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Fact: Entangled states generate non-local correlations

Questions:

• Direct problem: Which correlations are achievable?

• Inverse problem: Given a correlation, what is the class of
states and measurements that realize it?

• How complex are they? Can we always find a realization
in finite dimension? An approximate realization in finite
dimension?

• What is a correlation anyways?
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Bipartite correlations

Two sites, A and B

n measurements at each site

each measurement has m possible outcomes

p(a, b|x , y) = probability of outcome (a, b)
on measurements (x , y)

Correlation: set {p(a, b|x , y)} of n2 joint probability distributions

Example:


.5 0 .25 .25
0 .5 .25 .25

0 .5 .15 .85
.5 0 .85 .15

 is a correlation
with n = m = 2.
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Quantum correlations

p(a, b|x , y) = probability of outcome (a, b)
on measurements (x , y)

Correlation: set {p(a, b|x , y)} of n2 joint probability distributions

A correlation is quantum if it is of the form

p(a, b|x , y) = 〈ψ|Ma
x ⊗ Nb

y |ψ〉

for some

• |ψ〉 ∈ HA ⊗HB and

• measurements {Ma
x} on HA, {Nb

y } on HB

Hilbert spaces HA and HB can be finite or infinite-dimensional
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Correlation sets

A correlation is quantum if it is of the form

p(a, b|x , y) = 〈ψ|Ma
x ⊗ Nb

y |ψ〉

for some |ψ〉 ∈ HA ⊗HB and meas. {Ma
x} on HA, {Nb

y } on HB

Cq(n,m) = set of all quantum correlations (n measurements, m
outcomes) where HA, HB are finite

Cqs(n,m) = set of all quantum correlations (n measurements, m
outcomes) where HA, HB are possibly ∞-dimensional

Both sets Cq(n,m) and Cqs(n,m) are convex
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Correlation sets

Both sets Cq(n,m) and Cqs(n,m) are convex

This requires to keep dimHA and dimHB unbounded!

Example: the quantum set Cq(2, 2) contains
1 0 0 1
0 0 0 0

0 0 0 0
1 0 0 1

 ,


0 0 0 0
0 1 1 0

0 1 1 0
0 0 0 0

 ,


.5 0 0 .5
0 .5 .5 0

0 .5 .5 0
.5 0 0 .5

 ,

but the third correlation requires dim(H) ≥ 2 (one bit of shared
randomness is enough).

Cq and Cqs have the same closure.
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The quantum set

Research program: characterize the set Cq(n,m) for each n,m

[Goh et. al. ’17] n = m = 2 case has complex geometry! Flat
boundaries, curved boundaries, non-exposed extreme points, etc.

But: Cq(2, 2) is closed, and in fact dim(H) = 2 is always sufficient.
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The quantum set

Research program: characterize the set Cq(n,m) for each n,m

Is Cq(n,m) closed for general n,m?

Question goes back to [Tsirelson ’93], who initiated the systematic
study of Cq, Cqs and Cqc .

Trivial inclusions: Cc ( Cq ⊆ Cqs ⊆ Cqc .

Tsirelson assumed Cqs = Cqc and asked if Cq = Cqs .

[Slofstra ’16] Cq(n,m) ( Cqc(n,m) (known: Cqc is closed)

Is Cq closed?
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Non-local games (aka Bell-type experiments)

Closures of convex sets can be described by separating hyperplanes

A · p = c

some convex set C ⊂ Rm2n2

where A · p :=
∑

a,b,x ,y

A(a, b, x , y)p(a, b|x , y)

To describe C , need to be able to find c = sup{A · p : p ∈ C}

Quantum value of A: ωq(A) = sup{A · p : p ∈ Cq(n,m)}

(ωq(A) is the maximal quantum violation of a Bell inequality)
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Non-local games (aka Bell-type experiments)

For Cq(m, n), helpful to think of supporting hyperplanes as games

Referee

Alice Bob

Referee

Win Lose

x y

a b

Win/lose based on outputs a, b
and inputs x , y

Alice and Bob must cooperate
to win

Winning conditions known in
advance

Players cannot communicate
while the game is in progress
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Non-local games ct’d

