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Quantum Cryptography Beyond QKD

= survey article with
Anne Broadbent

= aimed at classical cryptographers

http://arxiv.org/abs/1510.06120
In Designs, Codes and Cryptography 2016

[Broadbent Schaffner 16 in Designs, Codes and Cryptography]



QCrypt Conference Series

Started in 2011 by Christandl and Wehner

Steadily growing since then:
approx. 100 submissions, 30 accepted as contributions,
330 participants in Cambridge 2017. This year: Shanghai, China

It is the goal of the conference to represent the previous year’s
best results on quantum cryptography, and to support the
building of a research community

Trying to keep a healthy balance between theory and
experiment

Half the program consists of 4 tutorials of 90 minutes, 6-8
invited talks

present some statistical observations about the last 4 editions

QCrypt charter QCrypt 2017 business meetings slides




Overview

[thanks to Serge Fehr, Stacey Jeffery, Chris Majenz, Florian Speelman, Ronald de Wolf]
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Quantum Key Distribution (QKD)




Quantum Mechanics
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No-Cloning Theorem
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Proof: copying is a non-linear operation




Quantum Key Distribution (QKD)
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__________ - [Bennett Brassard 84]
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Offers an quantum solution to the key-exchange problem which does
not rely on computational assumptions (such as factoring, discrete
logarithms, security of AES, SHA-3 etc.)

Caveat: classical communication has to be authenticated to prevent
man-in-the-middle attacks



Quantum Key Distribution (QKD)
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Quantum Key Distribution (QKD)
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Quantum states are unknown to Eve, she cannot copy them.
Honest players can test whether Eve interfered. .

[Bennett Brassard 84]



Quantum Key Distribution (QKD)
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= technically feasible: no quantum computer required,
only guantum communication



Quantum Hacking

e.g. by the group of Vadim Makarov (University of Waterloo, Canada)




Quantum Key Distribution (QKD)

Alice I NT -

__________ - [Bennett Brassard 84]

v'. > Bob
Y e I

k=0101 1011 k=0101 1011
Eve

Three-party scenario: two honest players versus one dishonest eavesdropper

Quantum Advantage: Information-theoretic security is provably impossible with
only classical communication (Shannon’s theorem about perfect security)



Quantum Key Distribution (QKD)




Conjugate Coding & Q Money

[Wiesnher 68]

also known as quantum coding or quantum multiplexing

71Nt -
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Originally proposed for securing quantum banknotes (private-key
guantum money)

Adaptive attack if money is returned after successful verification

Publicly verifiable quantum money is still a topic of active research, e.g.
very recent preprint by Zhandry17

[Molina Vidick Watrous 13, Brodutch Nagaj Sattath Unruh 14]




Computational Security of
Quantum Encryption

http://arxiv.org/abs/1602.01441
GORJAN ALAGIC, COPENHAGEN at ICITS 2016

ANNE BROADBENT, OTTAWA

BILL FEFFERMAN, MARYLAND
TOMMASO GAGLIARDONI, DARMSTADT
MICHAEL ST JULES, OTTAWA

CHRISTIAN SCHAFFNER,
AMSTERDAM

FOQUS workshop, Paris Saturday, 29 April 2017




Computational Security of
Quantum Encryption




Secure Encryption

plaintext message m ciphertext ¢ = Encg,(m)
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4
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Secret key sk Eve

One-Time Pad:

Classical: ¢ = Encg,(m) gt €D sk , Decy,(c) :==c @ sk

Quantum: Encgp(

m = Decg, (¢)

Bob

Secret key sk

[Miller 1882, Vernam 1919, Ambainis Mosca Tapp de Wolf 00, Boykin Roychowdhury 03]



Information-Theoretic Security

plaintext message m ciphertext ¢ = Encg,(m) m = Decg (¢)
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q Bob
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Secret key sk Secret key sk

Eve

Perfect / information-theoretic security: -E

Ciphertext distribution P, is statistically independent of message distribution P,,.
Theorem: Secret key has to be as large as the message.

Highly impractical, e.g. for encrypting a video stream...

