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Let p = (p1...., pa) and g = (q1, ..., qq) be discrete
distributions on {1, ...,d}.

Problem
Suppose p is not known. How many i.i.d. samples
Xi,..., X, ~ p are needed to decide w.h.p. whether p = q or

drv(p.q) > €?
Theorem (Paninski, 2008)
Ifg=(& 1 L), thenn = 0(/d /€?) samples are sufficient.

Theorem (Valiant—Valiant, 2014)
Foranyq = (q1,..., qa), n = O(¥d /) samples are sufficient.
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Preliminaries

Representation theory

&, is the symmetric group of permutations on n letters.
cyc(w) denotes the cycle type of a permutation 7 € &,,.
cyc(m) = cyc(z~!) and cyc(nt) = cyc(rm) forall m, 7 € &,.

A partition A = (11, ..., ;) of n is a nonincreasing sequence of
nonnegative integers such that A; 4+ --- + A = n.!

The power sum symmetric polynomial p, is defined by

pa(X1,...,xq) = (x{tl +---+x;}1)---(xfk +---+x$").

IfA=(7,4,1), then

Pa(x1,x2) = (x] +x2) - (x] + x3) - (x1 + x2).

'1s omitted from notation; e.g. (3,2) denotes (3,2, 1"79).
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Representation theory

C6&,, is the symmetric group algebra of linear combinations
aymy + -+ agmy,

where ay,...,a; e Cand my,...,m; € G,.

Let #» map permutations = € &, to operators £ () on (C%)®”:

P(r) =x1 Q@ ®Xn > Xp—1(1) @ "+ @ Xp—1(y).

P is a representation of G,,:

P(nt) = P(0)P(r), Pld) =1, P =P
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Preliminaries

Quantum physics
Let # be finite-dimensional vector space over C.
A quantum state p is a pos. operator on J# with tr(p) = 1.
An observable O is a self-adjoint operator on #.

By the spectral theorem,

O =a;Il;1+---+ay1,.

M = {I1y,...,T1,} defines a measurement.

O has a natural operational interpretation:

Apply M to p and output «; if the outcome of the
measurementis i € [d].
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Preliminaries
Quantum probability

The expectation of O w.r.t. pis

I;;[@] = tr(p0).

The variance of O w.r.t. pis
Var[0] := E[0?] — E[0].
o p o
Lemma
E,[-] is monotone w.r.t. the order on self-adjoint operators, viz.

A< B = E[4] <E[B].
p P
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Preliminaries
Quantum probability

Let ® be a linear map that maps observables to observables
such that E,[®(0)] = E,[0].

Lemma
If ® is positive and unital®, then

Var[®(O)] < Var[0O)].
o o

Proof.
By Kadison’s inequality, ®(9)? < ®(9?). Hence, by
monotonicity of E,,

E[®(0)?] < E[®(0?)] = E[0?].
4 p p

29 is positive if ®(4) > 0 for all A > 0; ® is unital if ®(1) = 1.



Preliminaries

Measures of distance between quantum states

The trace distance between p and o is
1 1
du(p.0) = Sllp —olly = 5 tr(jp — o).
The Hilbert-Schmidt distance between p and o is

dus(p,0) = llp—ol2 = \/t((p —0)?).

The squared Hilbert—-Schmidt distance between p and ¢ is

dis(p.0) = llp—ol5 = (o — 0)?)
= tr(p?) + tr(0?) — 2tr(po).
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Preliminaries

Measures of distance between quantum states

If p and o are d-dimensional quantum states, then
1 Vd
Sdus(p.0) = du(p.0) = ——dus(p.0).

We will show that:

Theorem
Foranyo € C2*4 yn = O(1/¢) copies are sufficient to
decide w.h.p. whether p = o or dj¢(p,0) > €.
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Quantum state certification

Problem
Given measurement access to o := p®", decide w.h.p. whether
p=0 Ordés(p,a) > €.

Solution
Find an observable © such that:
1. Eo[0] = dl-ZIS(p70):.
2. the distribution defined by O and o is sufficiently
concentrated around its mean.

By Chebyshev’s inequality,

1 dz(p,
Var[6] = 0(_2 . M)
o n n

suffices.
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Quantum state certification

4

The following proof technique extends easily to arbitrary o.

