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for? 
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Oftentimes one can prove statements about classical 
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Our Results 

Approximate degree & 
communication 

complexity 



Our Results 

Main Result: 
A lower bound on the “approximate degree” of 

certain compositions of functions, and related 
quantities in communication complexity  

 
Proof uses a quantum algorithm of Belovs, and 

there is no known classical proof of these 
results 



Wait, what?? 

“Ironic Complexity” 
  

Often one can use fast algorithms  
(upper bounds) to prove lower bounds 

 
 
 
 
 
 
 

Also Hoza ’17, Cleve et al ‘13 



Our Results 

 “Quantum Method” 
    

Using quantum methods to 
prove classical theorems 

 
 
 
 
 

+    “Ironic Complexity” 
  

Using fast algorithms  to prove 
lower bounds 

 
 
 
 
 
 
 



Background 

    
 

Approximate degree is a classical measure of the 
“complexity” of  f (denoted                  )      
[Minsky Papert ’69, Nisan Szegedy ‘94] 
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               is  the minimum degree  of a polynomial 
p in variables x1…xm such that for all x in {0,1}m 

  

 
 

Lower bounds quantum query complexity  
(Beals et al.) 

 

               



Background 

Fundamental Problem: How does              behave 
under composition? 

f:{0,1}n -> {0,1}, g:{0,1}m -> {0,1} 
f ◦g :{0,1}nm -> {0,1} = f(g,g,g,…g) 

 
 
 

What is                          ? 
 

f 

g g g 



Background 
What is                           ?  

 
Prior work: deg(f ◦g) = O(deg(f) deg(g))  

[Sherstov ’12, improving Buhrman et al. ‘07] 
 

Proof: compose the polynomials**! 
 

Leaves open:  is                                                           ? 
 

Difficult to prove this! Only known for specific f,g 



Our results 

For all functions f, 
 
 
 



Prior Results 

What is the deg(ORn ◦ ANDn )?  
 
 
 
 
 
 
 

Took 20 years to resolve just AND-OR tree! 
 



Our results 
For all functions f, 

 
 

vs. prior was only known 
 
 

Generalizes existing results of AND-OR tree 
towards a general composition theorem,  

with completely different proof technique 

( ) 



Our Results 

Unbalanced case: 
 
 
 

-> tightly characterizes unbalanced AND-OR 
trees of any constant depth 

 
[See also Ambainis’06] 
 



Our Results 

We tightly characterize OR composition for deg 
 

 
 

Also extend our results to quantum  
communication complexity 



Our Results: Extensions 
Quantum communication complexity:
 
 
 
 
 
 

Quantum communication 
Unlimited preshared entanglement 

 

Q*(F) 



Our Results: Extensions 

How much communication is required to 
compute Q*(                  )? 

We have for all F: 
 

 
 If F has an all zero row or column, 

 
 

                     Q* 

                      

                     Q* 



How powerful are these new communication 
results? 

 
 
 
 
 

We can reprove many (hard) quantum 
communication lower bounds 
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Our Results: Extensions 

Reprove powerful old results: 
1. DISJOINTNESS= 
      Q*(DISJOINTNESS)= Ω(n1/2)  
Reproves [Razbarov’03] 
2. In fact it even requires Ω(n1/2/log n) in 

“quantum information complexity” 
Reproves [Braverman et al. ‘15] up to log 
 
 
 



Our Results 

Summary: 
We’ve characterized how approximate degree & 

quantum communication quantities 
compose under OR composition 

(up to log factors) 
This surpasses previous results, and can even be 

used to reprove many known lower bounds 



Our Techniques 

All proofs  have a common technique: 
Use a clever algorithm of Belovs for a seemingly 

unrelated problem called “Combinatorial 
Group Testing” 

 



Combinatorial Group Testing 
Origins: WWII testing for Syphilis 
 
Goal: Given blood samples from n 

people, determine which have 
disease 

 
Blood test detected antigen, want to 

minimize # tests 
 
Note: If you mix multiple samples, 

you can tell if at least one of the 
samples has the antigen 



Combinatorial Group Testing 

If few have the disease, can use fewer than n tests 

0 1 0 0 0 0 0 0 

0 1 



Combinatorial Group Testing 

If few have the disease, can use fewer than n tests 

0 1 0 0 0 0 0 

1 0 

0 



Combinatorial Group Testing 

If you know only 1 person has disease, can get 
away with only O(log n) tests instead of n 

 
If k have disease, need O(k log n ) tests 

0 1 0 0 0 0 0 0 



Combinatorial Group Testing 

For worst-case inputs still need Ω(n) tests: 
Reduces to search if all but one have disease 
 
Every subset tests positive, except singleton set 

with the non-sick person 

1 0 1 1 1 1 1 1 

1 



Combinatorial Group Testing 

Formalization: Hidden string x in {0,1}n 

Goal: Learn x 
Queries: Given a subset S of {0,1}n, can learn 

  

xS =                            .  
 

Classical complexity: Θ(n) for worst case x 
(but O(k log n) for k-sparse x) 

 



Combinatorial Group Testing 

What if we could make the OR subset queries to 
hidden string x in superposition? 

Classical: Θ(n) for generic strings x 
 
     Belovs ‘13: Θ(n1/2) for  

    generic strings x 
 
 
(also prior work by Ambainis-Montanaro ’12) 
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Belovs’ proof: Adversary magic 
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Combinatorial Group Testing 



Proof of Main Result 

Goal: lower bound  
 
Suppose                             =T, where T too small, 

and let p be corresponding polynomial 
 
Basic idea: Compose p with Belovs’ algorithm to 

get a ``too good to be true” polynomial for a 
harder problem 



Proof of Main Result 

Belovs polynomial q 
Input: ORs of subsets 

Cost n1/2 

polynomial q p for 
 Cost T  



Proof of Main Result 

Get a polynomial of degree Tn1/2 which 
computes string of f’s and hence XORn f 

BUT  T n1/2 >=deg(XORn f) >= Ω(n deg(f)) 
[Sherstov ‘12] 



Proof of Main Result 

Get a polynomial of degree Tn1/2 which 
computes string of f’s and hence XORn f 

BUT  T n1/2 >=deg(XORn f) >= Ω(n deg(f)) 
[Sherstov ‘12] 

T=                = 
Ω(n1/2 deg(f))  
T=                =



Proof of Main Result 

Summary: If there were a better polynomial for  
 
 
Then combining it with Belov’s algorithm, would 

get a too-good-to-be-true polynomial for 
 
 
Which we know must be very high 



Proof of Main Result 

 
 
 Belovs p for  p for 



Proof of Main Result 

 
 
 
Robustification: making polynomials robust to 

receiving “approximately boolean” inputs 
[Sherstov ‘13] 

Belovs p for  p for 



Proof of Main Result 

 
 
 

Communication results: pass too-good to be true approx rank 
decomp of ORnF through the Belovs polynomial using 

Hadamard product …. make too-good-to-be-true approx rank 
decomposition of XORn 



Where can I read about this!? 



Forthcoming Generalization 

For all symmetric s, 
 
 
 

Requires opening black boxes of Belovs 
algorithm and Sherstov robustification 

 
 

 
 



Open Problems 

• Is                                                                         ?  
 

• Can one construct a dual witness for our 
bound on 
 

• Can we use f-queries instead of OR-queries to 
learn x efficiently, following Belovs? 
 
 



Thanks for your attention! 

Questions? 




