
Classical Lower Bounds from
Quantum Upper Bounds

Shalev Ben-David, Adam Bouland,
Ankit Garg, Robin Kothari

What is quantum information good
for?

• Building/understanding quantum computers

What is quantum information good
for?

• Understanding quantum mechanics

What is quantum information good
for?

• Understanding quantum gravity

What is quantum information good
for?

• Learning about the nature of computation
Oftentimes one can prove statements about classical

computer science using quantum ideas and
techniques: The Quantum Method

What is quantum information good
for?

• Learning about the nature of computation
Oftentimes one can prove statements about classical

computer science using quantum ideas and
techniques: The Quantum Method

Our Results

Approximate degree &
communication

complexity

Our Results

Main Result:
A lower bound on the “approximate degree” of

certain compositions of functions, and related
quantities in communication complexity

Proof uses a quantum algorithm of Belovs, and

there is no known classical proof of these
results

Wait, what??

“Ironic Complexity”

Often one can use fast algorithms
(upper bounds) to prove lower bounds

Also Hoza ’17, Cleve et al ‘13

Our Results

 “Quantum Method”

Using quantum methods to
prove classical theorems

+ “Ironic Complexity”

Using fast algorithms to prove
lower bounds

Background

Approximate degree is a classical measure of the
“complexity” of f (denoted)
[Minsky Papert ’69, Nisan Szegedy ‘94]

Approximate degree is a classical measure of the
“complexity” of f (denoted)

Background

 is the minimum degree of a polynomial
p in variables x1…xm such that for all x in {0,1}m

Lower bounds quantum query complexity
(Beals et al.)

Background

Fundamental Problem: How does behave
under composition?

f:{0,1}n -> {0,1}, g:{0,1}m -> {0,1}
f ◦g :{0,1}nm -> {0,1} = f(g,g,g,…g)

What is ?

f

g g g

Background
What is ?

Prior work: deg(f ◦g) = O(deg(f) deg(g))

[Sherstov ’12, improving Buhrman et al. ‘07]

Proof: compose the polynomials**!

Leaves open: is ?

Difficult to prove this! Only known for specific f,g

Our results

For all functions f,

Prior Results

What is the deg(ORn ◦ ANDn)?

Took 20 years to resolve just AND-OR tree!

Our results
For all functions f,

vs. prior was only known

Generalizes existing results of AND-OR tree
towards a general composition theorem,

with completely different proof technique

()

Our Results

Unbalanced case:

-> tightly characterizes unbalanced AND-OR
trees of any constant depth

[See also Ambainis’06]

Our Results

We tightly characterize OR composition for deg

Also extend our results to quantum
communication complexity

Our Results: Extensions
Quantum communication complexity:

Quantum communication
Unlimited preshared entanglement

Q*(F)

Our Results: Extensions

How much communication is required to
compute Q*()?

We have for all F:

 If F has an all zero row or column,

 Q*

 Q*

How powerful are these new communication
results?

We can reprove many (hard) quantum
communication lower bounds

Our Results: Extensions

Our Results: Extensions

Reprove powerful old results:
1. DISJOINTNESS=
 Q*(DISJOINTNESS)= Ω(n1/2)
Reproves [Razbarov’03]
2. In fact it even requires Ω(n1/2/log n) in

“quantum information complexity”
Reproves [Braverman et al. ‘15] up to log

Our Results

Summary:
We’ve characterized how approximate degree &

quantum communication quantities
compose under OR composition

(up to log factors)
This surpasses previous results, and can even be

used to reprove many known lower bounds

Our Techniques

All proofs have a common technique:
Use a clever algorithm of Belovs for a seemingly

unrelated problem called “Combinatorial
Group Testing”

Combinatorial Group Testing
Origins: WWII testing for Syphilis

Goal: Given blood samples from n

people, determine which have
disease

Blood test detected antigen, want to

minimize # tests

Note: If you mix multiple samples,

you can tell if at least one of the
samples has the antigen

Combinatorial Group Testing

If few have the disease, can use fewer than n tests

0 1 0 0 0 0 0 0

0 1

Combinatorial Group Testing

If few have the disease, can use fewer than n tests

0 1 0 0 0 0 0

1 0

0

Combinatorial Group Testing

If you know only 1 person has disease, can get
away with only O(log n) tests instead of n

If k have disease, need O(k log n) tests

0 1 0 0 0 0 0 0

Combinatorial Group Testing

For worst-case inputs still need Ω(n) tests:
Reduces to search if all but one have disease

Every subset tests positive, except singleton set

with the non-sick person

1 0 1 1 1 1 1 1

1

Combinatorial Group Testing

Formalization: Hidden string x in {0,1}n

Goal: Learn x
Queries: Given a subset S of {0,1}n, can learn

xS = .

Classical complexity: Θ(n) for worst case x
(but O(k log n) for k-sparse x)

Combinatorial Group Testing

What if we could make the OR subset queries to
hidden string x in superposition?

Classical: Θ(n) for generic strings x

 Belovs ‘13: Θ(n1/2) for

 generic strings x

(also prior work by Ambainis-Montanaro ’12)

Combinatorial Group Testing

What if we could make the OR subset queries to
hidden string x in superposition?

Classical: Θ(n) for generic strings x

 Belovs ‘13: Θ(n1/2) for

 generic strings x

Belovs’ proof: Adversary magic

What if we could make the OR subset queries to
hidden string x in superposition?

Classical: Θ(n) for generic strings x

 Belovs ‘13: Θ(n1/2) for

 generic strings x

Belovs’ proof: Adversary magic

Combinatorial Group Testing

Proof of Main Result

Goal: lower bound

Suppose =T, where T too small,

and let p be corresponding polynomial

Basic idea: Compose p with Belovs’ algorithm to

get a ``too good to be true” polynomial for a
harder problem

Proof of Main Result

Belovs polynomial q
Input: ORs of subsets

Cost n1/2

polynomial q p for
 Cost T

Proof of Main Result

Get a polynomial of degree Tn1/2 which
computes string of f’s and hence XORn f

BUT T n1/2 >=deg(XORn f) >= Ω(n deg(f))
[Sherstov ‘12]

Proof of Main Result

Get a polynomial of degree Tn1/2 which
computes string of f’s and hence XORn f

BUT T n1/2 >=deg(XORn f) >= Ω(n deg(f))
[Sherstov ‘12]

T= =
Ω(n1/2 deg(f))
T= =

Proof of Main Result

Summary: If there were a better polynomial for

Then combining it with Belov’s algorithm, would

get a too-good-to-be-true polynomial for

Which we know must be very high

Proof of Main Result

 Belovs p for p for

Proof of Main Result

Robustification: making polynomials robust to

receiving “approximately boolean” inputs
[Sherstov ‘13]

Belovs p for p for

Proof of Main Result

Communication results: pass too-good to be true approx rank
decomp of ORnF through the Belovs polynomial using

Hadamard product …. make too-good-to-be-true approx rank
decomposition of XORn

Where can I read about this!?

Forthcoming Generalization

For all symmetric s,

Requires opening black boxes of Belovs
algorithm and Sherstov robustification

Open Problems

• Is ?

• Can one construct a dual witness for our
bound on

• Can we use f-queries instead of OR-queries to
learn x efficiently, following Belovs?

Thanks for your attention!

Questions?

