Costin Bădescu ¹ Ryan O'Donnell ¹ John Wright ²

¹Carnegie Mellon University

²Massachusetts Institute of Technology

January 19, 2018

Let $p = (p_1, ..., p_d)$ and $q = (q_1, ..., q_d)$ be discrete distributions on $\{1, ..., d\}$.

Let $p = (p_1, ..., p_d)$ and $q = (q_1, ..., q_d)$ be discrete distributions on $\{1, ..., d\}$.

Problem

Suppose p is not known. How many i.i.d. samples $X_1,\ldots,X_n\sim p$ are needed to decide w.h.p. whether p=q or $d_{\mathrm{TV}}(p,q)\geq \epsilon$?

Let $p = (p_1, ..., p_d)$ and $q = (q_1, ..., q_d)$ be discrete distributions on $\{1, ..., d\}$.

Problem

Suppose p is not known. How many i.i.d. samples $X_1,\ldots,X_n\sim p$ are needed to decide w.h.p. whether p=q or $d_{\mathrm{TV}}(p,q)\geq \epsilon$?

Theorem (Paninski, 2008)

If $q = (\frac{1}{d}, \frac{1}{d}, \dots, \frac{1}{d})$, then $n = O(\sqrt{d}/\epsilon^2)$ samples are sufficient.

Let $p = (p_1, ..., p_d)$ and $q = (q_1, ..., q_d)$ be discrete distributions on $\{1, ..., d\}$.

Problem

Suppose p is not known. How many i.i.d. samples $X_1,\ldots,X_n\sim p$ are needed to decide w.h.p. whether p=q or $d_{\mathrm{TV}}(p,q)\geq \epsilon$?

Theorem (Paninski, 2008)

If $q = (\frac{1}{d}, \frac{1}{d}, \dots, \frac{1}{d})$, then $n = O(\sqrt{d}/\epsilon^2)$ samples are sufficient.

Theorem (Valiant–Valiant, 2014)

For any $q = (q_1, ..., q_d)$, $n = O(\sqrt{d}/\epsilon^2)$ samples are sufficient.

Let $\rho \in \mathbb{C}^{d \times d}$ and $\sigma \in \mathbb{C}^{d \times d}$ be mixed quantum states.

Let $\rho \in \mathbb{C}^{d \times d}$ and $\sigma \in \mathbb{C}^{d \times d}$ be mixed quantum states.

Problem

Suppose ρ is not known. How many copies $\rho^{\otimes n}$ of ρ are needed to decide w.h.p. whether $\rho = \sigma$ or $d_{\rm tr}(\rho, \sigma) \geq \epsilon$?

Let $\rho \in \mathbb{C}^{d \times d}$ and $\sigma \in \mathbb{C}^{d \times d}$ be mixed quantum states.

Problem

Suppose ρ is not known. How many copies $\rho^{\otimes n}$ of ρ are needed to decide w.h.p. whether $\rho = \sigma$ or $d_{\rm tr}(\rho, \sigma) \geq \epsilon$?

Theorem (O'Donnell-Wright, 2015)

If $\sigma = \frac{1}{d}$, then $n = O(d/\epsilon^2)$ copies are sufficient.

Let $\rho \in \mathbb{C}^{d \times d}$ and $\sigma \in \mathbb{C}^{d \times d}$ be mixed quantum states.

Problem

Suppose ρ is not known. How many copies $\rho^{\otimes n}$ of ρ are needed to decide w.h.p. whether $\rho = \sigma$ or $d_{tr}(\rho, \sigma) \geq \epsilon$?

Theorem (O'Donnell-Wright, 2015)

If $\sigma = \frac{1}{d}$, then $n = O(d/\epsilon^2)$ copies are sufficient.

Theorem

For any $\sigma \in \mathbb{C}^{d \times d}$, $n = O(d/\epsilon^2)$ copies are sufficient.

Representation theory

 \mathfrak{S}_n is the **symmetric group** of permutations on n letters.

¹1s omitted from notation; e.g. (3, 2) denotes $(3, 2, 1^{n-5})$.

Representation theory

 \mathfrak{S}_n is the *symmetric group* of permutations on n letters.

 $\operatorname{cyc}(\pi)$ denotes the *cycle type* of a permutation $\pi \in \mathfrak{S}_n$.

$$\operatorname{cyc}(\pi) = \operatorname{cyc}(\pi^{-1})$$
 and $\operatorname{cyc}(\pi\tau) = \operatorname{cyc}(\tau\pi)$ for all $\pi, \tau \in \mathfrak{S}_n$.

¹ 1s omitted from notation; e.g. (3, 2) denotes $(3, 2, 1^{n-5})$.

