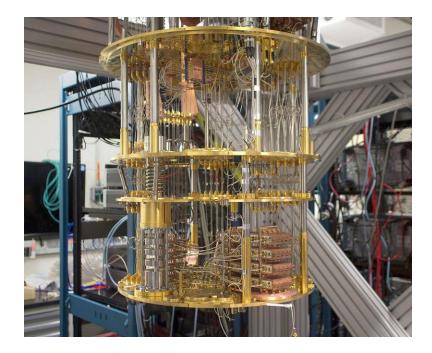
Classical Lower Bounds from Quantum Upper Bounds

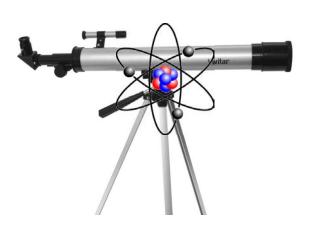
Shalev Ben-David, Adam Bouland, Ankit Garg, Robin Kothari

JOINT CENTER FOR QUANTUM INFORMATION AND COMPUTER SCIENCE

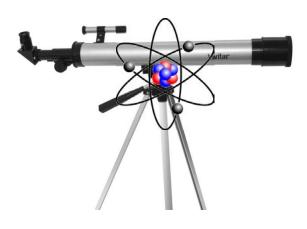
• Building/understanding quantum computers

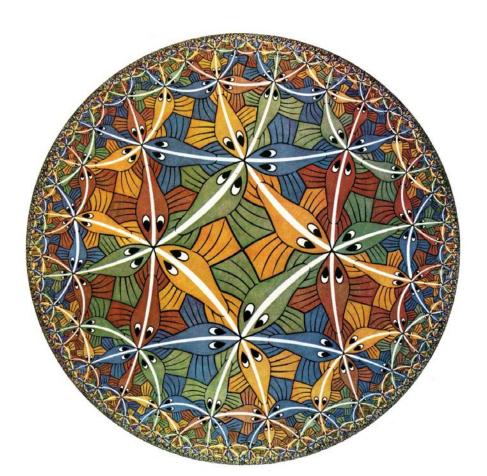


• Understanding quantum mechanics

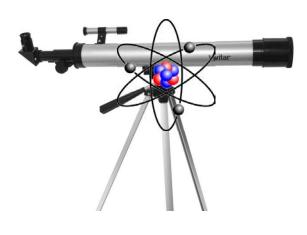


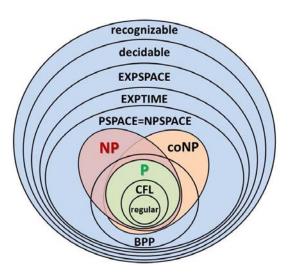
• Understanding quantum gravity





Learning about the nature of computation
 Oftentimes one can prove statements about classical computer science using quantum ideas and techniques: The Quantum Method





Learning about the nature of computation
 Oftentimes one can prove statements about classical computer science using quantum ideas and techniques: The Quantum Method

THEORY OF COMPUTING LIBRARY GRADUATE SURVEYS 2 (2011), pp. 1–54 www.theoryofcomputing.org

Quantum Proofs for Classical Theorems

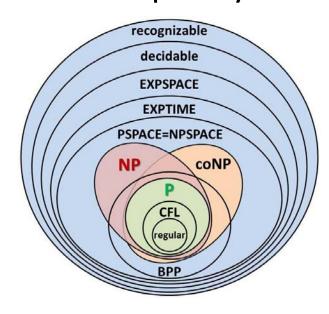
Andrew Drucker*

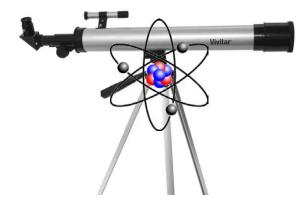
Ronald de Wolf[†]

Received: October 18, 2009; published: March 9, 2011.

