Quantum Cryptography Beyond QKD

CHRISTIAN SCHAFFNER

DuSoft RESEARCH CENTER FOR QUANTUM SOFTWARE

INSTITUTE FOR LOGIC, LANGUAGE AND COMPUTATION (ILLC) UNIVERSITY OF AMSTERDAM

CENTRUM WISKUNDE & INFORMATICA

All material available on https://homepages.cwi.nl/~schaffne

QIP 2018 Tutorial in Delft

Sunday, 14 January 2018

Quantum Cryptography Beyond QKD

2 Basics of Quantum Information

3

2.1	State Space					
2.2	Unitary Evolution and Circuits					
2.3	Measurement					
2.4	Quantum No-Cloning					
2.5	Quantum Entanglement and Nonlocality					
2.6	Physical Representations					
Qua	antum Cryptographic Constructions					
3.1	Conjugate Coding					
3.2	Quantum Key Distribution					
3.3	Bit Commitment implies Oblivious Transfer					
	3.3.1 Oblivious Transfer (OT) and Bit Commitment (BC)					
	3.3.2 Quantum Protocol for Oblivious Transfer					
3.4	Limited-Quantum-Storage Models					
3.5	Delegated Quantum Computation					
3.6	Quantum Protocols for Coin Flipping and Cheat-Sensitive Primitives					
3.7	Device-Independent Cryptography					
Qua	antum Cryptographic Limitations and Challenges					
4.1	Impossibility of Quantum Bit Commitment					
4.2	2 Impossibility of Secure Two-Party Computation using Quantum Communication					
4.3	Zero-Knowledge Against Quantum Adversaries — "Quantum Rewinding"					
4.4	Superposition Access to Oracles — Quantum Security Notions					

4.5 Position-Based Quantum Cryptography

 survey article with Anne Broadbent

aimed at classical cryptographers

http://arxiv.org/abs/1510.06120 In Designs, Codes and Cryptography 2016

QCrypt Conference Series

- Started in 2011 by Christandl and Wehner
- Steadily growing since then: approx. 100 submissions, 30 accepted as contributions, 330 participants in Cambridge 2017. This year: Shanghai, China
- It is the goal of the conference to represent the previous year's best results on quantum cryptography, and to support the building of a research community
- Trying to keep a healthy balance between theory and experiment
- Half the program consists of 4 tutorials of 90 minutes, 6-8 invited talks
- present some statistical observations about the last 4 editions

Overview

[thanks to Serge Fehr, Stacey Jeffery, Chris Majenz, Florian Speelman, Ronald de Wolf]

MindMap

- experiments
- Selection of
 open questions

Fork me on github!

Quantum Key Distribution (QKD)

Quantum Mechanics

No-Cloning Theorem

Proof: copying is a non-linear operation

Quantum Key Distribution (QKD)

- Offers an quantum solution to the key-exchange problem which does not rely on computational assumptions (such as factoring, discrete logarithms, security of AES, SHA-3 etc.)
- Caveat: classical communication has to be authenticated to prevent man-in-the-middle attacks

[Bennett Brassard 84]

Quantum Key Distribution (QKD)

- Quantum states are unknown to Eve, she cannot copy them.
- Honest players can test whether Eve interfered.

[Bennett Brassard 84]

Quantum Key Distribution (QKD)

Quantum Hacking

SO

odel n° Quantis USB nal n° 100732A410

e.g. by the group of <u>Vadim Makarov</u> (University of Waterloo, Canada)

Quantum Key Distribution (QKD)

- **Three-party scenario**: two honest players versus one dishonest eavesdropper
- Quantum Advantage: Information-theoretic security is provably impossible with only classical communication (Shannon's theorem about perfect security)

Quantum Key Distribution (QKD)

also known as quantum coding or quantum multiplexing

[Wiesner 68]

