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What is qguantum information good
for?

* Building/understanding quantum computers




What is qguantum information good
for?

* Understanding guantum mechanics




What is qguantum information good
for?

* Understanding quantum gravity




What is qguantum information good
for?

* Learningabout the nature of computation

Oftentimes one can prove statements about classical
computer science using quantum ideas and
techniques: The Quantum Method
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Abstract: Alongside the development of quantum algorithms and quantum complexity
theory in recent years, quantum techniques have also proved instrumental in obtaining results
in diverse classical (non-quantum) areas, such as coding theory, communication complexity,
and polynomial approximations. In this paper we survey these results and the quantum
toolbox they use.
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Our Results

Main Result:

A lower bound on the “approximate degree” of
certain compositions of functions, and related
guantities in communication complexity

Proof uses a quantum algorithm of Belovs, and
there is no known classical proof of these
results



Wait, what??

“Ironic Complexity”

Often one can use fast algorithms
upper bounds) to prove lower bounds

Non-Uniform ACC Circuit Lower Bounds

Ryan Williams*
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November 23, 2010

Abstract

The class ACC consists of circuit families with constant depth over unbounded fan-in AND, OR.
NOT. and MOD,,, gates, where me > 1 is an arbitrary constant. We prove:

& NTIME[2"] does not have non-uniform ACC circuits of polynomial size. The size lower bound
can be slightly strengthened to quasi-polynomials and other less natural functions.

o E"P_the class of languages recognized in 27(™) time with an NP oracle, doesn’t have non-uniform

- . {1y . . i =
ACC cirpuite of 97 size The lower bonnd oives an exnonential sizesdenth tradenff: for svery

Also Hoza ’17, Cleve et al ‘13



Our Results

“Quantum Method”

Using quantum methods to
prove classical theorems

’

+  “lronic Complexity’

Using fast algorithms to prove
lower bounds
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Background
f 40,1} = {0,1}

Approximate degree is a classical measure of the
“complexity” of f(denoted deg(f) )
[Minsky Papert 69, Nisan Szegedy ‘94]



Background
f 40,1} = {0,1}

aeE(f) is the minimum degree of a polynomial
p in variables x,...x., such that for all x in {0,1}™

f(z)—p(z)] <1/3

Lower bounds quantum query complexity
(Beals et al.)



Background

Fundamental Problem: How does a—é—g}(f) behave
under composition?

f{0,1}"->{0,1}, g:{0,1}™->{0,1}
feg:{0,1}"->{0,1} =1f(g,g,8,...8)

f
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What s agé(f o g) ?




Background
What is agé(f 0 g) ?

Prior work: deg(f °g) = O(deg(f) deg(g))
[Sherstov ’12, improving Buhrman et al. ‘07]

Proof: compose the polynomials™*!
Leaves open: is deg(f o g) = Q(deg(f) deg(g)) ?

Difficult to prove this! Only known for specific f,g



Our results

For all functionsf,

deg(OR,, of) = Q(v/n deg(f))



Prior Results

What is the deg(OR, > AND, )?

Bound Citation
O(n) Hgyer, Mosca and de Wolf [HMdWO03|
Q(y/n) Nisan and Szegedy [NS94]
Q (v/nlogn) Shi [Shi02]
Q (996 Ambainis [Amb05]
Q (n%™) Sherstov [She(9]
Q(n) Sherstov [Shel3a] and Bun and Thaler [BT13]

Took 20 years to resolve just AND-OR tree!



Our results

For all functionsf,

deg(ORy o f) = Q(v/n deg(f))
vs. prior was only known
( agé(ORnOANDm) — Q(\/%) )

Generalizes existing results of AND-OR tree
towards a general composition theorem,

with completely different proof technique



Our Results

Unbalanced case:

C@(ORno(flij;-- fn) _O(Zdeg (f:) )

-> tightly characterizes unbalanced AND-OR
trees of any constant depth

[See also Ambainis’06]



Our Results

We tightly characterize OR composition for deg

deg(OR,, of) = Q(v/n deg(f))

Also extend our results to quantum
communication complexity



Our Results: Extensions

Quantum communication complexity:

F:XxY—{0,1}

r e X
Quantum communication Q*(F)
Unlimited preshared entanglement



Our Results: Extensions

How much communication is required to

compute Q*( OR,;, o F)?
We have for all F:

Q* (OR, oF) = 0 (ﬁbg%(m)

polylog n

If F has an all zero row or column,

Q* (OR;, oF) = Q(v/nlog7,(F))



Our Results: Extensions

How powerful are these new communication
results?

We can reprove many (hard) quantum
communication lower bounds



Our Results: Extensions

Reprove powerful old results:

1. DISJIOINTNESS=\/._; (2 Ay;)
Q*(DISJOINTNESS)= Q(n'/?)

Reproves [Razbarov’03]

2. In fact it even requires Q(n¥/2/log n) in
“guantum information complexity”

Reproves [Braverman et al. ‘15] up to log



Our Results

Summary:

We’ve characterized how approximate degree &
guantum communication quantities

compose under OR composition
(up to log factors)

This surpasses previous results, and can even be
used to reprove many known lower bounds



Our Techniques

All proofs have a common technique:

Use a clever algorithm of Belovs for a seemingly
unrelated problem called “Combinatorial
Group Testing”




Combinatorial Group Testing

Origins: WWII testing for Syphilis

Goal: Given blood samples from n
people, determine which have
disease

Blood test detected antigen, want to
minimize # tests

Note: If you mix multiple samples,
you can tell if at least one of the
samples has the antigen

..........