Our Results

Approximate degree & communication complexity





THEORY OF COMPUTING LIBRARY GRADUATE SURVEYS 2 (2011), pp. 1–54 www.theoryofcomputing.org

Quantum Proofs for Classical Theorems

Andrew Drucker*

Ronald de Wolf[†]

Received: October 18, 2009; published: March 9, 2011.

Abstract: Alongside the development of quantum algorithms and quantum complexity theory in recent years, quantum techniques have also proved instrumental in obtaining results in diverse classical (non-quantum) areas, such as coding theory, communication complexity, and polynomial approximations. In this paper we survey these results and the quantum toolbox they use.

ACM Classification: F.1.2

Our Results

Main Result:

A lower bound on the "approximate degree" of certain compositions of functions, and related quantities in communication complexity

Proof uses a **quantum algorithm** of Belovs, and there is **no known classical proof** of these results

Wait, what??

"Ironic Complexity"

Often one can use fast algorithms (upper bounds) to prove lower bounds

Non-Uniform ACC Circuit Lower Bounds
Ryan Williams* IBM Almaden Research Center
November 23, 2010
Abstract
The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR, NOT, and MOD_m gates, where $m > 1$ is an arbitrary constant. We prove:
 NTIME[2n] does not have non-uniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasi-polynomials and other less natural functions.
• E ^{NP} , the class of languages recognized in 2 ^{O(n)} time with an NP oracle, doesn't have non-uniform

Also Hoza '17, Cleve et al '13

Our Results

"Quantum Method" + "Ironic Complexity"

Using quantum methods to prove classical theorems

Using fast algorithms to prove lower bounds

THEORY OF COMPUTING LIBRARY GRADUATE SURVEYS 2 (2011), pp. 1-54 www.theoryofcomputing.org

Quantum Proofs for Classical Theorems

Andrew Drucker*

Ronald de Wolf

Received: October 18, 2009; published: March 9, 2011.

Abstract: Alongside the development of quantum algorithms and quantum complexity theory in recent years, quantum techniques have also proved instrumental in obtaining results in diverse classical (non-quantum) areas, such as coding theory, communication complexity, and polynomial approximations. In this paper we survey these results and the quantum toolbox they use.

ACM Classification: F.1.2

MS Classification: 81D6

Non-Uniform ACC Circuit Lower Bounds

Ryan Williams* IBM Almaden Research Center

November 23, 2010

Abstract

The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR, NOT, and MOD_m gates, where m > 1 is an arbitrary constant. We prove:

- NTIME[2ⁿ] does not have non-uniform ACC circuits of polynomial size. The size lower bound can be slightly strengthened to quasi-polynomials and other less natural functions.
- E^{NP}, the class of languages recognized in 2^{O(n)} time with an NP oracle, doesn't have non-uniform of $2^{n^{o(1)}}$ size. The lower bound gives an exponential size depth tradeoff: for ever

$\begin{array}{l} \mathsf{Background}\\ f: \{0,1\}^m \rightarrow \{0,1\}\end{array}$

Approximate degree is a classical measure of the "complexity" of f (denoted $\deg(f)$) [Minsky Papert '69, Nisan Szegedy '94]

$\begin{array}{l} \mathsf{Background}\\ f: \{0,1\}^m \rightarrow \{0,1\}\end{array}$

 $\deg(f)$ is the minimum degree of a polynomial p in variables $\mathbf{x_1}...\mathbf{x_m}$ such that for all x in {0,1}^m $|f(x) - p(x)| \leq 1/3$

Lower bounds quantum query complexity (Beals et al.)

Background

Fundamental Problem: How does deg(f) behave under composition? $f: \{0,1\}^n \rightarrow \{0,1\}, g: \{0,1\}^m \rightarrow \{0,1\}$ $f \circ g : \{0,1\}^{nm} \rightarrow \{0,1\} = f(g,g,g,...g)$ g g g What is $deg(f \circ q)$?