[Shannon 48, Dodis 12, Ambainis Mosca Tapp de Wolf 00, Boykin Roychowdhury 03]



Computational Security

plaintext message m

Alice

1
v

ciphertext ¢ = Encg,(m)

m = Decg, (¢)

Bob

Secret key sk

Threat model:
“Eve sees ciphertexts (eavesdropper)
“Eve knows plaintext/ciphertext pairs

“Eve chooses plaintexts to be
encrypted

“Eve can decrypt ciphertexts

Secret key sk

Security guarantee:

c does not reveal sk
c does not reveal the whole m
c does not reveal any bit of m

c does not reveal “anything” about m



Semantic Security

plaintext message m ciphertext ¢ = Encg,(m)
Alice
1
4

ooo

Secret key sk Eve

DEFINITION 3.12 A private-key encryption scheme (Enc, Dec) is seman-
tically secure in the presence of an eavesdropper if for every PPT algorithm A
there exists a PPT algorithm A’ such that for any PPT algorithm Samp and
polynomaial-time computable functions f and h, the following is negligible:

Pr[A(1", Enck(m), h(m)) = f(m)] — Pr[A'(1", |m|, h(m)) = f(m)]|,
where the first probability is taken over uniform k € {0,1}", m output by

Samp(1™), the randomness of A, and the randomness of Enc, and the second
probability is taken over m output by Samp(1™) and the randomness of A’.

[Goldwasser Micali 84] leading to Turing-Award (Noble price for CS)

m = Decg, (¢)

Bob

Secret key sk




Classical Semantic Security
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PrA(Enc(m), h(m)) = f(m)] = Pr[S(jm|, h(m)) = f(m)]

[Goldwasser Micali 84] leading to Turing-Award (Noble price for CS)




Classical Indistinguishability

eav

Definition (IND): VA: Pr[A wins PrivK¢%’] <
Theorem: SEM & IND

N =

+ negl(n)

[Goldwasser Micali 84] leading to Turing-Award (Noble price for CS)



Our Contributions

Formal definition of Quantum Semantic Security

Equivalence to Quantum Indistinguishability

Extension to CPA and CCA1 scenarios

S

Construction of IND-CCA1 Quantum Secret-Key
Encryption from One-Way Functions

5. Construction of Quantum Public-Key Encryption from
One-Way Trapdoor Permutations



Quantum Semantic Security

REAL world
3y, Adversary A
Paux —_— 0/1
Ptgt

Distinguisher D

Simuliiiar 8 IDEAL world

Definition (QSEM): VA 38 V(M, D) :
Pr[D(REAL) = 1] ~ Pr[D(IDEAL) = 1]




Quantum Indistinguishability

) D [ eav

Definition (QIND): VA: Pr[A wins QPrivK¢*] <
Theorem: QSEM < QIND

N[ =

+ negl(n)

QIND: [Broadbent Jeffery 15, Gagliardoni Huelsing Schaffner 16]



Chosen-Plaintext Attacks (CPA)

M) P+11 K CPA

Definition (QIND-CPA): VA: Pr[A wins QPrivKP%] < % + negl(n)
Theorem: QSEM-CPA & QIND-CPA
Fact: CPA security requires randomized encryption



Chosen-Ciphertext Attacks (CCA1)

a [7CCA

Definition (QIND-CCA1): VA: Pr[A wins QPrivK?] < % + negl(n)
Theorem: QSEM-CCA1 < QIND-CCA1

* *
Fact: QSEM-CCA1 = QIND-CPA = QIND,



Our Contributions

v"Formal definition of Quantum Semantic Security
v"Equivalence to Quantum Indistinguishability

v Extension to CPA and CCA1 scenarios

4. Construction of IND-CCA1 Quantum Secret-Key
Encryption from One-Way Functions

5. Construction of Quantum Public-Key Encryption from
One-Way Trapdoor Permutations



Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

quantum one-time pad (QOTP)

% Long Key
- D .

Plaintext Ciphertext

Not even CPA secure, scheme is not randomized!



Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:
quantum one-time pad (QOTP)

guantum-secure one-way function (OWF)

f:x — vy easy to compute, but hard to
invert even for quantum adversaries, e.g.
lattice-problems, ...

Theorem: One-Way Function = Pseudo-Random Function
X

¢ {fi: x = vy}, isindistinguishable from

PRF random function if key k is unknown
¥

y

[Hastad Impagliazzo Levin Luby 99]



Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

quantum one-time pad (QOTP)

guantum-secure one-way function (OWF) = PRF

—

|
e, I

|
o

Plaintext Ciphertext

Classical version: [Goldreich Goldwasser Micali 85]




Intuition of CCA1 security
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Plaintext Ciphertext

1. Replace pseudo-random function with totally random function

2. Encryption queries result in polynomially many ciphertexts with _

different randomness: :

3. With overwhelming probability the randomness of the challenge _
ciphertext will be different from previous r’s. _



Our Contributions

v"Formal definition of Quantum Semantic Security
v"Equivalence to Quantum Indistinguishability
v Extension to CPA and CCA1 scenarios

v"Construction of IND-CCA1 Quantum Secret-Key Encryption
from One-Way Functions

5. Construction of Quantum Public-Key Encryption from
One-Way Trapdoor Permutations
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Tools




Open Query-Complexity Question

Let f:{0,1}"* - {0,1}" be a random function
Goal: Given quantum oracle access to f, output a “chain of values”

x, f(x), f(f (%))

Observation: easy to do with 2 classical queries
Question: Prove hardness with a single quantum query

More interesting: Prove hardness with polynomially many non-adaptive quantum
gueries

Classical hardness: straightforward

Partial result: iterated hashing analyzed by Unruh in context of revocable
guantum timed-released encryption

[question by Serge Fehr 17, Unruh 13]



Quantum Query Solvability

Notion introduced by Mark Zhandry at QulCS workshop 2015:
https://www.youtube.com/watch?v=kaS70OFAm-6M

Often, quantum query-complexity bounds are given in the form:
“O(g(N)) queries are required to solve a problem with success probability 2/3 (in
the worst case)”

For crypto, it would be way more useful to have:
“Given q quantum queries, the maximal success probability is ©(g(q, N)), in the
average case”

Example: Given a function F: [N] — {0,1}, find x such that F(x) = 1.
Q query-complexity answer: ©( N1/2) by (optimality of) Grover search
But is the success probability @(q/Nl/z),[G)(qz/N)J, or O(g*/N?)?

Matters for efficiency when choosing crypto parameters in order to get tiny
security errors




Tools




Post-Quantum Cryptography

= Also known as: quantum-safe or quantum-
resistant cryptography

= Classical (i.e. conventional) cryptography
secure against guantum attackers

= NIST “competition”: 82 submissions
(23 signature, 59 encryption schemes or key-
encapsulation mechanisms (KEM))



Observations from QCrypts 2014-17

Rough classification of contributed, invited and tutorial talks

QKD is the most developed branch of Q crypto, closest to
implementation

When looking at experimental talks: mostly QKD and (closely) related
topics

Tools and post-quantum crypto are consistently of interest
2-party crypto was en vogue in 2014/15, not anymore in 2016/17

Taken over by delegated computation and authentication, started in
2016

2016/17: DI has made a comeback
Long tail: lots of other topics






Secure Two-Party Cryptography

Information-theoretic security

Correctness (both honest)

>

No computational restrictions

Coin-Flipping < S
ﬂ ﬁ M
Bit Commitment - O— Security for honest Alice
T T R
Oblivious Transfer  s,_, —c h S
ﬂ U Sl — — SC
E 2-Party Function Evaluation Security for honest Bob
Hg X — — Yy
3 ﬁ fy) — —g(x,y) < >
Multi-Party Computation >

(with dishonest majority)



Coin Flipping (CF)

Strong CF: No dishonest player can bias the outcome

Classically: a cheater can always obtain his desired outcome with prob 1

Quantum: [Kitaev 03] lower bounds the bias by \/—15 — % ~ (0.2

[Chailloux Kerenidis 09] give optimal quantum protocol for strong CF with this bias

Weak CF (“who has to do the dishes?”): Alice wants heads, Bob wants tails

[Mochon 07] uses Kitaev’s formalism of point games to give a quantum protocol
for weak CF with arbitrarily small bias € > 0

[Aharonov Chailloux Ganz Kerenidis Magnin 14] reduce the proof complexity from
80 to 50 pages... explicit protocol?



