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Einstein Causality:

Isaac H. Kim (Stanford)

Causality

[O;gl, O;(z] =0 if ()_(1 — )?2)2 > 0.



Causality

Einstein Causality:
[O;gl, 0;2] =0 if ()?1 — )_(2)2 > 0.

In the quantum theory of gravity, what happens? The safest assumption
would be this:

<¢| [O)?lv O)?Q] ‘7/)/> ~0 if (;1 - )?2)2 > 0

for some 1,7’ in some set S
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AdS/CFT correspondence

The Large N Limit of Superconformal field
theories and supergravity

Juan Maldacena®

Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA

Abstract
‘We show that the large N limit of certain conformal field theories in various dimen-
sions include in their Hilbert space a sector describing supergravity on the product of

Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking

But what does it mean?

Isaac H. Kim (Stanford) Jan 19, 2018 4 /22



Disclaimer
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AdS/CFT vs Maxwell’s equation

Quantum gravity in a box EM field in a box
y
A
time anti-de Sitter space -~ 0 %
conformal
boundary

¢(x,r, t) = dcer(x; t) at the boundary. Etangent = 0 at the boundary.

Solve Einstein’s equation. Solve V2E = 0.
v .
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HKLL formula

Hamilton, Kabat, Lifschytz, Lowe(2006)

d(x,r t) = /dx’dt’K(x', t'|r,x, t)po(x', t)

Q@ K(X',t'|r,x,t) : Smearing function

Q@ ¢o(x',t') : Operators

@ This construction ensures that low-order correlators between ¢(x, r, t)
are exactly equal to the gravity prediction.

© Funny fact! : There is more than one way to ensure (3).

Isaac H. Kim (Stanford) Jan 19, 2018 7/22



Isaac H. Kim (Stanford)

HKLL formula

For a fixed t...
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HKLL formula

For a fixed t...
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HKLL formula

For a fixed t...



Resolution : quantum error correcting code

Almbheiri, Dong, Harlow(2015) proposed that this formula

o(x, . 1) = / o dtK(x, E|r x, D)do(x', ¢))

should not be thought as an operator equality,

but rather as an equality that holds in a certain subspace.

In particular, there must be a family of subspaces associated to each
(x,r) (at fixed t).

Subspace = Quantum error correcting code

ADH specified exactly what kind of error correction properties these
codes must satisfy.
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Holographic quantum error correcting codes

Pastawski, Yoshida, Harlow, Preskill (2015)

® For each bulk site/sites, one can
assign a QECC.

® Deeper you go, better protected
against boundary erasure.

® Aspects of entanglement wedge
reconstruction realized.

® Pluperfect tensor network(2015), Random tensor network (2016), Subalgebra holographic code(2016), Dynamics for
holographic codes (2017), Space-time random tensor network(2018)...

But where do they come from?
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Main result

Colloquially
Holographic quantum error correcting codes emerge in the ground state of
CFT.

e As a corollary, we can specify a set of operators and states such that
their causal relation resembles that of a physical space in one higher
dimension.
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Main result

A bit more accurately

There is a family of QECCs, defined in terms of the CFT data, that
approximately reproduces the error correction properties of the holographic

QECCs.

e As a corollary, we have an emergent Lieb-Robinson type bound at low
energy. It establishes the locality of the dynamics in one higher
dimension.
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Main result

A bit more accurately

There is a family of QECCs, defined in terms of the CFT data, that
approximately reproduces the error correction properties of the holographic

QECCGs.

e As a corollary, we have an emergent Lieb-Robinson type bound at low
energy. It establishes the locality of the dynamics in one higher
dimension.

Assumptions

© Ground states of CFTs are described by the multi-scale entanglement
renormalization ansatz(MERA).

@ (Unnecessary) Simplifying assumption : MERA is translationally
invariant, and scale invariant.

© Lowest scaling dimension is positive.
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Assumptions

@ The ground state can be described by the multi-scale
entanglement renormalization ansatz(MERA).

2]
o
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Assumptions

@ The ground state can be described by the multi-scale
entanglement renormalization ansatz(MERA).

2]
o
Operators | A MERA(x = 22) | A Correct value
o 0.124997 0.125
€ 1.0001 1
Operators | A MERA(x = 22) | A Correct Value
o1 0.1339 2/15 = 0.13
o2 0.1339 2/15=10.13
€ 0.8204 0.8
Z 1.3346 4/3=13
7 1.3351 4/3=13

Pfeifer, Evenbly, Vidal(2009)
Also, see a related talk by Volkher Scholz yesterday...
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Assumptions

© The ground state can be described by the multi-scale entanglement
renormalization ansatz(MERA).

@ (Unnecessary) Simplifying assumption : MERA is translationally
invariant, and scale invariant.
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Assumptions

© The ground state can be described by the multi-scale entanglement
renormalization ansatz(MERA).

@ (Unnecessary) Simplifying assumption : MERA is translationally
invariant, and scale invariant.

© Lowest scaling dimension is positive.

e & is unital by construction.

e —log A1 > 0, where A1 is the second largest modulus of the
eigenvalues of .
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How do we show it?

Colloquially

Holographic quantum error correcting code emerges in the ground state of
CFT. As a corollary, we can specify a set of operators and states such that
their causal relation resembles that of a physical space in one higher
dimension. )

Key logical steps
© Subspace is defined. (This is formally a code.)

@ Correctability condition formulated.

© Positive scaling dimension — correctability of certain regions.
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Subspace defined

Promote the isometry at (x, r) to a unitary.
e Before: --- V|, )+ is a state.

o After: - U -+ is an isometry from a bounded-d Hilbert space to
the physical Hilbert space.