Representation theory

 \mathfrak{S}_n is the *symmetric group* of permutations on n letters.

 $\operatorname{cyc}(\pi)$ denotes the *cycle type* of a permutation $\pi \in \mathfrak{S}_n$.

$$\operatorname{cyc}(\pi) = \operatorname{cyc}(\pi^{-1})$$
 and $\operatorname{cyc}(\pi\tau) = \operatorname{cyc}(\tau\pi)$ for all $\pi, \tau \in \mathfrak{S}_n$.

A *partition* $\lambda = (\lambda_1, \dots, \lambda_k)$ of n is a nonincreasing sequence of nonnegative integers such that $\lambda_1 + \dots + \lambda_k = n$.¹

¹ Is omitted from notation; e.g. (3, 2) denotes $(3, 2, 1^{n-5})$.

Representation theory

 \mathfrak{S}_n is the *symmetric group* of permutations on n letters.

 $\operatorname{cyc}(\pi)$ denotes the *cycle type* of a permutation $\pi \in \mathfrak{S}_n$.

$$\operatorname{cyc}(\pi) = \operatorname{cyc}(\pi^{-1})$$
 and $\operatorname{cyc}(\pi\tau) = \operatorname{cyc}(\tau\pi)$ for all $\pi, \tau \in \mathfrak{S}_n$.

A *partition* $\lambda = (\lambda_1, \dots, \lambda_k)$ of n is a nonincreasing sequence of nonnegative integers such that $\lambda_1 + \dots + \lambda_k = n$.¹

The **power sum** symmetric polynomial p_{λ} is defined by

$$p_{\lambda}(x_1,\ldots,x_d)=(x_1^{\lambda_1}+\cdots+x_d^{\lambda_1})\cdots(x_1^{\lambda_k}+\cdots+x_d^{\lambda_k}).$$

¹ 1s omitted from notation; e.g. (3, 2) denotes $(3, 2, 1^{n-5})$.

Representation theory

 \mathfrak{S}_n is the **symmetric group** of permutations on n letters.

 $cyc(\pi)$ denotes the *cycle type* of a permutation $\pi \in \mathfrak{S}_n$.

$$\operatorname{cyc}(\pi) = \operatorname{cyc}(\pi^{-1})$$
 and $\operatorname{cyc}(\pi\tau) = \operatorname{cyc}(\tau\pi)$ for all $\pi, \tau \in \mathfrak{S}_n$.

A *partition* $\lambda = (\lambda_1, \dots, \lambda_k)$ of n is a nonincreasing sequence of nonnegative integers such that $\lambda_1 + \dots + \lambda_k = n$.¹

The **power sum** symmetric polynomial p_{λ} is defined by

$$p_{\lambda}(x_1,\ldots,x_d)=(x_1^{\lambda_1}+\cdots+x_d^{\lambda_1})\cdots(x_1^{\lambda_k}+\cdots+x_d^{\lambda_k}).$$

If $\lambda = (7, 4, 1)$, then

$$p_{\lambda}(x_1, x_2) = (x_1^7 + x_2^7) \cdot (x_1^4 + x_2^4) \cdot (x_1 + x_2).$$

¹1s omitted from notation; e.g. (3, 2) denotes $(3, 2, 1^{n-5})$.

Representation theory

 $\mathbb{C}\mathfrak{S}_n$ is the **symmetric group algebra** of linear combinations

$$a_1\pi_1 + \cdots + a_k\pi_k$$
,

where $a_1, \ldots, a_k \in \mathbb{C}$ and $\pi_1, \ldots, \pi_k \in \mathfrak{S}_n$.

Representation theory

 $\mathbb{C}\mathfrak{S}_n$ is the *symmetric group algebra* of linear combinations

$$a_1\pi_1 + \cdots + a_k\pi_k$$
,

where $a_1, \ldots, a_k \in \mathbb{C}$ and $\pi_1, \ldots, \pi_k \in \mathfrak{S}_n$.

Let \mathcal{P} map permutations $\pi \in \mathfrak{S}_n$ to operators $\mathcal{P}(\pi)$ on $(\mathbb{C}^d)^{\otimes n}$:

$$\mathcal{P}(\pi) = x_1 \otimes \cdots \otimes x_n \longmapsto x_{\pi^{-1}(1)} \otimes \cdots \otimes x_{\pi^{-1}(n)}.$$

Representation theory

 \mathbb{CS}_n is the **symmetric group algebra** of linear combinations

$$a_1\pi_1 + \cdots + a_k\pi_k$$

where $a_1, \ldots, a_k \in \mathbb{C}$ and $\pi_1, \ldots, \pi_k \in \mathfrak{S}_n$.