Background

What is $\widetilde{\deg}(f \circ g)$?

Prior work: deg(f ∘g) = O(deg(f) deg(g)) [Sherstov '12, improving Buhrman et al. '07]

Proof: compose the polynomials**!

Leaves open: is $\widetilde{\deg}(f \circ g) = \Omega(\widetilde{\deg}(f) \widetilde{\deg}(g))$?

Difficult to prove this! Only known for specific f,g

Our results

For all functions f,

 $\widetilde{\operatorname{deg}}(\mathsf{OR}_n \circ f) = \Omega(\sqrt{n} \ \widetilde{\operatorname{deg}}(f))$

Prior Results

What is the deg($OR_n \circ AND_n$)?

Bound	Citation		
O(n)	Høyer, Mosca and de Wolf [HMdW03]		
$\Omega\left(\sqrt{n} ight)$	Nisan and Szegedy [NS94]		
$\Omega\left(\sqrt{n\log n}\right)$	Shi [Shi02]		
$\Omega(n^{0.66})$	Ambainis [Amb05]		
$\Omega(n^{0.75})$	Sherstov [She09]		
$\hat{\Omega}(n)$	Sherstov [She13a] and Bun and Thaler [BT13]		

Took 20 years to resolve just AND-OR tree!

Our results For all functions f, $\operatorname{deg}(\mathsf{OR}_n \circ f) = \Omega(\sqrt{n} \operatorname{deg}(f))$ vs. prior was only known $\widetilde{\deg}(\mathsf{OR}_n \circ \mathsf{AND}_m) = \Omega(\sqrt{nm})$

Generalizes existing results of AND-OR tree towards a general composition theorem, with completely different proof technique

Our Results

Unbalanced case:

$$\widetilde{\operatorname{deg}}\left(\mathsf{OR}_n \circ (f_1, f_2, \dots, f_n)\right)^2 = \Theta\left(\sum_i \widetilde{\operatorname{deg}}(f_i)^2\right)$$

 -> tightly characterizes unbalanced AND-OR trees of any constant depth

[See also Ambainis'06]

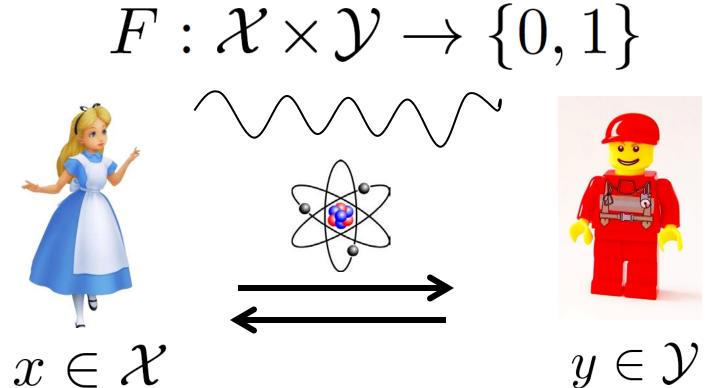
Our Results

We tightly characterize OR composition for deg

$$\widetilde{\operatorname{deg}}(\mathsf{OR}_n \circ f) = \Omega(\sqrt{n} \ \widetilde{\operatorname{deg}}(f))$$

Also extend our results to quantum communication complexity

Quantum communication complexity:



Quantum communication Unlimited preshared entanglement

Q*(F)

How much communication is required to compute $Q^{*}(OR_{n} \circ F)$?

We have for all F:

$$\mathsf{Q}^*\left(\mathsf{OR}_n \circ F\right) = \Omega\left(\frac{\sqrt{n}\log \widetilde{\gamma}_2(F)}{\operatorname{polylog} n}\right)$$

If F has an all zero row or column,

 $\mathsf{Q}^*(\mathsf{OR}_n \circ F) = \Omega(\sqrt{n}\log\widetilde{\gamma}_2(F))$

How powerful are these new communication results?