* For simplification, we just change every V/, ,) at fixed r to some Uy ,).
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Quantum error correction duality
Local correctability <+ Local decoupling

Colloquially

For a subspace of Ha ® Hp ® Hc, erasure of A can be corrected from a
channel acting on B if and only if A is decoupled from CR.

* R: purifying space

More specifically, these two things are equal.

Local correctability: inf sup B(RAE(pBEF), pABF)
RgB pABCR

e B(-,-) : Bures distance
° RéB . local correction channel
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Quantum error correction duality
Local correctability <+ Local decoupling

Colloquially

For a subspace of Ha ® Hp ® Hc, erasure of A can be corrected from a
channel acting on B if and only if A is decoupled from CR.

* R: purifying space

More specifically, these two things are equal.

Local correctability: inf sup B(RAE(pBEF), pABF)
RgB pABCR

e B(-,-) : Bures distance

° RéB . local correction channel
Local decoupling: min sup B(w? @ pF, pAR))

A
w pABCR

[Flammia, Haah, Kastoryano, K](2017)
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Decoupling Condition : Picture

Support Size: 2
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Decoupling Condition : Picture

Support Size: 4
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Decoupling Condition : Picture

Support Size: 8
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Decoupling Condition : Picture

Support Size: 16
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Decoupling Condition : Picture

Support Size: 32
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Decoupling Condition : Picture

Support Size: 64

REEREREE Ry
IR,
v eI e e
A
L
O
O OO

Isaac H. Kim (Stanford) Jan 19, 2018 16 / 22



Decoupling Condition : Words

e Schrédinger : (O) = ( (0| VlJrUir e VJU,t)O(U,,Vn - Up V1 |0))
o Heisenberg : (0) = (0| (V{ U] --- VIUlOU,V,--- U1 1) |0)
In the Heisenberg picture,

© The support of the operator contracts exponentially.

@ Then, the norm of the non-unital part of the operator contracts
exponentially.

© Eventually, the operator is mapped to an approximate identity
operator.
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Decoupling Condition

: Equations
Step 1: def. of trace norm

12— A @ pFRlli = sup  Te[Macgr(p"F — p* @ pF)]
[IMacrlI<1
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Decoupling Condition : Equations

Step 1: def. of trace norm

ACR CRH1 — sup TI"[MACR(PACR - pA ® pCR)]

[IMacrll<1

1R — A @ p

Step 2: MERA identity

Tr[Macr(pf R — p @ pEF)] = Te[®r(Macr) (07T — pi1 @ p<F))]
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Decoupling Condition : Equations

Step 1: def. of trace norm

ACR CRH1 — sup TI"[MACR(PACR - pA ® pCR)]

(IMacrll <1

1o R —pA@p

Step 2: MERA identity

Tr[Macr(pf R — p @ pEF)] = Te[®r(Macr) (07T — pi1 @ p<F))]

Step 3: Under ®,, the support of Macr strictly contracts until its support
on the physical space becomes O(1). (Follows from the circuit geometry.)
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Decoupling Condition : Equations

Step 1: def. of trace norm

ACR CRH1 —

sup  Tr[Macr(p"F — p* @ pF)]
MacrlI<1

1o R —pA@p

Step 2: MERA identity

Te[Macr(pr " — o7 @ pfF)] = Te[®(Macr) (07T — py © p5)]
Step 3: Under ®,, the support of Macg strictly contracts until its support
on the physical space becomes O(1). (Follows from the circuit geometry.)

Step 4: Under ®,, norm of non-identity local operator in the physical
space strictly contracts. (Positive scaling dimension)

Isaac H. Kim (Stanford) Jan 19, 2018 18 / 22



Application : Emergent lightcone in “scale”
Lieb-Robinson bound

In a locally interacting system, there is a constant “speed of light,” such
that correlations outside the lightcone decays exponentially.

1[04, Os(t)]|| < celvItl=dist(A.B)/€)
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Application : Emergent lightcone in “scale”

Theorem

For any two states |1) , |¢)') € Cs, for a local operator Oy and a logical
operator 0o,

| (&1 [0u(2), 0a] [¢/) | < €/(v]t] + O(s))e ™

Interesting facts
e Generally [0y, 02] # 0.

e The Hamiltonian is assumed to be locally interacting in the physical
Hilbert space, but it is generically nonlocal with respect to the
subfactors labeled by (x, r).

e Only holds in a subspace, not in the entire Hilbert space.

* See also arXiv:1705.01728 [Qi and Yang (2017)]
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Application : Tradeoff bounds

In the |A2| — O limit,

e |n our case, o =~ 0.63.

e In holography, in a “similar” limit, & ~ 0.78. [Pastawski and Preskill
(2016)]
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Summary

Summary

@ Holographic quantum error correcting codes (in some sense) appear
naturally in low energy states of CFT.

@ Local dynamics can emerge out of nonlocal Hamiltonian, once
restricted to a particular subspace.

© Tradeoff bound derived.
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Outlook

Outlook
e More quantum error correcting codes that were there in hindsight?
e Brandao et al. (2017)

Other mechanisms for causality?

Constraining holography from quantum error correction?
o Pastawski and Preskill(2016)

A more refined bound in terms of OPE coefficients?

Time evolution by a non-integrable Hamiltonian can be interpreted as
a black hole with a long throat. Can we understand how causality
arises in this throat?

Isaac H. Kim (Stanford) Jan 19, 2018 22 /22