- Originally proposed for securing quantum banknotes (private-key quantum money)
- Adaptive attack if money is returned after successful verification
- Publicly verifiable quantum money is still a topic of active research, e.g. very recent preprint by <u>Zhandry17</u>

Computational Security of Quantum Encryption

GORJAN ALAGIC, COPENHAGEN ANNE BROADBENT, OTTAWA BILL FEFFERMAN, MARYLAND TOMMASO GAGLIARDONI, DARMSTADT MICHAEL ST JULES, OTTAWA http://arxiv.org/abs/1602.01441 at ICITS 2016

CHRISTIAN SCHAFFNER, AMSTERDAM

FOQUS workshop, Paris

Saturday, 29 April 2017

Computational Security of Quantum Encryption

Secure Encryption

[Miller 1882, Vernam 1919, Ambainis Mosca Tapp de Wolf 00, Boykin Roychowdhury 03]

Information-Theoretic Security

[Shannon 48, Dodis 12, Ambainis Mosca Tapp de Wolf 00, Boykin Roychowdhury 03]

Computational Security

Threat model:

- Eve sees ciphertexts (eavesdropper)
- Eve knows plaintext/ciphertext pairs
- Eve chooses plaintexts to be encrypted
- Eve can decrypt ciphertexts

Security guarantee:

- c does not reveal sk
- c does not reveal the whole m
- c does not reveal any bit of m
- c does not reveal "anything" about m

Semantic Security

DEFINITION 3.12 A private-key encryption scheme (Enc, Dec) is semantically secure in the presence of an eavesdropper if for every PPT algorithm \mathcal{A} there exists a PPT algorithm \mathcal{A}' such that for any PPT algorithm Samp and polynomial-time computable functions f and h, the following is negligible:

 $\left| \Pr[\mathcal{A}(1^n, \mathsf{Enc}_k(m), h(m)) = f(m)] - \Pr[\mathcal{A}'(1^n, |m|, h(m)) = f(m)] \right|,$

where the first probability is taken over uniform $k \in \{0,1\}^n$, m output by $\mathsf{Samp}(1^n)$, the randomness of \mathcal{A} , and the randomness of Enc , and the second probability is taken over m output by $\mathsf{Samp}(1^n)$ and the randomness of \mathcal{A}' .

[Goldwasser Micali 84] leading to Turing-Award (Noble price for CS)

Classical Semantic Security

[Goldwasser Micali 84] leading to Turing-Award (Noble price for CS)

Classical Indistinguishability

Definition (IND): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } PrivK^{eav}] \leq \frac{1}{2} + negl(n)$ **Theorem:** SEM \Leftrightarrow IND

[Goldwasser Micali 84] leading to Turing-Award (Noble price for CS)

Our Contributions

- 1. Formal definition of Quantum Semantic Security
- 2. Equivalence to Quantum Indistinguishability
- 3. Extension to CPA and CCA1 scenarios
- 4. Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

Quantum Semantic Security

Quantum Indistinguishability

Definition (QIND): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{eav}] \leq \frac{1}{2} + negl(n)$ **Theorem:** QSEM \Leftrightarrow QIND

QIND: [Broadbent Jeffery 15, Gagliardoni Huelsing Schaffner 16]

Chosen-Plaintext Attacks (CPA)

Definition (QIND-CPA): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{cpa}] \leq \frac{1}{2} + negl(n)$ **Theorem:** QSEM-CPA \Leftrightarrow QIND-CPA **Fact:** CPA security requires **randomized encryption**

Chosen-Ciphertext Attacks (CCA1) **QPrivK^{cca}** $Dec_{sk}(\rho_{c})$ Challenger $b \leftarrow \{0,1\}$ $\rho_{C} = \begin{cases} Enc_{sk}(|0\rangle) \text{ if } b=0 & \rho_{C} \\ Enc_{sk}(\rho_{M}) \text{ if } b=1 & \rho_{M} \end{cases}$ $Enc_{sk}(\rho_M)$ \mathcal{A} wins iff b = b'