Referee

Alice Bob

Referee

Win Lose

x y

a b

Non-local game given by:

Probability distribution π(x , y) on
questions

Pay-off function:
V (a, b|x , y) = 1 if answers (a, b) win

on questions (x , y),
V (a, b|x , y) = 0 otherwise

Quantum value: ωq(G ) = optimal winning probability when
players can share an entangled state

ωq(G ) = sup

 ∑
a,b,x ,y

π(x , y)V (a, b|x , y)p(a, b|x , y) : p ∈ Cq(n,m)
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Explicit lower bounds on entanglement

Can we find a game G and an ε ≥ 0 such that playing G with
success probability ≥ ωq(G )− ε requires Schmidt rank ≥ d?

If d(ε, n,m)→∞ for fixed n,m as ε→ 0 then Cq is not closed.

• [Brunner et. al ’08] Asked original question

• [Junge-Palazuelos ’11] m = n ≈
√
d , multiplicative O(d)

• [Ostrev-V., Chao et al. ’16] m = 2, n ≈ (log d)2, any
ε = O(n−5/2).

• [Coladangelo-Stark ’17] m ≈ d2, n =constant, any ε = O(d−3).

• [Natarajan-V. ’18] m =constant, n = (log d)c , any small enough
constant ε.
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Explicit lower bounds on entanglement

Can we find a game G and an ε ≥ 0 such that playing G with
success probability ≥ ωq(G )− ε requires Schmidt rank ≥ d?

If d(ε, n,m)→∞ for fixed n,m as ε→ 0 then Cq is not closed.

• [Pál-Vértesi ’10] Bell inequality I3322 with n = 3,m = 2.
Conjecture maximal violation requires infinite-dimensional
entanglement.

• [Leung-Toner-Watrous ’08, Manc̆inska-V. ’14, Regev-V. ’15,
Coladangelo-Stark’17] propose variants of non-local games:
quantum questions/answers, or infinite question/answer sets.

Typical scaling: d(ε) � 2ε
−c

.
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Explicit upper bounds on entanglement

Given a game G and ε ≥ 0, can we find a dmin such that G can be
played with success ≥ ωq(G )− ε using Schmidt rank ≤ dmin?

?

By a compactness argument, such a dmin = dmin(n,m, ε) exists for
any correlation in Cq(n,m).

If Connes’ Embedding Conjecture holds, then dmin is computable.
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Results

Theorem (Slofstra, arXiv:1703.08618)

There is a finite game G such that ωq(G ) = 1, but which cannot
be played perfectly using any correlation in Cq (or even Cqs).

In other words, if E (G , ε) is the Schmidt rank required to achieve
success probability ωq(G )− ε, then E (G , ε)→ +∞ as ε→ 0

Corollary (Slofstra)

Cq(n,m) and Cqs(n,m) are not closed for some finite n,m.

Proof yields n ≈ 240, m = 8.

[Dykema-Paulsen-Prakash ’17] n = 5, m = 2
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Results

Theorem (Slofstra, arXiv:1703.08618)

There is a finite game G such that ωq(G ) = 1, but which cannot
be played perfectly using any correlation in Cq (or even Cqs).

E (G , ε): Schmidt rank required to achieve success ωq(G )− ε

Theorem (Slofstra-V., arXiv:1711.10676)

There is a finite game G and constants C ,C ′, k > 0 such that

∀ε ≥ 0
C

ε1/k
≤ E (G , ε) ≤ C ′

ε1/2
.
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From groups to games

Finitely presented group: K = 〈S ; R〉.
S : finite set of generators
R : finite set of relations

Example: Weyl-Heisenberg group

K = 〈J,X ,Z ; J2 = X 2 = Z 2 = 1,
[J,X ] = [J,Z ] = 1, J[X ,Z ] = 1〉.

Group representation:
Map φ : S → U(Cd) such that φ(r) = I for all r ∈ R.

Example: φ(J) = −I , φ(X ) = σX , φ(Z ) = σZ (non-trivial)

Example: φ(J) = I , φ(X ) = I , φ(Z ) = I (trivial)
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From groups to games

Finitely presented group: K = 〈S ; R〉.
S : generators. R: relations.