Let \mathcal{P} map permutations $\pi \in \mathfrak{S}_n$ to operators $\mathcal{P}(\pi)$ on $(\mathbb{C}^d)^{\otimes n}$:

$$\mathcal{P}(\pi) = x_1 \otimes \cdots \otimes x_n \longmapsto x_{\pi^{-1}(1)} \otimes \cdots \otimes x_{\pi^{-1}(n)}.$$

 \mathcal{P} is a *representation* of \mathfrak{S}_n :

$$\mathcal{P}(\pi\tau) = \mathcal{P}(\pi)\mathcal{P}(\tau), \quad \mathcal{P}(\mathrm{id}) = \mathbb{1}, \quad \mathcal{P}(\pi^{-1}) = \mathcal{P}(\pi)^{\dagger}.$$

Quantum physics

Let $\mathcal H$ be finite-dimensional vector space over $\mathbb C$.

A *quantum state* ρ is a pos. operator on $\mathcal H$ with $\mathrm{tr}(\rho)=1.$

Quantum physics

Let $\mathcal H$ be finite-dimensional vector space over $\mathbb C$.

A *quantum state* ρ is a pos. operator on \mathcal{H} with $tr(\rho) = 1$.

An *observable* \mathcal{O} is a self-adjoint operator on \mathcal{H} .

Quantum physics

Let \mathcal{H} be finite-dimensional vector space over \mathbb{C} .

A *quantum state* ρ is a pos. operator on \mathcal{H} with $tr(\rho) = 1$.

An *observable* Θ is a self-adjoint operator on \mathcal{H} .

By the spectral theorem,

$$\mathcal{O} = \alpha_1 \Pi_1 + \dots + \alpha_d \Pi_d.$$

 $\mathcal{M} = \{\Pi_1, \dots, \Pi_d\}$ defines a measurement.

Quantum physics

Let \mathcal{H} be finite-dimensional vector space over \mathbb{C} .

A *quantum state* ρ is a pos. operator on \mathcal{H} with $tr(\rho) = 1$.

An *observable* Θ is a self-adjoint operator on \mathcal{H} .

By the spectral theorem,

$$\mathcal{O} = \alpha_1 \Pi_1 + \dots + \alpha_d \Pi_d.$$

 $\mathcal{M} = \{\Pi_1, \dots, \Pi_d\}$ defines a measurement.

 \mathcal{O} has a natural operational interpretation:

Apply \mathcal{M} to ρ and output α_i if the outcome of the measurement is $i \in [d]$.

Quantum probability

The *expectation* of $\mathcal O$ w.r.t. ρ is

$$\mathbf{E}[\mathcal{O}] := \operatorname{tr}(\rho \mathcal{O}).$$

Quantum probability

The **expectation** of \mathcal{O} w.r.t. ρ is

$$\mathbf{E}[\mathcal{O}] := \operatorname{tr}(\rho \mathcal{O}).$$

The **variance** of \mathcal{O} w.r.t. ρ is

$$\operatorname{Var}_{\rho}[\mathcal{O}] := \operatorname{\mathbf{E}}_{\rho}[\mathcal{O}^2] - \operatorname{\mathbf{E}}_{\rho}[\mathcal{O}]^2.$$

Quantum probability

The **expectation** of \mathcal{O} w.r.t. ρ is

$$\mathbf{E}_{\rho}[\mathcal{O}] := \operatorname{tr}(\rho\mathcal{O}).$$

The **variance** of \mathcal{O} w.r.t. ρ is

$$\operatorname{Var}_{\rho}[\mathcal{O}] := \operatorname{\mathbf{E}}_{\rho}[\mathcal{O}^2] - \operatorname{\mathbf{E}}_{\rho}[\mathcal{O}]^2.$$

Lemma

 $\mathbf{E}_{\rho}[\cdot]$ is monotone w.r.t. the order on self-adjoint operators, viz.

$$A \leq B \implies \underset{\rho}{\mathbf{E}}[A] \leq \underset{\rho}{\mathbf{E}}[B].$$

Quantum probability

Let Φ be a linear map that maps observables to observables such that $\mathbf{E}_{\rho}[\Phi(\theta)] = \mathbf{E}_{\rho}[\theta]$.

 $^{^2\}Phi$ is **positive** if $\Phi(A) \geq 0$ for all $A \geq 0$; Φ is **unital** if $\Phi(1) = 1$.

Quantum probability

Let Φ be a linear map that maps observables to observables such that $\mathbf{E}_{\rho}[\Phi(\theta)] = \mathbf{E}_{\rho}[\theta]$.