We can reprove many (hard) quantum communication lower bounds

Reprove powerful old results:

1. DISJOINTNESS= $\bigvee_{i=1}^{n} (x_i \wedge y_i)$ Q*(DISJOINTNESS)= $\Omega(n^{1/2})$

Reproves [Razbarov'03]

 In fact it even requires Ω(n^{1/2}/log n) in "quantum information complexity"

Reproves [Braverman et al. '15] up to log

Our Results

Summary:

We've characterized how approximate degree & quantum communication quantities compose under OR composition (up to log factors) This surpasses previous results, and can even be

used to reprove many known lower bounds

Our Techniques

All proofs have a common technique:

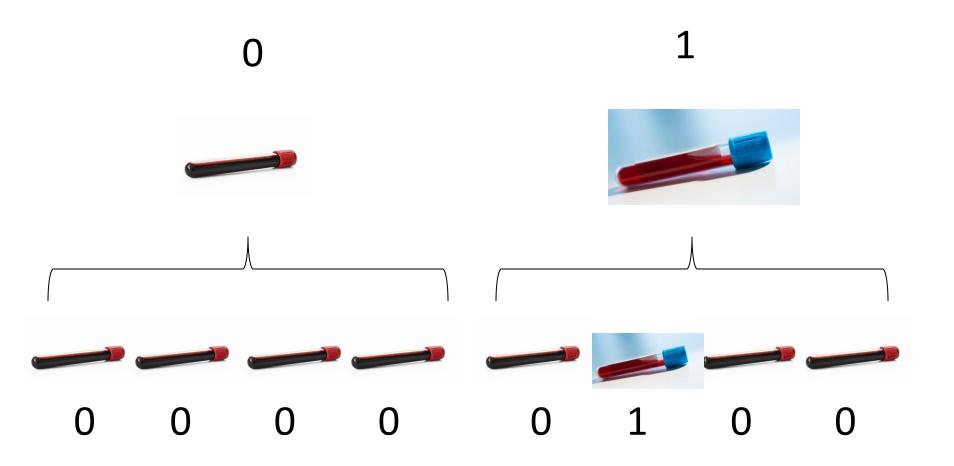
Use a clever algorithm of Belovs for a seemingly unrelated problem called "Combinatorial Group Testing"

Origins: WWII testing for Syphilis

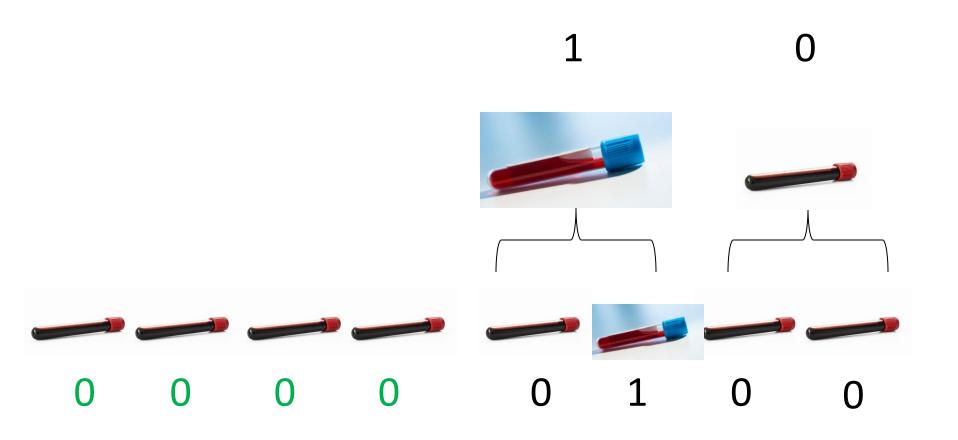
- Goal: Given blood samples from n people, determine which have disease
- Blood test detected antigen, want to minimize # tests