Combinatorial Group Testing

If few have the disease, can use fewer than n tests
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Combinatorial Group Testing

If few have the disease, can use fewer than n tests
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Combinatorial Group Testing

If you know only 1 person has disease, can get
away with only O(log n) tests instead of n

If k have disease, need O(k log n ) tests

0 0 0 0 0 1 0 0



Combinatorial Group Testing

For worst-case inputs still need Q(n) tests:
Reduces to search if all but one have disease

Every subset tests positive, except singleton set

with the non-sick person

1
\
| \

1 1 1 1 1 0 1 1




Combinatorial Group Testing

Formalization: Hidden string x in {0,1}"
Goal: Learn x
Queries: Given a subset S of {0,1}", can learn

Xs = \/iES L

Classical complexity: ©(n) for worst case x
(but O(k log n) for k-sparse x)



Combinatorial Group Testing

What if we could make the OR subset queries to
hidden string x in superposition?

Classical: ©(n) for generic strings x

Belovs ‘13: O(n/2) for
generic strings x

(also prior work by Ambainis-Montanaro '12)



Combinatorial Group Testing

What if we could make the OR subset queries to
hidden string x in superposition?

Classical: ©(n) for generic string

Belovs ‘
generic

Belovs’ proof: Adversary magic

that we allow A of size less than k. In this section, we prove the following result:
Theorem 3. The quantum query complezity of the combinatorial group testing problem is H[\-’TJ.

The lower bound can be proved by a reduction from the unordered search, refer to [4] for more detail.
Here we prove the upper bound. We do so by constructing a feasible solution to (3). This i done in two
steps: First, we define rank-1 matrices Ys(p), and then build the matrices X from them.

Let P be the binomial probability distribution on [n] with probability p. Hecall that it is a probability
distribution on the subsets of [n]. where each element of [n] & included into the subset independently
with probability p. By (8], we denote the probability of sampling § from P: P{S) = i;""":’l —p]""""_
Finally, let & denote the symmetric difference of se

We define ¥ (p) = (Vs(p))scp by

Yelp) = ;:E% d® =0,
where
1 (,.-':k;r,f[l —-p). if|Ans|=0:
vl = (1 — pytanr x4/ (1=p)flkp). H[ANS]=1:
o, otherwise;

for all A £ (. In this notation,

. 1 e | kp e T=p
Y Vaslp)[A. 4] = W( Pr(|Sn 4| = n]vm + .ll_l_h:;,[|_l.~r‘|.-L| =1] V T)

Sraf
SCln]

1 | ke y |k
= (p—pn [ E -, [ 2R } Sy o -
2p(1 —m""([ T Mlp (= 5 ) < \Vai-m
Now we fix two distinct elements A, B of C. An element A is used in Yy only if |.ﬁ'|‘\.-1| < 1. Thus,
we are only interested in § € [n] such that |AN 5]+ B S| = 1. Thus,
Pro p[|ANS| +|BNs|=1]

T v
2 YetalA. ] 2p (1 = p) IR

St falShefals)

_ |AAB|p = pHUE AA R anm_,
T T ap(l-pPRERT T T (1—p) .

Now. for each 5 € [n], let
1

[ Yelp) dp .
First, each X is positive semi-definite, becanse positive semi-definite matrices form a convex cone. Next,
for any A € C:

SCa]
And finally, for all 4 B inC:

N
L
52 falShtfols)
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Proof of Main Result

Goal: lower bound Eeg(o Ry, of)

Suppose Hég(o R, of) =T, where T too small,
and let p be corresponding polynomial

Basicidea: Compose p with Belovs’ algorithm to
get a toogood to be true” polynomial for a
harder problem



Proof of Main Result

e

. _ )
Belovs polynomial g p for Jgg(OR?;,Of)
Input: ORs of subsets CostT

Cost n/2



Proof of Main Result

! ||\ - ,,,,,»V
‘ l| S
1 .

|

Get a polynomial of degree Tn/2 which
computes string of f’'s and hence XOR, f

BUT T n2>=deg(XOR, f) >= Q(n deg(f))
[Sherstov ‘12]



Proof of Main Result

AR V)
¢ WUl S

—_ (E(ORN Of) —

I Q(nY2 deg(f))

CO

BUT T n%2>=deg(XOR, f) >= Q(n deg(f))
[Sherstov ‘12]
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Proof of Main Result

Summary: If there were a better polynomial for
deg(OR;, of)

Then combining it with Belov’s algorithm, would
get a too-good-to-be-true polynomial for

a;_é(xo Rn Of)

Which we know must be very high



Proof of Min Result

" e0e —_:a*“?‘%
o

Belovs P for (E(ORH Of)



Proof of I\/Iin Result

Belovs p for deg(OR,, of)

Robustification: making polynomials robust to
receiving “approximately boolean” inputs

[Sherstov 13]



Proof f Main Result

Communicationresults: pass too-good to be true approx rank
decomp of OR_F through the Belovs polynomial using
Hadamard product .... make too-good-to-be-true approx rank
decomposition of XOR



Where can | read about this!?
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Forthcoming Generalization

For all symmetric s,

deg(s o f) = Q(deg(f)deg(s)/log(n))

Requires opening black boxes of Belovs
algorithm and Sherstov robust|f|cat|on




Open Problems
+Is deg(f o g) = Q(deg(f) deg(g)) ?

* Canone constructa dual witnhess for our
boundon deg(ORof)?

 Canwe use f-queries instead of OR-queries to
learn x efficiently, following Belovs?



Thanks for your attention!

Questions?