Lemma

If Φ is positive and unital², then

$$\mathop{\rm Var}_{\rho}[\Phi(\mathcal{O})] \leq \mathop{\rm Var}_{\rho}[\mathcal{O}].$$

 $^{^2\}Phi$ is *positive* if $\Phi(A) \ge 0$ for all $A \ge 0$; Φ is *unital* if $\Phi(1) = 1$.

Quantum probability

Let Φ be a linear map that maps observables to observables such that $\mathbf{E}_{\rho}[\Phi(\theta)] = \mathbf{E}_{\rho}[\theta]$.

Lemma

If Φ is positive and unital², then

$$\operatorname{Var}_{\rho}[\Phi(\mathcal{O})] \leq \operatorname{Var}_{\rho}[\mathcal{O}].$$

Proof.

By Kadison's inequality, $\Phi(\mathcal{O})^2 \leq \Phi(\mathcal{O}^2)$. Hence, by monotonicity of \mathbf{E}_{ρ} ,

$$\mathbf{E}_{\rho}[\Phi(\mathcal{O})^2] \leq \mathbf{E}_{\rho}[\Phi(\mathcal{O}^2)] = \mathbf{E}_{\rho}[\mathcal{O}^2].$$

 $^{^2\}Phi$ is **positive** if $\Phi(A) \geq 0$ for all $A \geq 0$; Φ is **unital** if $\Phi(1) = 1$.

Measures of distance between quantum states

The *trace distance* between ρ and σ is

$$d_{\mathrm{tr}}(\rho,\sigma) = \frac{1}{2} \|\rho - \sigma\|_1 = \frac{1}{2} \operatorname{tr}(|\rho - \sigma|).$$

The *Hilbert–Schmidt distance* between ρ and σ is

$$d_{\mathrm{HS}}(\rho, \sigma) = \|\rho - \sigma\|_2 = \sqrt{\mathrm{tr}((\rho - \sigma)^2)}.$$

The **squared Hilbert–Schmidt distance** between ρ and σ is

$$\begin{aligned} d_{\mathrm{HS}}^2(\rho,\sigma) &= \|\rho - \sigma\|_2^2 = \mathrm{tr}((\rho - \sigma)^2) \\ &= \mathrm{tr}(\rho^2) + \mathrm{tr}(\sigma^2) - 2\,\mathrm{tr}(\rho\sigma). \end{aligned}$$

Measures of distance between quantum states

If ρ and σ are d-dimensional quantum states, then

$$\frac{1}{2}d_{\mathrm{HS}}(\rho,\sigma) \leq d_{\mathrm{tr}}(\rho,\sigma) \leq \frac{\sqrt{d}}{2}d_{\mathrm{HS}}(\rho,\sigma).$$

Measures of distance between quantum states

If ρ and σ are d-dimensional quantum states, then

$$\frac{1}{2}d_{\mathrm{HS}}(\rho,\sigma) \leq d_{\mathrm{tr}}(\rho,\sigma) \leq \frac{\sqrt{d}}{2}d_{\mathrm{HS}}(\rho,\sigma).$$

We will show that:

Theorem

For any $\sigma \in \mathbb{C}^{d \times d}$, $n = O(1/\epsilon)$ copies are sufficient to decide w.h.p. whether $\rho = \sigma$ or $d_{\mathrm{HS}}^2(\rho, \sigma) \geq \epsilon$.

Problem

Given measurement access to $\varrho:=\rho^{\otimes n}$, decide w.h.p. whether $\rho=\sigma$ or $d_{\mathrm{HS}}^2(\rho,\sigma)\geq\epsilon$.

Problem

Given measurement access to $\varrho:=\rho^{\otimes n}$, decide w.h.p. whether $\rho=\sigma$ or $d_{\mathrm{HS}}^2(\rho,\sigma)\geq\epsilon$.

Solution

Find an observable O such that:

- 1. $\mathbf{E}_{\varrho}[\mathcal{O}] = d_{\mathrm{HS}}^2(\rho, \sigma);$
- 2. the distribution defined by \mathcal{O} and ϱ is sufficiently concentrated around its mean.

Problem

Given measurement access to $\varrho:=\rho^{\otimes n}$, decide w.h.p. whether $\rho=\sigma$ or $d_{\mathrm{HS}}^2(\rho,\sigma)\geq\epsilon$.

Solution

Find an observable O such that:

- 1. $\mathbf{E}_{\varrho}[\theta] = d_{\mathrm{HS}}^2(\rho, \sigma);$
- 2. the distribution defined by \mathfrak{O} and ϱ is sufficiently concentrated around its mean.

By Chebyshev's inequality,

$$\operatorname{Var}_{\varrho}[\mathcal{O}] = O\left(\frac{1}{n^2} + \frac{d_{\operatorname{HS}}^2(\rho, \sigma)}{n}\right)$$

suffices.