Group representation:
Map φ : S → U(Cd) such that φ(r) = I for all r ∈ R.

Finitely-presented group
K = 〈S ; R〉 Finite game G

Representation
(of dimension d)

Winning strategy
(of dimension d)

Fancy group Interesting game

Caveat: Only non-trivial reps should give winning strategies!
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From groups to games

Finitely presented group: K = 〈S ; R〉.
S : generators. R: relations.

Group representation:
Map φ : S → U(Cd) such that φ(r) = I for all r ∈ R.

Finitely-presented group
K = 〈S ; R〉

J a central involution

Finite game G

Representation of
dimension d

such that φ(J) = −I

Winning strategy of
dimension d

ε-approximate
rep. such that φ(J) ≈ε −I

Strategy with
success (1− ε)
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From groups to games

K = 〈S ; R〉
J ∈ K central involution

Game G

Representation φ
such that φ(J) = −I Winning strategy in G

Dream application:

Weyl-Heisenberg group

K = 〈J,X ,Z ;
J2 = X 2 = Z 2 = 1,
[J,X ] = [J,Z ] = 1, [X ,Z ] = J〉

Magic Square game XI IX XX
IZ ZI ZZ
XZ ZX YY


Pauli representation

σX , σZ
Perfect 2-qubit strategy
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From groups to games

Linear System Games (Cleve-Mittal ’15):

“Solution group” Γ, J ′ ∈ Γ Game G

φ′ such that φ′(J ′) = −I Winning strategy in G

• J ′ non-trivial in Γ ↔ perfect commuting strategy (Cqc)

• J ′ non-trivial in finite-dim. rep.↔ perfect finite strategy (Cq)
↔ perfect infinite strategy (Cqs)

Program to separate Cqs from Cqc : find

• A solution group Γ

• J ′ ∈ Γ a non-trivial group element

• J ′ is trivial in all finite-dim representations
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From groups to games

Universal embedding theorem (Slofstra ’16):

K = 〈S ; R〉
J ∈ K central involution

Solution group Γ
J ′ ∈ Γ

Representation φ
such that φ(J) = −I

Representation φ′

such that φ′(J ′) = −I

Upside:

• Gives canonical structure of group presentation

• Preserves non-triviality of representations

Downside:

• No control of dimension of φ′

• No control of approximate representations
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An interesting group

K = 〈a, b, c , x , y : xyx−1 = y2, xcx−1 = c ,

yay−1 = b, yby−1 = a, c = ab, a2 = b2 = c2 = e〉 .

K has the following properties:

(0) The element c is non-trivial in K .

(i) Any finite-dimensional representation φ sends c to I .

Finitely presented group K , element J = c
+ Slofstra’s embedding theorem
+ Cleve-Mittal mapping from solution group to games:

Cqs ( Cqc .
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K has the following properties:

(0) The element c is non-trivial in K .

(i) Any finite-dimensional representation φ sends c to I .

Finitely presented group K , element J = c
+ Slofstra’s embedding theorem
+ Cleve-Mittal mapping from solution group to games:

Cqs ( Cqc .
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K has the following properties:

(0) The element c is non-trivial in K .

(i) Any finite-dimensional representation φ sends c to I .

(ii) For any ε > 0 there is a d and φ : K → U(Cd) such that
‖φ(c)− I‖f > 2− ε and ‖φ(r)− I‖f < ε for all r ∈ R.

Wanted: embedding theorem (group K 7→ game G ) s.t.

• Using (i), G has no perfect finite-dimensional strategy;

• Using (ii), ∀ε > 0, G has an ε-optimal strategy in finite dim d .
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Quantitative embeddings

Theorem (Slofstra)

K embeds in a solution group Γ, in such a way that approximate
representations of K lift to approximate representations of Γ.

Theorem is more general: applies to “linear-plus-conjugacy” games.

Corollary: Finite game G such that G has no perfect
finite-dimensional strategy, but ωq(G ) = 1.

Corollary: The sets Cq and Cqs are not closed.

