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Introduction

Let p D .p1; : : : ; pd / and q D .q1; : : : ; qd / be discrete
distributions on f1; : : : ; dg.

Problem
Suppose p is not known. How many i.i.d. samples
X1; : : : ; Xn � p are needed to decide w.h.p. whether p D q or
dTV.p; q/ � �?

Theorem (Paninski, 2008)
If q D . 1

d
; 1
d
; : : : ; 1

d
/, then n D O.

p
d=�2/ samples are sufficient.

Theorem (Valiant–Valiant, 2014)
For any q D .q1; : : : ; qd /, n D O.

p
d=�2/ samples are sufficient.
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Introduction

Let � 2 Cd �d and � 2 Cd �d be mixed quantum states.

Problem
Suppose � is not known. How many copies �˝n of � are needed
to decide w.h.p. whether � D � or dtr.�; �/ � �?

Theorem (O’Donnell–Wright, 2015)
If � D 1

d
, then n D O.d=�2/ copies are sufficient.

Theorem
For any � 2 Cd �d , n D O.d=�2/ copies are sufficient.
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Preliminaries
Representation theory

Sn is the symmetric group of permutations on n letters.

cyc.�/ denotes the cycle type of a permutation � 2 Sn.

cyc.�/ D cyc.��1/ and cyc.��/ D cyc.��/ for all �; � 2 Sn.

A partition � D .�1; : : : ; �k/ of n is a nonincreasing sequence of
nonnegative integers such that �1 C � � � C �k D n.1

The power sum symmetric polynomial p� is defined by

p�.x1; : : : ; xd / D .x
�1

1 C � � � C x
�1

d
/ � � � .x

�k

1 C � � � C x
�k

d
/:

If � D .7; 4; 1/, then

p�.x1; x2/ D .x
7
1 C x

7
2/ � .x

4
1 C x

4
2/ � .x1 C x2/:

11s omitted from notation; e.g. .3; 2/ denotes .3; 2; 1n�5/.
3 / 20
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Preliminaries
Representation theory

CSn is the symmetric group algebra of linear combinations

a1�1 C � � � C ak�k;

where a1; : : : ; ak 2 C and �1; : : : ; �k 2 Sn.

Let P map permutations � 2 Sn to operators P .�/ on .Cd /˝n:

P .�/ D x1 ˝ � � � ˝ xn 7�! x��1.1/ ˝ � � � ˝ x��1.n/:

P is a representation of Sn:

P .��/ D P .�/P .�/; P .id/ D 1; P .��1/ D P .�/�:
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Preliminaries
Quantum physics

Let H be finite-dimensional vector space over C.

A quantum state � is a pos. operator on H with tr.�/ D 1.

An observable O is a self-adjoint operator on H .

By the spectral theorem,

O D ˛1…1 C � � � C ˛d…d :

M D f…1; : : : ;…d g defines a measurement.

O has a natural operational interpretation:

Apply M to � and output ˛i if the outcome of the
measurement is i 2 Œd �.
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Preliminaries
Quantum probability

The expectation of O w.r.t. � is

E
�
ŒO� WD tr.�O/:

The variance of O w.r.t. � is

Var
�
ŒO� WD E

�
ŒO2� � E

�
ŒO�2:

Lemma
E�Œ�� is monotone w.r.t. the order on self-adjoint operators, viz.

A � B H) E
�
ŒA� � E

�
ŒB�:
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Preliminaries
Quantum probability

Let ˆ be a linear map that maps observables to observables
such that E�Œˆ.O/� D E�ŒO�.

Lemma
If ˆ is positive and unital2, then

Var
�
Œˆ.O/� � Var

�
ŒO�:

Proof.
By Kadison’s inequality, ˆ.O/2 � ˆ.O2/. Hence, by
monotonicity of E�,

E
�
Œˆ.O/2� � E

�
Œˆ.O2/� D E

�
ŒO2�:

2ˆ is positive if ˆ.A/ � 0 for all A � 0; ˆ is unital if ˆ.1/ D 1.
7 / 20
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Preliminaries
Measures of distance between quantum states

The trace distance between � and � is

dtr.�; �/ D
1

2
k� � �k1 D

1

2
tr.j� � � j/:

The Hilbert–Schmidt distance between � and � is

dHS.�; �/ D k� � �k2 D

q
tr..� � �/2/:

The squared Hilbert–Schmidt distance between � and � is

d2HS.�; �/ D k� � �k
2
2 D tr..� � �/2/

D tr.�2/C tr.�2/ � 2 tr.��/:

8 / 20



Preliminaries
Measures of distance between quantum states

If � and � are d -dimensional quantum states, then

1

2
dHS.�; �/ � dtr.�; �/ �

p
d

2
dHS.�; �/:

We will show that:

Theorem
For any � 2 Cd �d , n D O.1=�/ copies are sufficient to
decide w.h.p. whether � D � or d2HS.�; �/ � �.

9 / 20



Preliminaries
Measures of distance between quantum states

If � and � are d -dimensional quantum states, then

1

2
dHS.�; �/ � dtr.�; �/ �

p
d

2
dHS.�; �/:

We will show that:

Theorem
For any � 2 Cd �d , n D O.1=�/ copies are sufficient to
decide w.h.p. whether � D � or d2HS.�; �/ � �.