Henceforth, assume $\sigma = \frac{1}{d}$.

The following proof technique extends easily to arbitrary σ .

Quantum estimators

Let $\varrho := \rho^{\otimes n}$ and let $f : \mathbb{C}^{d \times d} \to \mathbb{R}$ be a statistic.

Quantum estimators

Let $\varrho := \rho^{\otimes n}$ and let $f : \mathbb{C}^{d \times d} \to \mathbb{R}$ be a statistic.

A *quantum estimator* for f is an observable θ such that $\mathbf{E}_{\varrho}[\theta] = f(\rho)$.

Let $\varrho := \rho^{\otimes n}$ and let $f : \mathbb{C}^{d \times d} \to \mathbb{R}$ be a statistic.

A *quantum estimator* for f is an observable $\mathcal O$ such that $\mathbf E_{\varrho}[\mathcal O]=f(\rho).$

 ${\mathcal O}$ is **efficient** if ${
m Var}_{\varrho}[{\mathcal O}]$ is minimum.

Let $\varrho := \rho^{\otimes n}$ and let $f : \mathbb{C}^{d \times d} \to \mathbb{R}$ be a statistic.

A *quantum estimator* for f is an observable $\mathcal O$ such that $\mathbf E_{\varrho}[\mathcal O]=f(\rho).$

 \mathcal{O} is *efficient* if $\operatorname{Var}_{\varrho}[\mathcal{O}]$ is minimum.

Since $d_{HS}^2(\rho, \frac{1}{d}) = \operatorname{tr}(\rho^2) - \frac{1}{d}$, it suffices to estimate the **purity** $f(\rho) := \operatorname{tr}(\rho^2)$.

Let $\varrho := \rho^{\otimes n}$ and let $f : \mathbb{C}^{d \times d} \to \mathbb{R}$ be a statistic.

A *quantum estimator* for f is an observable $\mathcal O$ such that $\mathbf E_{\varrho}[\mathcal O]=f(\rho).$

 \mathcal{O} is *efficient* if $\operatorname{Var}_{\varrho}[\mathcal{O}]$ is minimum.

Since $d_{\mathrm{HS}}^2(\rho,\frac{1}{d})=\mathrm{tr}(\rho^2)-\frac{1}{d}$, it suffices to estimate the **purity** $f(\rho):=\mathrm{tr}(\rho^2)$.

Since f is *unitarily invariant*, i.e. $f(\rho) = f(U\rho U^{\dagger})$ for all $U \in \mathrm{U}(d)$,

$$\mathbf{E}_{\varrho}[(U^{\dagger})^{\otimes n}\mathcal{O}U^{\otimes n}] = \operatorname{tr}((U\rho U^{\dagger})^{\otimes n}\mathcal{O})$$
$$= f(U\rho U^{\dagger})$$
$$= f(\rho).$$

Let Φ denote the averaging map

$$\Phi(\mathcal{O}) = \int_{\mathrm{U}(d)} (U^{\dagger})^{\otimes n} \mathcal{O} U^{\otimes n} dU.$$

If Θ is an estimator for f, then $\Phi(\Theta)$ is an estimator for f.

Let Φ denote the averaging map

$$\Phi(\mathcal{O}) = \int_{\mathrm{U}(d)} (U^{\dagger})^{\otimes n} \mathcal{O} U^{\otimes n} dU.$$

If Θ is an estimator for f, then $\Phi(\Theta)$ is an estimator for f.

Since Φ is mean-preserving, positive, and unital,

$$\operatorname{Var}_{\varrho}[\Phi(\mathcal{O})] \leq \operatorname{Var}_{\varrho}[\mathcal{O}].$$

Let Φ denote the averaging map

$$\Phi(\mathcal{O}) = \int_{\mathrm{U}(d)} (U^{\dagger})^{\otimes n} \mathcal{O} U^{\otimes n} dU.$$

If Θ is an estimator for f, then $\Phi(\Theta)$ is an estimator for f.

Since Φ is mean-preserving, positive, and unital,

$$\operatorname{Var}_{\varrho}[\Phi(\mathcal{O})] \leq \operatorname{Var}_{\varrho}[\mathcal{O}].$$

Proposition

The map Φ is a projection into $\mathcal{P}(\mathbb{C}\mathfrak{S}_n)$.

Proof.

The statement follows from Schur–Weyl duality.

