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Machine learning

» Algorithmically finding patterns and generalizations of given
data. For prediction, understanding, theorizing,. ..

> Recently great successes
in image recognition,
natural language processing,
playing Go, ...

36 NgnaGo e Sedd
=\
i a\n

» Different settings for machine learning:

» Supervised learning: labeled examples
» Unsupervised learning: unlabeled examples
» Reinforcement learning: interaction with environment



Quantum machine learning?

> No need to stick to classical learning algorithms —

What can quantum computers do for machine learning?

> The learner will be quantum, the data may be quantum

Classical learner | Quantum learner
Classical data Classical ML This talk
Quantum data ? This talk




Won't

cover: classical ML to help quantum

Many-body quantum state tomography with classical neural
networks (Carleo & Troyer'16, Torlai et al.’17)

In quantum error correction: learn to predict the best
correction operations from the error syndrome measurement
outcomes (Torlai & Melko'16, Baireuther et al.'17)

Learning to create new quantum experiments & to control
quantum systems (Melnikov et al.'17)

Classical heuristics beating quantum annealing
(Katzgraber et al."17)



How can quantum computing help machine learning?

» Core idea: inputs to learning problem are often
high-dimensional vectors of numbers (texts, images, ...).
These can be viewed as amplitudes in a quantum state.

Required number of qubits is only logarithmic in dimension!

Vector v € RY = log,(d)-qubit state |v) = ﬁ 27:1 vil i)

» So we want to efficiently represent our data as quantum
states, and apply quantum algorithms on them to learn.

Easier said than done. ..

» This talk focuses on provable, non-heuristic parts of QML:

1. Some cases where quantum helps for specific ML problems

2. Some more general quantum learning theory



Part 1:

Some cases where
quantum helps ML



Example 1: Principal Component Analysis

» Data: classical vectors vi, ..., vy € R, For example:

» jth entry of v; counts # times document i contains keyword j
> jth entry of v; indicates whether buyer i bought product j

» PCA: find the principal components of

“correlation matrix” A= SN v

Main eigenvectors describe patterns in the data.

Can be used to summarize data, for prediction, etc.

» Idea for quantum speed-up (Lloyd, Mohseni, Rebentrost'13):

IF we can efficiently prepare the |v;) as log,(d)-qubit states,
then doing this for random i gives mixed state p = %A.

We want to sample (eigenvector,eigenvalue)-pairs from p



Example 1 (cntd): PCA via self-analysis

» Using few copies of p, we want to run U = e~'” on some o

> Idea: start with o ® p, apply SWAP®, throw away 2nd register.
1st register now has Uso(U')®, up to error O(e?).
Repeat this 1/¢ times, using a fresh copy of p each time.
First register now contains Uo U, up to error 10(£2) = O(e)

» Suppose p has eigendecomposition p = ) Aj|w;) (w;|.
Phase estimation maps |w;)[0) — |w;)| ),
where |A; — Aj| <6, using O(1/9) applications of U
» Phase estimation on another fresh copy of p maps

p@10)(0] Z Ailwi) (wi| @ [A) (Al

]

Measuring 2nd register samples |w;)|\;) with probability \;



Example 2: clustering based on PCA

» Data: classical vectors vi, ..., vy € R? . )

d Clustering | (°

Goal: group these into k < N clusters | *° = |

Scattered Documen it

» Good method: let the k clusters correspond to

top-k eigenvectors of the correlation matrix A= SN v;v.T

» Idea for quantum speed-up (Lloyd et al.):

IF we can efficiently prepare the |v;) as log,(d)-qubit states,
then we can use PCA to sample from top eigenvectors of A.

Can build a database of several copies of each of the k top
eigenvectors of A, thus learning the centers of the k clusters
(as quantum states!)