Entanglement requirements for non-local games[2mm] arXiv:1703.08618: Slofstra, The set of quantum correlations is not closed[2mm] arXiv:1711.10676: Slofstra & V., Entanglement in non-local games and the hyperlinear profile of groups
William Slofstra and Thomas Vidick



Quantitative embeddings

Theorem (Slofstra)

K embeds in a solution group Γ, in such a way that approximate
representations of K lift to approximate representations of Γ.

Theorem is more general: applies to “linear-plus-conjugacy” games.

Corollary: Finite game G such that G has no perfect
finite-dimensional strategy, but ωq(G ) = 1.

Corollary: The sets Cq and Cqs are not closed.

Entanglement requirements for non-local games[2mm] arXiv:1703.08618: Slofstra, The set of quantum correlations is not closed[2mm] arXiv:1711.10676: Slofstra & V., Entanglement in non-local games and the hyperlinear profile of groups
William Slofstra and Thomas Vidick



Quantitative embeddings

Hyperlinear profile hlp(w , ε): smallest dimension d such that there
is a d-dimensional ε-representation φ with ‖φ(w)− 1‖f ≥ 2− ε.

Theorem (Slofstra-V.)

Let Γ be a solution group and G the associated game.

d-dimensional
ε-representations

of Γ with J 7→ −1

O(ε2)-perfect strategies
for G using a maximally

entangled state in Cd ⊗ Cd

Corollary: Achieving success probability 1− ε in G with a
maximally entangled state requires local Hilbert space dimension
≥ hlp(J,Θ(

√
ε)).
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An interesting group

K = 〈a, b, c , x , y : xyx−1 = y2, xcx−1 = c ,

yay−1 = b, yby−1 = a, c = ab, a2 = b2 = c2 = e〉 .

hlp(w , ε): smallest dimension d such that there is a d-dimensional
ε-representation φ with ‖φ(w)− 1‖f ≥ 2− ε.

Theorem (Slofstra-V.)

The group K has hyperlinear profile hlp(c, ε) = Θ(1/ε2/3).

Corollary: There is a game G such that success probability 1− ε
requires entanglement of dimension ≥ C

ε1/k
, 2 ≤ k ≤ 20.

(We also show it is possible to succeed with probability ≥ 1− ε
using a maximally entangled state of dimension ≤ C ′

ε1/2
.)
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K = 〈a, b, c , x , y : xyx−1 = y2, xcx−1 = c ,

yay−1 = b, yby−1 = a, c = ab, a2 = b2 = c2 = e〉 .

Theorem (Slofstra-V.)

The group K has hyperlinear profile hlp(c, ε) = Θ(1/ε2/3).

Proof idea:

1 Find basis s.t. φ(y) =

(
0 I
U 0

)
, for some unitary U.

2 Use xyx−1 = y2 to argue:

e2iπθ ∈ Spec(U) =⇒ e2iπ
θ
2 , e2iπ

(
θ
2
+ 1

2

)
∈ Spec(U)

3 Iterate: spectrum size keeps doubling until ε-errors kick in.
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Questions

How fast can hyperlinear profile grow?

(current best—1/ε2/3—won’t last for long)

Can lower bounds on hyperlinear profile always be
turned into lower bounds on entanglement?

(hard part: dimension-dependent factors crop up when going from
max-entangled states to general states)
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Other consequences of embedding theorems

[Slofstra ’16] since every f.-p. group embeds in a solution group...

word problem for groups is undecidable
=⇒ undecidable to determine if ωqc(G ) = 1

Theorem

Some finitely-presented groups K embed in solution groups Γ, in
such a way that approximate representations of K lift to
approximate representations of Γ.

Using groups of Kharlampovich, Kharlampovich-Myasnikov-Sapir:

Theorem (Slofstra)

For linear system games G , it is undecidable to determine if
ωq(G ) = 1 or if G has a perfect finite-dimensional strategy.
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Concluding remarks

Given G and ε > 0, can we compute ωq(G )± ε?

If Connes’ Embedding Conjecture is true: yes!

Effective bounds seem inherently tied to dimension bounds.

A “fully explicit” embedding theorem?

Remove dependence on black-box group-theoretic reductions

[Regev-V.’18] A correlation that “self-tests” the algebraic structure
of any subset of an algebra

What are the interesting groups?

Applications to complexity. Crypto?
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