Note: If you mix multiple samples, you can tell if at least one of the samples has the antigen

If few have the disease, can use fewer than n tests



If few have the disease, can use fewer than n tests



If you know only 1 person has disease, can get away with only O(log n) tests instead of n

If k have disease, need O(k log n) tests

For worst-case inputs still need $\Omega(n)$ tests: Reduces to search if all but one have disease

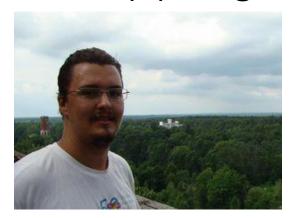
Every subset tests positive, except singleton set with the non-sick person

- Formalization: Hidden string x in {0,1}ⁿ
- Goal: Learn x
- Queries: Given a subset S of {0,1}ⁿ, can learn

$$\mathbf{x}_{s} = \bigvee_{i \in S} x_{i}$$

Classical complexity: Θ(n) for worst case x (but O(k log n) for k-sparse x)

What if we could make the OR subset queries to hidden string x in superposition?Classical: Θ(n) for generic strings x



Belovs '13: $\Theta(n^{1/2})$ for generic strings x

(also prior work by Ambainis-Montanaro '12)

Belovs

generic

What if we could make the OR subset queries to hidden string x in superposition?

Classical: $\Theta(n)$ for generic string

Belovs' proof: Adversary magic

that we allow A of size less than k. In this section, we prove the following result:

Theorem 3. The quantum query complexity of the combinatorial group testing problem is $\Theta(\sqrt{k})$.

The lower bound can be proved by a reduction from the unordered search, refer to [4] for more detail. Here we prove the upper bound. We do so by constructing a feasible solution to (3). This is done in two steps: First, we define rank-1 matrices $Y_5(p)$, and then build the matrices X_5 from them.

Let P be the binomial probability distribution on [n] with probability p. Recall that it is a probability distribution on the subsets of [n], where each element of [n] is included into the subset independently with probability p. By P(S), we denote the probability of sampling S from P: $P(S) = p^{|S|}(1-p)^{n-|S|}$. Finally, let \triangle denote the symmetric difference of sets.

We define $Y(p) = (Y_S(p))_{S \subseteq [n]}$ by

$$Y_S(p) = \frac{P(S)}{2p} \psi \psi^* \succeq 0,$$

$$[A] = \frac{1}{(1-p)^{|A|/2}} \times \begin{cases} \sqrt[4]{kp/(1-p)}, & \text{if } |A \cap S| = 0; \\ \sqrt[4]{(1-p)/(kp)}, & \text{if } |A \cap S| = 1; \\ 0, & \text{otherwise:} \end{cases}$$

for all $A \in C$. In this notation

$$\begin{split} \sum_{S \subseteq [n]} Y_S(p)[A, A] &= \frac{1}{2p(1-p)^{|A|}} \left(\Pr_{S \sim p} \left[|S \cap A| = 0 \right] \sqrt{\frac{kp}{1-p}} + \Pr_{S \sim p} \left[|S \cap A| = 1 \right] \sqrt{\frac{1-p}{kp}} \right) \\ &= \frac{1}{2p(1-p)^{|A|}} \left((1-p)^{|A|} \sqrt{\frac{kp}{1-p}} + |A|p(1-p)^{|A|-1} \sqrt{\frac{1-p}{kp}} \right) \leq \sqrt{\frac{k}{p(1-p)}} \end{split}$$

Now we fix two distinct elements A, B of C. An element A is used in Y_S only if $|S \cap A| \le 1$. Thus, we are only interested in $S \subseteq [n]$ such that $|A \cap S| + |B \cap S| = 1$. Thus,

$$\sum_{S: f_A(S) \neq f_B(S)} Y_S(p)[A, B] = \frac{\Pr_{S \sim P} \left[|A \cap S| + |B \cap S| = 1 \right]}{2p \left(1 - p \right)^{(|A| + |B|)/2}} = \frac{|A \triangle B| p \left(1 - p \right)^{(|A| + |B|)/2}}{2p \left(1 - p \right)^{(|A| + |B|)/2}} = \frac{|A \triangle B|}{2} (1 - p)^{\frac{|A \triangle B|}{2} - 1}$$