If
$$X = a_1\pi_1 + \cdots + a_k\pi_k \in \mathbb{CS}_n$$
, then

$$\mathcal{P}(X) = a_1 \mathcal{P}(\pi_1) + \dots + a_k \mathcal{P}(\pi_k).$$

³If $\varrho = \rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \rho_4 \otimes \rho_5$, $\mathbf{E}_{\varrho}[\mathcal{P}((1\ 2\ 3)(4\ 5))] = \operatorname{tr}(\rho_3 \rho_2 \rho_1) \operatorname{tr}(\rho_5 \rho_4)$.

If
$$X=a_1\pi_1+\cdots+a_k\pi_k\in\mathbb{CS}_n$$
, then
$$\mathcal{P}(X)=a_1\mathcal{P}(\pi_1)+\cdots+a_k\mathcal{P}(\pi_k).$$

Corollary

To find an efficient estimator for f, it suffices to consider estimators of the form $\mathcal{P}(X)$ for $X \in \mathbb{CS}_n$.

³If $\varrho = \rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \rho_4 \otimes \rho_5$, $\mathbf{E}_{\varrho}[\mathcal{P}((1\ 2\ 3)(4\ 5))] = \operatorname{tr}(\rho_3 \rho_2 \rho_1) \operatorname{tr}(\rho_5 \rho_4)$.

If
$$X = a_1\pi_1 + \cdots + a_k\pi_k \in \mathbb{C}\mathfrak{S}_n$$
, then

$$\mathcal{P}(X) = a_1 \mathcal{P}(\pi_1) + \dots + a_k \mathcal{P}(\pi_k).$$

Corollary

To find an efficient estimator for f, it suffices to consider estimators of the form $\mathcal{P}(X)$ for $X \in \mathbb{CS}_n$.

Lemma

If
$$\varrho=
ho^{\otimes n}$$
 and $\lambda=\operatorname{cyc}(\pi)=(\lambda_1,\ldots,\lambda_k)$, then
$$\mathop{\mathbf{E}}_{\varrho}[\mathcal{P}(\pi)]=p_{\lambda}(\alpha),$$

where α is the sorted spectrum of ρ .³

³If
$$\varrho = \rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \rho_4 \otimes \rho_5$$
, $\mathbf{E}_{\varrho}[\mathcal{P}((1\ 2\ 3)(4\ 5))] = \operatorname{tr}(\rho_3 \rho_2 \rho_1) \operatorname{tr}(\rho_5 \rho_4)$.

If
$$X = a_1\pi_1 + \cdots + a_k\pi_k \in \mathbb{C}\mathfrak{S}_n$$
, then

$$\mathcal{P}(X) = a_1 \mathcal{P}(\pi_1) + \dots + a_k \mathcal{P}(\pi_k).$$

Corollary

To find an efficient estimator for f, it suffices to consider estimators of the form $\mathcal{P}(X)$ for $X \in \mathbb{CS}_n$.

Lemma

If
$$\varrho = \rho^{\otimes n}$$
 and $\lambda = \operatorname{cyc}(\pi) = (\lambda_1, \dots, \lambda_k)$, then

$$\mathop{\mathbf{E}}_{o}[\mathcal{P}(\pi)] = p_{\lambda}(\alpha),$$

where α is the sorted spectrum of ρ .³

Note that $\mathbf{E}_{\varrho}[\mathcal{P}(\pi)]$ depends only on $\lambda = \operatorname{cyc}(\pi)$.

³If
$$\varrho = \rho_1 \otimes \rho_2 \otimes \rho_3 \otimes \rho_4 \otimes \rho_5$$
, $\mathbf{E}_{\varrho}[\mathcal{P}((1\ 2\ 3)(4\ 5))] = \operatorname{tr}(\rho_3 \rho_2 \rho_1) \operatorname{tr}(\rho_5 \rho_4)$.

Since
$$\operatorname{cyc}(\pi_1\pi_2)=\operatorname{cyc}(\pi_2\pi_1)$$
, it follows that
$$\mathop{\mathbf{E}}_{\varrho}[\mathcal{P}(X)]=\mathop{\mathbf{E}}_{\varrho}[\mathcal{P}(\pi^{-1}X\pi)] \text{ for all } \pi\in\mathfrak{S}_n.$$

Since $\operatorname{cyc}(\pi_1\pi_2)=\operatorname{cyc}(\pi_2\pi_1)$, it follows that $\mathop{\mathbf{E}}_{\varrho}[\mathcal{P}(X)]=\mathop{\mathbf{E}}_{\varrho}[\mathcal{P}(\pi^{-1}X\pi)] \text{ for all } \pi\in\mathfrak{S}_n.$

Hence, if $\mathcal{P}(X)$ is an estimator for f , then $\mathcal{P}(\overline{X})$ with

$$\overline{X} = \frac{1}{n!} \sum_{\pi \in \mathfrak{S}_n} \pi^{-1} X \pi$$

is an estimator for f such that $\mathbf{Var}_{\varrho}[\mathcal{P}(\overline{X})] \leq \mathbf{Var}_{\varrho}[\mathcal{P}(X)]$.