DAY

Bit Commitment (BC) L

Two-phase (reactive) protocol:

a=0 or commit
a=1 o0
Hiding: even dishonest

Bob does not learn a

Binding: dishonest Alice
cannot change her mind

Classically: impossible
Quantum: believed to be possible in the early 90s

shown impossible by [Mayers 97, LoChau 97] by a beautiful argument (purification and
Uhlmann’s theorem)

[Chailloux Kerenidis 11] show that in any quantum BC protocol, one player can cheat with
prob 0.739. They also give an optimal protocol achieving this bound. Crypto application?



Bit Commitment = Strong Coin Flipping

a=0 or 3
b b=0 or
.L : — b=1
—
a=b azb



Oblivious Transfer (OT) ansie ones A means for cransnitiing

two messages either but not both of
which may bhe received.

1-out-of-2 Oblivious Transfer: :0 — —¢
1= — S Dishonest Alice does not learn
. choice bit
Rabin OT: ,
s— — s/l Dishonest Bob can only learn one

(secure erasure)
of the two messages

These OT variants are information-theoretically equivalent (homework! )
OT is symmetric [Wolf Wullschleger at EuroCrypt 2006, only 10 pages long]
1-2 OT = BC:

T‘l — L C1 ER {0,1} Open
. a@rl —_ —>Scl —
commit O—i
— n— — (O ER {0'1} !
a=0or adr, — — S,
a=1 r3 — +— (3 ER {0,1} a’l rl) rZJ nun

adr; — — Sc,
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Quantum Protocol for Oblivious Transfer = =
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[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]




So —»

Quantum Protocol for Oblivious Transfer <=
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[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]
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Quantum Protocol for Oblivious Transfer = =
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[D BC = Oblivious Transfer <= =
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[Bennett Brassard Crepeau Skubiszewska 91, Damgaard Fehr Lunemann Salvail Schaffner 09, Unruh 10]




wait 1 sec

>

10,11 IC = {3'4:5}1 Il—C = {112}

fO'fl i

" ki = f1(110)

ko = fo(01)  kq = f1(110) to = So D ko
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>

s; =t @D f1(110)

[Damgaard Fehr Salvail Schaffner 05, Wehner Schaffner Terhal 09]




Summary of Quantum Two-Party Crypto

= Information-theoretic security

= No computational restrictions

= Coin-Flipping

T3

= Bit Commitment [D/ 6

T v

= Oblivious Transter s, —, —
ﬂ U S1 —> — S,
= 2-Party Function Evaluation X — —y
fx,y) — —g(x,y)

[Blum 83, Kilian 88]






Delegated Q Computation




Delegated Computation

QCloud Inc. promises to perform a BQP computation for you.

How can you securely delegate your quantum computation to an untrusted
quantum prover while maintaining privacy and/or integrity?

Various parameters:
Quantum capabilities of verifier: state preparation, measurements, g operations

Type of security: blindness (server does not learn input), integrity (client is sure the
correct computation has been carried out)

Amount of interaction: single round (fully homomorphic encryption) or multiple
rounds

Number of servers: single-server, unbounded / computationally bounded or multiple
entangled but non-communicating servers

Image: Tremani / TU Delft

Broadbent 17  Fitzsimons 16




Classical Verification of Q Computation

QCloud Inc. promises you to perform a BQP computation

How can a purely classical verifier be convinced that this
computation actually was performed?