Definition (QIND-CCA1): $\forall \mathcal{A}$: $\Pr[\mathcal{A} \text{ wins } QPrivK^{cca}] \leq \frac{1}{2} + negl(n)$ **Theorem:** QSEM-CCA1 \Leftrightarrow QIND-CCA1 **Fact:** QSEM-CCA1 $\stackrel{\neq}{\Rightarrow}$ QIND-CPA $\stackrel{\neq}{\Rightarrow}$ QIND,

stronger adversaries yield stronger encryption schemes

Our Contributions

✓ Formal definition of Quantum Semantic Security

Equivalence to Quantum Indistinguishability

Extension to CPA and CCA1 scenarios

- 4. Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

```
quantum one-time pad (QOTP)
```


Not even CPA secure, scheme is not randomized!

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

```
quantum one-time pad (QOTP)
```

quantum-secure one-way function (OWF)

 $f: x \mapsto y$ easy to compute, but hard to invert even for quantum adversaries, e.g. lattice-problems, ...

Theorem: One-Way Function \Rightarrow Pseudo-Random Function

 ${f_k : x \mapsto y}_k$ is indistinguishable from random function if key k is unknown

Quantum Secret-Key Encryption

Goal: build CCA1-secure quantum secret-key encryption

Ingredients:

```
quantum one-time pad (QOTP)
```

quantum-secure one-way function (OWF) \implies PRF

Classical version: [Goldreich Goldwasser Micali 85]

Intuition of CCA1 security

- 1. Replace pseudo-random function with totally random function
- 2. Encryption queries result in polynomially many ciphertexts with different randomness:
- 3. With overwhelming probability the randomness of the challenge ciphertext will be different from previous r's.

Our Contributions

✓ Formal definition of Quantum Semantic Security

- Equivalence to Quantum Indistinguishability
- Extension to CPA and CCA1 scenarios
- Construction of IND-CCA1 Quantum Secret-Key Encryption from One-Way Functions
- 5. Construction of Quantum Public-Key Encryption from One-Way Trapdoor Permutations

MindMap

- experiments
- Selection of
 open questions

Fork me on github!

Tools

	Bell inequalities			
	classical crypto cut & choose			
	conjugate coding			
	continuous variables (CV)			
	infinite version			
	de Finetti finite version			
	exponential version			
	various other ones			
	Fourier analysis Delta-Blased Extractors			
	no-cloning linformation vs disturbance trade-off			
	bounds on required entanglement			
	non-local games power of entangled multi-provers			
	fidelity			
4.6	port-based teleportation entanglement recycling			
d	Q rewinding Watrous Unruh			
EI	average-case			
lools	quantum query solvability			
	random-access codes hypercontractive inequality			
2 - 1	randomness extraction			
	classical constructions			
	solvers			
	SDP duality			
	hierarchies			
	operational interpretation			
	smooth entropies calculus			
	splitting with quantum side information			
	permutation-branching programs			
	teleportation gadgets garden-hose complexity			
	secret sharing			
	uncertainty relations continuous variables			
	unitary t-designs operations			

Open Query-Complexity Question

- Let $f: \{0,1\}^n \to \{0,1\}^n$ be a random function
- Goal: Given quantum oracle access to *f*, output a "chain of values" x, f(x), f(f(x))
- **Observation:** easy to do with 2 classical queries
- **Question:** Prove hardness with a single quantum query
- More interesting: Prove hardness with polynomially many non-adaptive quantum queries
- Classical hardness: straightforward
- Partial result: iterated hashing analyzed by Unruh in context of <u>revocable</u> <u>quantum timed-released encryption</u>