Lemma

 \overline{X} commutes with all elements of $\mathbb{C}\mathfrak{S}_n$, i.e. $\overline{X}Y=Y\overline{X}$ for all $Y\in\mathbb{C}\mathfrak{S}_n$. Moreover, \overline{X} can expressed uniquely as

$$\overline{X} = \sum_{\mu \vdash n} a_{\mu} X_{\mu}, \quad \text{where} \quad X_{\mu} = \underset{\substack{\pi \in \mathfrak{S}_n \\ \operatorname{cyc}(\pi) = \mu}}{\operatorname{avg}} \{\pi\}.$$

Lemma

 \overline{X} commutes with all elements of $\mathbb{C}\mathfrak{S}_n$, i.e. $\overline{X}Y=Y\overline{X}$ for all $Y\in\mathbb{C}\mathfrak{S}_n$. Moreover, \overline{X} can expressed uniquely as

$$\overline{X} = \sum_{\mu \vdash n} a_{\mu} X_{\mu}, \quad \text{where} \quad X_{\mu} = \underset{\substack{\pi \in \mathfrak{S}_n \\ \operatorname{cyc}(\pi) = \mu}}{\operatorname{avg}} \{\pi\}.$$

Lemma

 $\mathcal{P}(X)$ is the unique estimator for f that commutes with all elements of $\mathcal{P}(\mathbb{C}\mathfrak{S}_n)$.

Lemma

 \overline{X} commutes with all elements of $\mathbb{C}\mathfrak{S}_n$, i.e. $\overline{X}Y=Y\overline{X}$ for all $Y\in\mathbb{C}\mathfrak{S}_n$. Moreover, \overline{X} can expressed uniquely as

$$\overline{X} = \sum_{\mu \vdash n} a_{\mu} X_{\mu}, \quad \text{where} \quad X_{\mu} = \underset{\substack{\pi \in \mathfrak{S}_n \\ \operatorname{cyc}(\pi) = \mu}}{\operatorname{avg}} \{\pi\}.$$

Lemma

 $\mathcal{P}(\overline{X})$ is the unique estimator for f that commutes with all elements of $\mathcal{P}(\mathbb{C}\mathfrak{S}_n)$.

Corollary

 $\mathcal{P}(\overline{X})$ is efficient.

Problem

Given measurement access to $\varrho := \rho^{\otimes n}$, decide w.h.p. whether $\rho = \sigma$ or $d_{\mathrm{HS}}^2(\rho, \sigma) \geq \epsilon$.

Problem

Given measurement access to $\varrho := \rho^{\otimes n}$, decide w.h.p. whether $\rho = \sigma$ or $d_{\mathrm{HS}}^2(\rho, \sigma) \geq \epsilon$.

Solution

Let
$$\mu := (2)$$
 and $\boxed{\mathcal{O} := \mathcal{P}(X_{\mu})}$. Thus,

$$\mathbf{E}[\mathcal{O}] = p_{\mu}(\alpha) = \alpha_1^2 + \dots + \alpha_d^2 = \operatorname{tr}(\rho^2).$$

Problem

Given measurement access to $\varrho:=\rho^{\otimes n}$, decide w.h.p. whether $\rho=\sigma$ or $d_{\mathrm{HS}}^2(\rho,\sigma)\geq\epsilon$.

Solution

Let
$$\mu := (2)$$
 and $\boxed{\mathcal{O} := \mathcal{P}(X_{\mu})}$. Thus,

$$\mathbf{E}[\mathcal{O}] = p_{\mu}(\alpha) = \alpha_1^2 + \dots + \alpha_d^2 = \operatorname{tr}(\rho^2).$$

Since
$$\mathcal{O}^2 = \mathcal{P}(X_\mu) \cdot \mathcal{P}(X_\mu) = \mathcal{P}(X_\mu^2)$$
 and

$$X_{(2)}^2 = \frac{1}{\binom{n}{2}} \operatorname{id} + \frac{2(n-2)}{\binom{n}{2}} X_{(3)} + \frac{\binom{n-2}{2}}{\binom{n}{2}} X_{(2,2)},$$

 $\mathbf{Var}_{\varrho}[\mathcal{O}]$ can be computed exactly.

Problem

Given measurement access to $\varrho:=\rho^{\otimes n}$, decide w.h.p. whether $\rho=\sigma$ or $d_{\mathrm{HS}}^2(\rho,\sigma)\geq\epsilon$.