Partial solutions:

Using interactive protocols with quantum communication between prover and verifier, this task
can be accomplished, using a certain minimum quantum ability of the verifier. [Fitzsimons
Kashefi 17, Broadbent 17, AlagicDulekSpeelmanSchaffnerl7]

Using two entangled, but non-communicating provers, verification can be accomplished using
rigidity results [ReichardtUngerVaziranil2]. Recently made way more practical by
[ColadangeloGriloJefferyVidick17]

Indications that information-theoretical blind computation is impossible
[AaronsonCojocaruGheorghiuKashefil7]

for overview and more complete references]



Delegated Q Computation




Black-Box Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that
efficiency is preserved;
input-output functionality is preserved;

output programs are hard to understand: “If something is efficiently learnable from
reading the code, then it is also efficiently learnable purely from input-output behavior.”

“black-box obfuscation”

X— —f(x) —f(x)

Alagic Fefferman 16




Classical Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that

1. efficiency is preserved;
2. input-output functionality is preserved;

3. output programs are hard to understand: “If something is efficiently learnable from
reading the code, then it is also efficiently learnable purely from input-output behavior.

7

o H 14
Formal: black-box obfuscation

A black-box obfuscator O is an algorithm which maps circuits C to circuits O(C) such that:
1. efficiency-preserving: |O(C)| < poly(|C|)
2. functionality-preserving: fo(c) = fc

3. virtual black-box: for every poly-time A there exists a poly-time S such that

L ' ) \ Y J

learn something by reading circuit learn same thing from input-output

, slide by Gorjan Alagic, thanks a lot!]



Classical Obfuscation

Why care? Lots of applications:

1.
2.
3.

Protecting IP: obfuscate before publishing (already done, but ad-hoc);
Secure patching: revealing what is being patched exposes unpatched machines;
Public-key crypto: private-key encryption = public-key encryption:

kdecrypt =k kencrypt =0 (EﬂCk) :

One-way functions: choose delta-function circuit, make obfuscator’s coins part of input;

. FHE: encryption > fully-homomorphic encryption:

koval := O(Encg o U o Decy,)
. — universal circuit
“top of the crypto scheme hierarchy”

Bad news: classical black-box obfuscation is impossible [Barak et al ‘01].

Other definitions? “Computational indistinguishability” (first schemes proposed in 2013);

, slide by Gorjan Alagic, thanks a lot!]



Quantum Obfuscation

A guantum obfuscator O is a (quantum) algorithm which rewrites quantum circuits, and is:

efficiency-preserving: |O(C)| < poly(|C])
functionality-preserving: HUC o UO(C) ” < negl(’CD quantum polynomial-time algorithm

virtual black-box: for every QPT A there exists a QPT S such that

Possibility?

Black-box Quantum circuit Quantum circuit Impossible
Black-box Quantum circuit Quantum state (reusable) QPT Impossible
Black-box Quantum circuit Quantum state (uncloneable) QPT Open
Statistical 1.0 Quantum circuit Quantum state QPT Impossible
Computational 1.0 Quantum circuit Quantum state QPT Open

construct a black-box quantum obfuscator (that outputs states that cannot be reused);

construct a computational indistinguishability quantum obfuscator (that outputs circuits);

Alagic Fefferman 16




Delegated Q Computation




More Fun Stuff




Pseudorandom Operations




Pseudorandom Permutation from Function

Feistel network

If Fis a (pseudo)random function, the 3-round
Feistel function H; is a pseudo-random
permutation.

Question: Show that 4-random Feistel H, is a
guantum-secure pseudo-random permutation

For any QPT A, we want
|Pr[AlHa>IHa "> (1) = 1] — pr[Alma>Irmd™>(1n) = 1] | < negl(n

Partial result: Quantum attack based Simon’s
algorithm can distinguish 3-round Feistel
H; from random function.

Quantum pseudo-random unitaries?

Ji Liu Song 17




Pseudorandom Operations




Th dan k yo U | https://github.com/cschaffner/  http://arxiv.org/abs/1510.06120

QCryptoMindmap In Designs, Codes and Cryptography 2016

= Thanks to all friends and colleagues that contributed to quantum cryptography and
to this presentation.

b EUROPEAN COOPERATION IN SCIENCE AND TECHNOLOGY

Questions



