknown structure with size OR trees of unknown structure with size TT,
depth depth depth d=Td=Td=Td=Td=To(1)o(1)o(1) can be evaluated in can be evaluated in can be evaluated in O(TO(TO(T1/2+o(1)1/2+o(1)1/2+o(1))depth depth
quantum steps.

TREE SIZE ESTIMATION

OUR RESULT

••TTT ––– size of the tree.

••Estimate Estimate T’T’T’ such that
|T|T|T-|T|T-|T-|T T’| ≤ T’| ≤ T’| ≤ T’| ≤  TTTTTTT.

••Running time: Running time: 𝑂 𝑇𝑛𝑇𝑛 , , nn ––– depth Running time: Running time:

of the tree.

GENERALIZATION

•• Directed acyclic graphDirected acyclic graph.

•• All edges from level All edges from level ii to All edges from level All edges from level
i+1
All edges from level All edges from level
i+1i+1.

•• Estimate number of edges.

OUR RESULT

•• Can estimate number of
edges edges edges TTT within a factor of
1
edges edges
11
edges edges edges edges
.

•• TimeTime: : 𝑂 𝑇𝑛𝑇𝑛 .

OUR QUANTUM ALGORITHM

••Quantum walk on the tree/DAG.

••Eigenvalues closest to Eigenvalues closest to 11: 1: : eeeei i,

𝜃 ∈ 1 − 𝜀
𝐶

𝑇𝑛
, 11 + 𝜀

𝐶

𝑇𝑛𝑇𝑛
.

••Eigenvalue estimation.

QUANTUM WALK (MONTANARO, 2015)

•• Basis states: Basis states: |u|u|u|u.

•• Different transformations
at odd, even steps.

ODD STEPS

•• SSSvv : odd: odd-: odd-level vertex level vertex v v with v

all its children.

•• Transformation Transformation CCCvv on on |u|u|u|u,
uuSSSvSSSvv.

EVEN STEPS

•• SSSvv : even: even-: even-level vertex level vertex vv

with all its children.

•• Transformation Transformation CCCvv on on |u|u|u|u,
uuSSSvSSSvv.

ANALYSIS

•• Reduce quantum walk to a classical random walk.

•• Matrix of quantum walk Matrix of quantum walk  Fundamental matrix of Matrix of quantum walk Matrix of quantum walk
classical walk.

•• Bound matrix entries using electric resistances.

•• Result: exact expression for elements Result: exact expression for elements of the matrixof the matrix.

SUMMARY

•• Quantum algorithm for estimating size of a tree/DAG.

•• Applications:

•• Backtracking;

•• Game trees;

OPEN QUESTIONS (GAME TREES)

Our algorithm: trees of size T, depth Our algorithm: trees of size T, depth TTTo(1o(1o(1)o(1) in time Our algorithm: trees of size T, depth
O(TO(TO(T1/2+o(1)

Our algorithm: trees of size T, depth
1/2+o(1)1/2+o(1)).

1.1. Algorithm for trees of larger depth?

2.2. Algorithm with small memory?

OPEN QUESTIONS (GENERAL)

1.1. Is time Is time 𝑂 𝑇𝑛 for tree size estimation optimal?

2.2. Applications for evaluating size of DAGs?

3.3. Other algorithms for «estimating size of ...»?