Henceforth, assume o = %.

11/20
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Quantum estimators

Let 0:= p®" and let 1 : C¢*9 — R be a statistic.

A quantum estimator for f is an observable @ such that
Eo[0] = f(p).
O is efficient if Var,[OQ] is minimum.

Since dis(p. 7) = tr(p?) — %, it suffices to estimate the purity
f(p) :=1tr(p?).

Since f is unitarily invariant,i.e. f(p) = f(UpU") for all
U € Ud),

E(UN®"OU®"] = u(UpU")®"0)

= f(UpUY)
= f(p).

12/20
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Quantum estimators

Let ® denote the averaging map

®(O) = / whHeroueq4u.
u(d)

If @ is an estimator for f, then ®(©O) is an estimator for f.

Since @ is mean-preserving, positive, and unital,

Var[®(O)] < Var[0O)].
0 0

Proposition
The map @ is a projection into P (CS,).

Proof.
The statement follows from Schur—Weyl duality. |
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Quantum estimators

If X =aymy + -+ + agmp € CS,, then
P(X) =ar1P(m) + - + ag P ().

Corollary

To find an efficient estimator for f, it suffices to consider
estimators of the form P (X) for X € CS,,.

Lemma
Ifo=p®" and A = cyc() = (A1,...,Ax), then

E[P(m)] = p(@).

where « is the sorted spectrum of p.3

Note that E,[# (r)] depends only on A = cyc(r).

31f o = p1 ® p2 ® p3 ® pa ® ps, B[P ((123)(4 5))] = tr(p3p2p1) tr(pspa).
14/20
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Quantum estimators

Since cyc(m17m2) = cyc(mamy), it follows that

]gl[!P(X)] = E[?(n_an)] forallz € &,.

Hence, if £ (X) is an estimator for £, then £ (X) with

72% Z X

' mEeG,

is an estimator for f such that Var, [ (X)] < Var,[2(X)].

15/20
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Quantum estimators

Lemma
X commutes with all elements of C&,, i.e. XY = Y X for all
Y € C&,,. Moreover, X can expressed uniquely as

7=ZaMXM, where X, = avg ({m}.
LS

pkn cye(m)=p

Lemma
P (X) is the unique estimator for f that commutes with all
elements of P(CS,,).

Corollary
P(X) is efficient.

16/20
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Quantum state certification

Problem
Given measurement access to o := p®", decide w.h.p. whether

p=0 ordﬁs(p,a) > €.

Solution
Let pu:=(2) and Thus,

E[0] = pu(e) = af + -+ ag = tr(p?).

Since 0% = P(X,) - P(Xu) = P(X}) and

2(n —2) ("2

X 1d+—X(3)+ X(2 2),
& (2) (2) (2)

Var,[0] can be computed exactly.
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Quantum state certification

Problem
Given measurement access to o := p®", decide w.h.p. whether

p=0 ordﬁs(p,a) > €.

Solution

Let pu:=(2) and Thus,

E[0] = pu(@) = a + -+ + ag = t(p?).

We obtain

1 d2(p, =
24 fis (P d))’

Var[0] = 0( >
0 n n

as needed.

17/20
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Quantum state certification

For o € C?*4 arbitrary:
- Given access to p®", prepare ¢ := p®" ® o®".
- Let f(p,0) = dﬁs(p, o). Thus,

FUpUT, UcUT) = f(p.0) forall U € U(d).

- Consider observables O with E,[0] = f(p.0).

- Efficient estimators defined by orbits of action

Gy x 6~y Gap.

18/20
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Conclusion
- Method to construct efficient estimators for symmetric
polynomials of the spectrum.

- State certification algorithm is robust; i.e. decides w.h.p.
whether d(p,0) < 0.99¢ or di(p,0) > €.

- Algorithm works if both p and o are unknown.

- If either p or o is close to a state of rank k, n = O(k/€?)
copies are sufficient.

- Other result: for all states 0 € C¢*4 and ¢ > 0,

Theorem
n = O(d/€) copies of p are sufficient to decide w.h.p.
whether p = o orF(p,0) < 1 —e.
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Thank you!

arXiv:1708.06002
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