Now, for each $S \subseteq [n]$, let

$$X_S = \int_0^1 Y_S(p) \, dp \, .$$

First, each X_S is positive semi-definite, because positive semi-definite matrices form a convex cone. Next, for any $A \in C$:

$$\sum_{\substack{S \subseteq [n] \\ Q = 0}} X_S[A, A] \le \sqrt{k} \int_0^1 \frac{\mathrm{d}p}{\sqrt{p(1-p)}} = \pi\sqrt{k} \; .$$

And finally, for all $A \neq B$ in C:

$$\sum_{S:\;f_A(S)\neq f_B(S)} X_S\llbracket A,B \rrbracket = \frac{|A \bigtriangleup B|}{2} \int_0^1 (1-p)^{\frac{|A \bigtriangleup B|}{2}-1} \,\mathrm{d}p = 1.$$

Belovs

generic

What if we could make the OR subset queries to hidden string x in superposition?

Classical: $\Theta(n)$ for generic string

Belovs' proof: Adversary magic

that we allow A of size less than k. In this section, we prove the following result:

Theorem 3. The quantum query complexity of the combinatorial group testing problem is $\Theta(\sqrt{k})$.

The lower bound can be proved by a reduction from the unordered search, refer to [4] for more detail. Here we prove the upper bound. We do so by constructing a feasible solution to (3). This is done in two steps: First, we define rank-1 matrices $Y_2(p)$, and then build the matrices X_2 from them.

Let P be the binomial probability distribution on [n] with probability p. Recall that it is a probability distribution on the subsets of [n], where each element of [n] is included into the subset independently with probability p. By P(S), we denote the probability of sampling S from P: $P(S) = p^{|S|}(1-p)^{n-|S|}$. Finally, let \triangle denote the symmetric difference of sets.

We define $Y(p) = (Y_S(p))_{S \subseteq [n]}$ by

$$Y_S(p) = \frac{P(S)}{2p} \psi \psi^* \succeq 0,$$

$$v[A] = \frac{1}{(1-p)^{|A|/2}} \times \begin{cases} \sqrt[4]{kp/(1-p)}, & \text{if } |A \cap S| = 0; \\ \sqrt[4]{(1-p)/(kp)}, & \text{if } |A \cap S| = 1; \\ 0, & \text{otherwise:} \end{cases}$$

or all $A \in C$. In this notation

$$\begin{split} \sum_{S \subseteq [n]} Y_S(p)[A, A] &= \frac{1}{2p(1-p)^{|A|}} \left(\Pr_{S \sim P} \left[|S \cap A| = 0 \right] \sqrt{\frac{kp}{1-p}} + \Pr_{S \sim P} \left[|S \cap A| = 1 \right] \sqrt{\frac{1-p}{kp}} \right) \\ &= \frac{1}{2p(1-p)^{|A|}} \left((1-p)^{|A|} \sqrt{\frac{kp}{1-p}} + |A|p(1-p)^{|A|-1} \sqrt{\frac{1-p}{kp}} \right) \leq \sqrt{\frac{k}{p(1-p)}} \end{split}$$

Now we fix two distinct elements A, B of C. An element A is used in Y_S only if $|S \cap A| \le 1$. Thus, we are only interested in $S \subseteq [n]$ such that $|A \cap S| + |B \cap S| = 1$. Thus,

$$\sum_{(S)\neq f_B(S)} Y_S(p)[A, B] = \frac{\Pr_{S \sim P} \left[|A \cap S| + |B \cap S| = 1 \right]}{2p \left(1 - p \right)^{(|A| + |B|)/2}} \\ = \frac{|A \triangle B| p \left(1 - p \right)^{|A \cup B| - 1}}{2p \left(1 - p \right)^{(|A| + |B|)/2}} = \frac{|A \triangle B|}{2} (1 - p)^{\frac{|A \triangle B|}{2} - 1}$$