Quantum Query Solvability

- Notion introduced by Mark Zhandry at QuICS workshop 2015: <u>https://www.youtube.com/watch?v=kaS7OFAm-6M</u>
- Often, quantum query-complexity bounds are given in the form: "Θ(g(N)) queries are required to solve a problem with success probability 2/3 (in the worst case)"
- For crypto, it would be way more useful to have: "Given q quantum queries, the maximal success probability is Θ(g(q, N)), in the average case"
- Example: Given a function $F: [N] \rightarrow \{0,1\}$, find x such that F(x) = 1.
- Q query-complexity answer: $\Theta(N^{1/2})$ by (optimality of) Grover search
- But is the success probability $\Theta(q/N^{1/2}), \Theta(q^2/N)$, or $\Theta(q^4/N^2)$?
- Matters for efficiency when choosing crypto parameters in order to get tiny security errors

[Zhandry 15]

Tools

	Bell inequalities			
	classical crypto cut & choose			
	conjugate coding			
	continuous variables (CV)			
	infinite version			
	de Finetti finite version			
	exponential version			
	various other ones			
	Fourier analysis Delta-Blased Extractors			
	no-cloning linformation vs disturbance trade-off			
	bounds on required entanglement			
	non-local games power of entangled multi-provers			
	fidelity			
4.6	port-based teleportation entanglement recycling			
d	Q rewinding Watrous Unruh			
EI	average-case			
lools	quantum query solvability			
	random-access codes hypercontractive inequality			
2 - 1	randomness extraction			
	classical constructions			
	solvers			
	SDP duality			
	hierarchies			
	operational interpretation			
	smooth entropies calculus			
	splitting with quantum side information			
	permutation-branching programs			
	teleportation gadgets garden-hose complexity			
	secret sharing			
	uncertainty relations continuous variables			
	unitary t-designs operations			

Post-Quantum Cryptography

- Also known as: quantum-safe or quantumresistant cryptography
- Classical (i.e. conventional) cryptography secure against quantum attackers

 NIST "competition": 82 submissions (23 signature, 59 encryption schemes or keyencapsulation mechanisms (KEM))

Observations from QCrypts 2014-17

- Rough classification of contributed, invited and tutorial talks
- QKD is the most developed branch of Q crypto, closest to implementation
- When looking at experimental talks: mostly QKD and (closely) related topics
- Tools and post-quantum crypto are consistently of interest
- 2-party crypto was en vogue in 2014/15, not anymore in 2016/17
- Taken over by delegated computation and authentication, started in 2016
- 2016/17: DI has made a comeback
- Long tail: lots of other topics

Secure Two-Party Cryptography

- Information-theoretic security
- No computational restrictions

$$\begin{array}{c} x \longrightarrow \mathcal{F} & \stackrel{}{\leftarrow} y \\ f(x,y) \longleftarrow \mathcal{F} & \stackrel{}{\leftarrow} g(x,y) \end{array}$$

 Multi-Party Computation (with dishonest majority)

Security for honest Bob

usefulness

Coin Flipping (CF)

Strong CF: No dishonest player can bias the outcome

- Classically: a cheater can always obtain his desired outcome with prob 1
- Quantum: [Kitaev 03] lower bounds the bias by $\frac{1}{\sqrt{2}} \frac{1}{2} \approx 0.2$ [Chailloux Kerenidis 09] give optimal quantum protocol for strong CF with this bias

- Weak CF ("who has to do the dishes?"): Alice wants heads, Bob wants tails
- [Mochon 07] uses Kitaev's formalism of point games to give a quantum protocol for weak CF with arbitrarily small bias $\varepsilon > 0$
- [Aharonov Chailloux Ganz Kerenidis Magnin 14] reduce the proof complexity from 80 to 50 pages... explicit protocol?

- Quantum: believed to be possible in the early 90s
- shown impossible by [Mayers 97, LoChau 97] by a beautiful argument (purification and Uhlmann's theorem)
- [Chailloux Kerenidis 11] show that in any quantum BC protocol, one player can cheat with prob 0.739. They also give an optimal protocol achieving this bound. Crypto application?