9 / 20



Quantum state certification

Problem
Given measurement access to % :D �˝n, decide w.h.p. whether
� D � or d2HS.�; �/ � �.

Solution
Find an observable O such that:

1. E%ŒO� D d2HS.�; �/;
2. the distribution defined by O and % is sufficiently

concentrated around its mean.

By Chebyshev’s inequality,

Var
%
ŒO� D O

 
1

n2
C
d2HS.�; �/

n

!
suffices.
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Quantum state certification

�

Henceforth, assume � D 1

d
.

The following proof technique extends easily to arbitrary � .

11 / 20



Quantum estimators

Let % :D �˝n and let f W Cd �d ! R be a statistic.

A quantum estimator for f is an observable O such that
E%ŒO� D f .�/.

O is efficient if Var%ŒO� is minimum.

Since d2HS.�;
1

d
/ D tr.�2/ � 1

d
, it suffices to estimate the purity

f .�/ :D tr.�2/.

Since f is unitarily invariant, i.e. f .�/ D f .U�U �/ for all
U 2 U.d/,

E
%
Œ.U �/˝nOU˝n� D tr..U�U �/˝nO/

D f .U�U �/

D f .�/:

12 / 20
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Quantum estimators
Let ˆ denote the averaging map

ˆ.O/ D

Z
U.d/

.U �/˝nOU˝ndU:

If O is an estimator for f , then ˆ.O/ is an estimator for f .

Since ˆ is mean-preserving, positive, and unital,

Var
%
Œˆ.O/� � Var

%
ŒO�:

Proposition
The map ˆ is a projection into P .CSn/.

Proof.
The statement follows from Schur–Weyl duality.

13 / 20
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Quantum estimators
If X D a1�1 C � � � C ak�k 2 CSn, then

P .X/ D a1P .�1/C � � � C akP .�k/:

Corollary
To find an efficient estimator for f , it suffices to consider
estimators of the form P .X/ for X 2 CSn.

Lemma
If % D �˝n and � D cyc.�/ D .�1; : : : ; �k/, then

E
%
ŒP .�/� D p�.˛/;

where ˛ is the sorted spectrum of �.3

Note that E%ŒP .�/� depends only on � D cyc.�/.

3If % D �1 ˝ �2 ˝ �3 ˝ �4 ˝ �5, E%ŒP ..1 2 3/.4 5//� D tr.�3�2�1/ tr.�5�4/.
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Quantum estimators

Since cyc.�1�2/ D cyc.�2�1/, it follows that

E
%
ŒP .X/� D E

%
ŒP .��1X�/� for all � 2 Sn:

Hence, if P .X/ is an estimator for f , then P .X/ with

X D
1

nŠ

X
�2Sn

��1X�

is an estimator for f such that Var%ŒP .X/� � Var%ŒP .X/�.
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Quantum estimators

Lemma
X commutes with all elements of CSn, i.e. XY D Y X for all
Y 2 CSn. Moreover, X can expressed uniquely as

X D
X
�`n

a�X�; where X� D avg
�2Sn

cyc.�/D�

f�g:

Lemma
P .X/ is the unique estimator for f that commutes with all
elements of P .CSn/.

Corollary
P .X/ is efficient.
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Quantum state certification

Problem
Given measurement access to % :D �˝n, decide w.h.p. whether
� D � or d2HS.�; �/ � �.

Solution
Let � :D.2/ and O :DP .X�/. Thus,

E
%
ŒO� D p�.˛/ D ˛

2
1 C � � � C ˛

2
d D tr.�2/:
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Since O2 D P .X�/ �P .X�/ D P .X2�/ and

X2.2/ D
1�
n
2

� idC
2.n � 2/�

n
2

� X.3/ C

�
n�2
2

��
n
2

� X.2;2/;
Var%ŒO� can be computed exactly.
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We obtain

Var
%
ŒO� D O
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n2
C
d2HS.�;
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d
/

n

!
;

as needed.
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Quantum state certification

For � 2 Cd �d arbitrary:

� Given access to �˝n, prepare % :D �˝n ˝ �˝n.

� Let f .�; �/ D d2HS.�; �/. Thus,

f .U�U �; U�U �/ D f .�; �/ for all U 2 U.d/:

� Consider observables O with E%ŒO� D f .�; �/.

� Efficient estimators defined by orbits of action

Sn �SnÕS2n:
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Conclusion

� Method to construct efficient estimators for symmetric
polynomials of the spectrum.

� State certification algorithm is robust; i.e. decides w.h.p.
whether dtr.�; �/ � 0:99� or dtr.�; �/ � �.

� Algorithm works if both � and � are unknown.

� If either � or � is close to a state of rank k, n D O.k=�2/
copies are sufficient.

� Other result: for all states � 2 Cd �d and � > 0,

Theorem
n D O.d=�/ copies of � are sufficient to decide w.h.p.
whether � D � or F.�; �/ < 1 � �.
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Thank you!
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