Now, for each $S \subseteq [n]$, let

S: f

$$X_S = \int_0^1 Y_S(p) \, dp \, .$$

First, each X_S is positive semi-definite, because positive semi-definite matrices form a convex cone. Next, for any $A \in C$:

$$\sum_{\substack{S \subseteq [n] \\ Q \in Q}} X_S[A, A] \le \sqrt{k} \int_0^1 \frac{\mathrm{d}p}{\sqrt{p(1-p)}} = \pi \sqrt{k} .$$

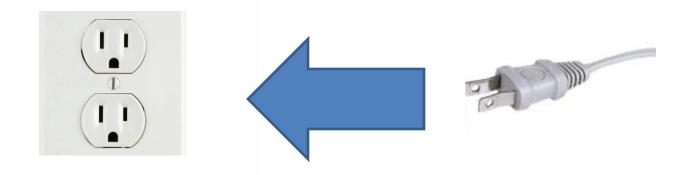
And finally, for all $A \neq B$ in C:

$$\sum_{S:\;f_A(S)\neq f_B(S)} X_S[A,B] = \frac{|A \bigtriangleup B|}{2} \int_0^1 (1-p)^{\frac{|A \bigtriangleup B|}{2}-1} \,\mathrm{d}p = 1.$$

Goal: lower bound $\widetilde{\operatorname{deg}}(\mathsf{OR}_n \circ f)$

Suppose $deg(OR_n \circ f) = T$, where T too small, and let p be corresponding polynomial

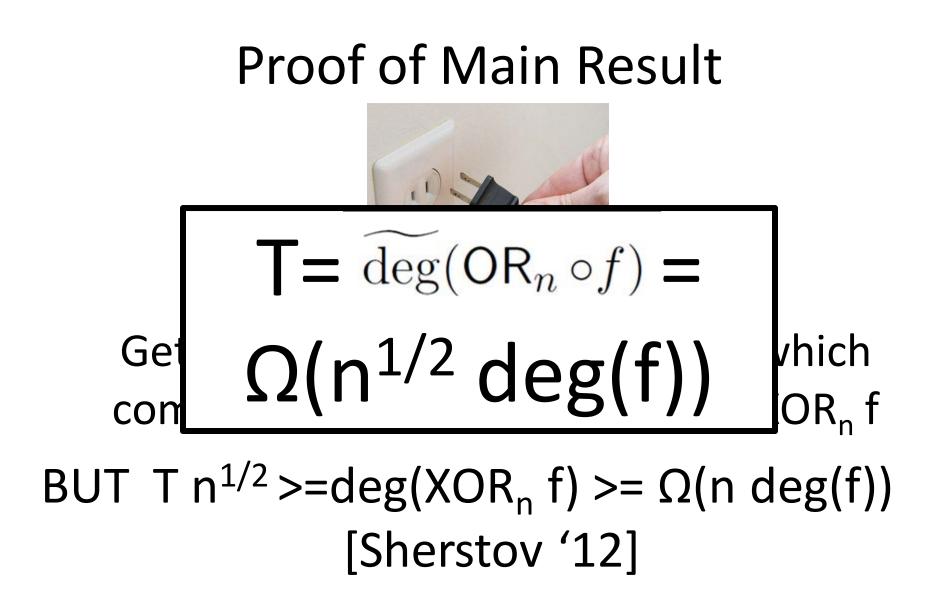
Basic idea: Compose p with Belovs' algorithm to get a ``too good to be true" polynomial for a harder problem