[Brassard Crepeau Jozsa Langlois: A quantum BC scheme provably unbreakable by both parties, FOCS 93]

Bit Commitment ⇒ Strong Coin Flipping

[Blum 83]

Oblivious Transfer (OT)

1-out-of-2 Oblivious Transfer:

$$\begin{array}{c} s_0 \longrightarrow \\ s_1 \longrightarrow \\ \end{array} \begin{array}{c} \mathsf{OT} & \longleftarrow \\ s_c \end{array}$$

Rabin OT: (secure erasure) $s \rightarrow ROT \rightarrow s / \bot$ Example One: A means for transmitting two messages either but not both of which may be received.

- Dishonest Alice does not learn choice bit
- Dishonest Bob can only learn one of the two messages
- These OT variants are information-theoretically equivalent (homework! \bigcirc)
- OT is symmetric [Wolf Wullschleger at EuroCrypt 2006, only 10 pages long]

Quantum Protocol for Oblivious Transfer $s_1 \rightarrow o_2$

[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]

Quantum Protocol for Oblivious Transfer $s_1 \rightarrow o_1 \rightarrow s_2$

[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]

Quantum Protocol for Oblivious Transfer $s_1 \rightarrow o_2$

[Wiesner 61, Bennett Brassard Crepeau Skubiszewska 91]

[Bennett Brassard Crepeau Skubiszewska 91, Damgaard Fehr Lunemann Salvail Schaffner 09, Unruh 10]

Limited Quantum Storage

[Damgaard Fehr Salvail Schaffner 05, Wehner Schaffner Terhal 09]

Summary of Quantum Two-Party Crypto

- Information-theoretic security
- No computational restrictions

Delegated Q Computation

Delegated Computation

- QCloud Inc. promises to perform a BQP computation for you.
- How can you securely delegate your quantum computation to an untrusted quantum prover while maintaining privacy and/or integrity?
- Various parameters:
 - 1. Quantum capabilities of verifier: state preparation, measurements, q operations
 - 2. Type of security: blindness (server does not learn input), integrity (client is sure the correct computation has been carried out)
 - 3. Amount of interaction: single round (fully homomorphic encryption) or multiple rounds
 - 4. Number of servers: single-server, unbounded / computationally bounded or multiple entangled but non-communicating servers

Classical Verification of Q Computation

- QCloud Inc. promises you to perform a BQP computation
- How can a purely classical verifier be convinced that this computation actually was performed?

- Partial solutions:
 - Using interactive protocols with quantum communication between prover and verifier, this task can be accomplished, using a certain minimum quantum ability of the verifier. [Fitzsimons <u>Kashefi 17</u>, <u>Broadbent 17</u>, <u>AlagicDulekSpeelmanSchaffner17</u>]
- Using two entangled, but non-communicating provers, verification can be accomplished using rigidity results [<u>ReichardtUngerVazirani12</u>]. Recently made way more practical by [<u>ColadangeloGriloJefferyVidick17</u>]
- Indications that information-theoretical blind computation is impossible [AaronsonCojocaruGheorghiuKashefi17]

Delegated Q Computation

Black-Box Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that

- 1. efficiency is preserved;
- 2. input-output functionality is preserved;
- 3. output programs are hard to understand: "If something is efficiently learnable from reading the code, then it is also efficiently learnable purely from input-output behavior."

"black-box obfuscation"

[Alagic Fefferman 16, slide by Gorjan Alagic, thanks a lot!]

Classical Obfuscation

Idea: an obfuscator is an algorithm which rewrites programs, such that

- 1. efficiency is preserved;
- 2. input-output functionality is preserved;
- 3. output programs are hard to understand: "If something is efficiently learnable from reading the code, then it is also efficiently learnable purely from input-output behavior."