Solution

Let
$$\mu := (2)$$
 and $\boxed{\mathcal{O} := \mathcal{P}(X_{\mu})}$. Thus,

$$\mathbf{E}[\mathcal{O}] = p_{\mu}(\alpha) = \alpha_1^2 + \dots + \alpha_d^2 = \operatorname{tr}(\rho^2).$$

We obtain

$$\mathbf{Var}_{\varrho}[\mathcal{O}] = O\left(\frac{1}{n^2} + \frac{d_{\mathrm{HS}}^2(\rho, \frac{1}{d})}{n}\right),\,$$

as needed.

For $\sigma \in \mathbb{C}^{d \times d}$ arbitrary:

· Given access to $\rho^{\otimes n}$, prepare $\varrho := \rho^{\otimes n} \otimes \sigma^{\otimes n}$.

- · Given access to $\rho^{\otimes n}$, prepare $\varrho := \rho^{\otimes n} \otimes \sigma^{\otimes n}$.
- · Let $f(\rho, \sigma) = d_{HS}^2(\rho, \sigma)$. Thus,

$$f(U\rho U^{\dagger}, U\sigma U^{\dagger}) = f(\rho, \sigma) \text{ for all } U \in \mathrm{U}(d).$$

- · Given access to $\rho^{\otimes n}$, prepare $\varrho := \rho^{\otimes n} \otimes \sigma^{\otimes n}$.
- · Let $f(\rho,\sigma)=d_{\mathrm{HS}}^2(\rho,\sigma)$. Thus, $f(U\rho U^\dagger,U\sigma U^\dagger)=f(\rho,\sigma) \text{ for all } U\in \mathrm{U}(d).$
- · Consider observables \mathcal{O} with $\mathbf{E}_{\varrho}[\mathcal{O}] = f(\rho, \sigma)$.

- · Given access to $\rho^{\otimes n}$, prepare $\varrho := \rho^{\otimes n} \otimes \sigma^{\otimes n}$.
- · Let $f(\rho,\sigma)=d_{\mathrm{HS}}^2(\rho,\sigma).$ Thus,

$$f(U\rho U^{\dagger}, U\sigma U^{\dagger}) = f(\rho, \sigma) \text{ for all } U \in U(d).$$

- · Consider observables \mathcal{O} with $\mathbf{E}_{\varrho}[\mathcal{O}] = f(\rho, \sigma)$.
- · Efficient estimators defined by orbits of action

$$\mathfrak{S}_n \times \mathfrak{S}_n \curvearrowright \mathfrak{S}_{2n}$$
.

 Method to construct efficient estimators for symmetric polynomials of the spectrum.

- Method to construct efficient estimators for symmetric polynomials of the spectrum.
- · State certification algorithm is **robust**; i.e. decides w.h.p. whether $d_{\rm tr}(\rho,\sigma) \leq 0.99\epsilon$ or $d_{\rm tr}(\rho,\sigma) \geq \epsilon$.

- Method to construct efficient estimators for symmetric polynomials of the spectrum.
- State certification algorithm is **robust**; i.e. decides w.h.p. whether $d_{\rm tr}(\rho, \sigma) \leq 0.99\epsilon$ or $d_{\rm tr}(\rho, \sigma) \geq \epsilon$.
- · Algorithm works if both ρ and σ are unknown.

- Method to construct efficient estimators for symmetric polynomials of the spectrum.
- State certification algorithm is **robust**; i.e. decides w.h.p. whether $d_{\rm tr}(\rho,\sigma) \leq 0.99\epsilon$ or $d_{\rm tr}(\rho,\sigma) \geq \epsilon$.
- · Algorithm works if both ρ and σ are unknown.
- If either ρ or σ is close to a state of rank k, $n = O(k/\epsilon^2)$ copies are sufficient.

- Method to construct efficient estimators for symmetric polynomials of the spectrum.
- State certification algorithm is **robust**; i.e. decides w.h.p. whether $d_{\rm tr}(\rho, \sigma) \leq 0.99\epsilon$ or $d_{\rm tr}(\rho, \sigma) \geq \epsilon$.
- · Algorithm works if both ρ and σ are unknown.
- · If either ρ or σ is close to a state of rank k, $n = O(k/\epsilon^2)$ copies are sufficient.
- · Other result: for all states $\sigma \in \mathbb{C}^{d \times d}$ and $\epsilon > 0$,

Theorem

 $n = O(d/\epsilon)$ copies of ρ are sufficient to decide w.h.p. whether $\rho = \sigma$ or $F(\rho, \sigma) < 1 - \epsilon$.

Thank you!

arXiv:1708.06002