Belovs polynomial q Input: ORs of subsets Cost n^{1/2}

p for $\widetilde{\deg}(OR_n \circ f)$ Cost T

Get a polynomial of degree $Tn^{1/2}$ which computes string of f's and hence XOR_n f BUT T $n^{1/2} >= deg(XOR_n f) >= \Omega(n deg(f))$ [Sherstov '12]



Summary: If there were a better polynomial for

$$\widetilde{\operatorname{deg}}(\mathsf{OR}_n \circ f)$$

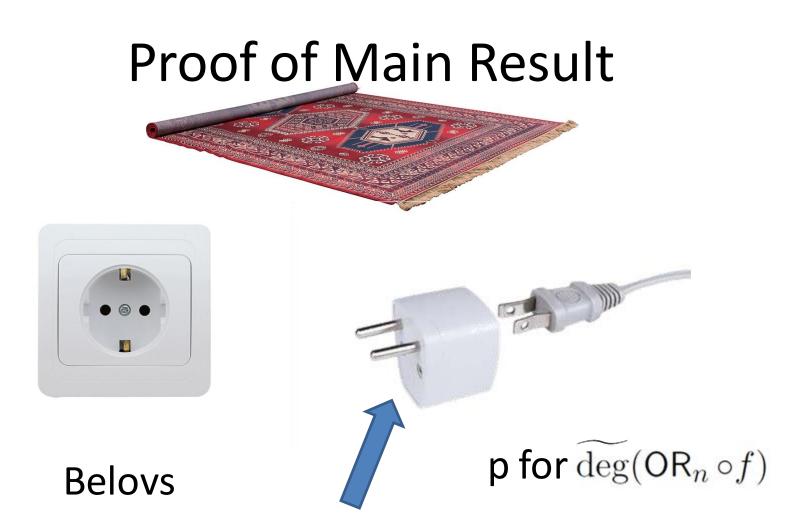
Then combining it with Belov's algorithm, would get a too-good-to-be-true polynomial for

$$\widetilde{\operatorname{deg}}(\operatorname{\mathsf{XOR}}_n \circ f)$$

Which we know must be very high

nut 2 C

p for $\widetilde{\deg}(\mathsf{OR}_n \circ f)$



Robustification: making polynomials robust to receiving "approximately boolean" inputs [Sherstov '13]

Communication results: pass too-good to be true approx rank decomp of OR_nF through the Belovs polynomial using Hadamard product make too-good-to-be-true approx rank decomposition of XOR_n

Where can I read about this!?

Cornell University Library	We gratefully acknowledge support from the Simons Foundation and member institutions	
arXiv.org > search	Search or Article ID All papers 🗸 🔍	
	(Help Advanced search)	

Search arXiv.org

Search gave no matches

No matches were found for your search: all:(kothari AND (garg AND (bouland AND (ben AND david))))

Please try again.

Author/title/abstract search	
Select subject areas to restrict search (default is to search all subject areas) Computer Science Economics Electrical Engineering and Systems Science Mathematics 	
🗖 Physics [archive: 📶 🔹] 🔲 Quantitative Biology 🗐 Quantitative Finance 🗐 Statistics	
Select years to search (default is to search all years)	

Forthcoming Generalization

For all symmetric s,

$$\widetilde{\operatorname{deg}}(s \circ f) = \Omega(\widetilde{\operatorname{deg}}(f) \, \widetilde{\operatorname{deg}}(s) / \log(n))$$

Requires opening black boxes of Belovs algorithm and Sherstov robustification

Open Problems

- Is $\widetilde{\operatorname{deg}}(f \circ g) = \Omega(\widetilde{\operatorname{deg}}(f) \, \widetilde{\operatorname{deg}}(g))$?
- Can one construct a dual witness for our bound on $\widetilde{\deg}(\mathsf{OR} \circ f)$?

• Can we use f-queries instead of OR-queries to learn x efficiently, following Belovs?

Thanks for your attention!

Questions?