"black-box obfuscation"

Formal:

A black-box obfuscator O is an algorithm which maps circuits C to circuits O(C) such that:

- **1**. efficiency-preserving: $|\mathcal{O}(C)| \le \operatorname{poly}(|C|)$
- 2. functionality-preserving: $f_{\mathcal{O}(C)} = f_C$
- 3. virtual black-box: for every poly-time A there exists a poly-time S such that

$$\Pr[\mathcal{A}(\mathcal{O}(C)) = 1] - \Pr[\mathcal{S}^{f_C}(\bar{1}) = 1]| \le \operatorname{negl}(|C|).$$

learn something by reading circuit

learn same thing from input-output

[Alagic Fefferman 16, slide by Gorjan Alagic, thanks a lot!]

Classical Obfuscation

Why care? Lots of applications:

- 1. Protecting IP: obfuscate before publishing (already done, but ad-hoc);
- 2. Secure patching: revealing what is being patched exposes unpatched machines;
- 3. Public-key crypto: private-key encryption \rightarrow public-key encryption:

 $k_{\text{decrypt}} := k \qquad k_{\text{encrypt}} := \mathcal{O}(\text{Enc}_k).$

- 4. One-way functions: choose delta-function circuit, make obfuscator's coins part of input;
- 5. **FHE:** encryption \rightarrow fully-homomorphic encryption:

 $k_{\text{eval}} := \mathcal{O}(\text{Enc}_k \circ U \circ \text{Dec}_k)$

universal circuit

"top of the crypto scheme hierarchy"

Bad news: classical black-box obfuscation is impossible [Barak et al '01].

Other definitions? "Computational indistinguishability" (first schemes proposed in 2013);

[Alagic Fefferman 16, slide by Gorjan Alagic, thanks a lot!]

Quantum Obfuscation

A quantum obfuscator O is a (quantum) algorithm which rewrites quantum circuits, and is:

- 1. efficiency-preserving: $|\mathcal{O}(C)| \leq poly(|C|)$
- 2. functionality-preserving: $||U_C U_{\mathcal{O}(C)}|| \le \operatorname{negl}(|C|)$

quantum polynomial-time algorithm

3. virtual black-box: for every QPT A there exists a QPT \overline{S} such that

 $\left|\Pr[\mathcal{A}(\mathcal{O}(C)) = 1] - \Pr[\mathcal{S}^{U_C}(\bar{1}) = 1]\right| \le \operatorname{negl}(|C|).$

Obfuscation	Input	Output	Adversary	Possibility?
Black-box	Quantum circuit	Quantum circuit	QPT	Impossible
Black-box	Quantum circuit	Quantum state (reusable)	QPT	Impossible
Black-box	Quantum circuit	Quantum state (uncloneable)	QPT	Open
Statistical I.O	Quantum circuit	Quantum state	QPT	Impossible
Computational I.O	Quantum circuit	Quantum state	QPT	Open

- 1. construct a black-box quantum obfuscator (that outputs states that cannot be reused);
- 2. construct a computational indistinguishability quantum obfuscator (that outputs circuits);

Alagic Fefferman 16, slide by Gorjan Alagic, thanks a lot!]

Delegated Q Computation

More Fun Stuff

Pseudorandom Operations

[https://csrc.nist.gov/Projects/Post-Quantum-Cryptography]

Pseudorandom Permutation from Function

- Feistel network
- If F is a (pseudo)random function, the 3-round Feistel function H₃ is a pseudo-random permutation.
- Question: Show that 4-random Feistel H₄ is a quantum-secure pseudo-random permutation

For any QPT A, we want

 $|\Pr[A^{|H_4>,|H_4^{-1}>}(1^n) = 1] - \Pr[A^{|rnd>,|rnd^{-1}>}(1^n) = 1]| < negl(n)$

Partial result: Quantum attack based Simon's algorithm can distinguish 3-round Feistel *H*₃ from random function.

Quantum pseudo-random unitaries?

Pseudorandom Operations

[https://csrc.nist.gov/Projects/Post-Quantum-Cryptography]

Thank you!

Thanks to all friends and colleagues that contributed to quantum cryptography and to this presentation.