Example 3: nearest-neighbor classification

» Data: classical vectors wy, ..., wy € RY,
representing k “typical” categories (clusters)

» Input: a new vector v € RY that we want to classify,
by finding its nearest neighbor among ws, ..., wy
» Idea for quantum speed-up (Aimeur et al.’07; Wiebe et al.'14):

IF we can efficiently prepare |v) and |w;) as log,(d)-qubit
states, say in time P, then we can use the SWAP test to
estimate distance ||v — w;|| up to small error, say in time P

Then use Grover's algorithm on top of this to find

i€{l,..., k} minimizing || v — w;||. Assign v to cluster i

» Complexity: O(P\/E)



How to put classical data in superposition?

» Given vector v € R?: how to prepare |v) = ”—a‘ 27:1 viliy ?

» Assume quantum-addressable memory: O, : |i,0) — |i, v;)

1. Find u = max; |v;| in O(v/d) steps (Diirr-Hgyer min-finding)

2 iz- i) % B 1) = B Sl (10 + 1= 1)
- Vd i Vd s Vi Vd s Vi u2

% S (10) + /1 E 1) = 1)) + 1)

3. Boost |0) by O ( ) rounds of amplitude amplification

» Expensive for “peaked” v; cheap for “uniform” or “sparse” v

(but there you can efficiently compute many things classically!)



Example 4: Recommendation systems

» m users, n products (movies),

unknown m x n preference matrix P = Pj;

Assume 3 rank-k approximation Py =~ P, for some k < m, n

» Information about P comes in online: user i likes movie j.
System can only access partial matrix P with this information

SN

. . . Y
» Goal: provide new recommendation to user / ﬂfmﬁ %]
by sampling from ith row of P (normalized)

—
e

» Classical mgthods: construct rank-k completion ng from 1‘3
hope that Py ~ P. Time poly(k, m, n)

» Kerenidis & Prakash'16: quantum recommendation system
polylog(mn) update & poly(k,log(mn)) recommendation time



Example 4: Quantum recommendation system (sketch)

Pjj/p with probability p

» “Subsample matrix”: ,ESU = { 0 otherwise

> ﬁk: projection of P on its top-k singular vectors.
Achlioptas & McSherry'01: ﬁk ~ P in Frobenius distance.
Hence for most i: ith row of Py is close to ith row of P

» For most i, sampling from ith row of ISk is similar to sampling
from ith row of P, so gives a good recommendation for user i

» Non-zero entries of P come in one-by-one. Kerenidis &
Prakash create data structure (polylog(mn) update time)

that can generate |ith row of P) in polylog(mn) time

» When asked for a recommendation for user /:

generate |ith row of I3> project onto largest singular vectors
of P (via phase estimation), measure resulting quantum state



Many other attempts at using quantum for ML

» k-means clustering
» Support Vector Machines
» Training perceptrons (~~depth-1 neural networks)
» Quantum deep learning (=deep neural networks)
» Training Boltzmann machines for sampling
>

Problems:

» How to efficiently put classical data in superposition?

» How to use reasonable assumptions about the data (also in
classical ML; much work is heuristic rather than rigorous)

» We don't have a large quantum computer yet. ..



Part 2:

Some more general

quantum learning theory



Supervised learning

» Concept: some function ¢ : {0,1}" — {0, 1}.
Think of x € {0,1}" as an object described by n “features”,
and concept c¢ as describing a set of related objects

» Goal: learn ¢ from a small number of examples: (x, c(x))

grey | brown | teeth | huge | ¢(x)

el

ﬁ 1 0 1 0 1
: 0 1 1 1 0
B

, 1o 1 1 0 1
u
s 0 0 1 0 0

Output hypothesis could be: (x; OR x2) AND —x4




Making this precise: Valiant's “theory of the learnable”

» Concept: some function ¢ : {0,1}" — {0,1}
Concept class C: set of concepts (small circuits, DNFs,...)

» Example for an unknown target concept ¢ € C:
(x, c(x)), where x ~ unknown distribution D on {0,1}"

> Goal: using some i.i.d. examples, learner for C should output
hypothesis h that is probably approximately correct (PAC).

h is a function of examples and of learner’s randomness.

Error of h w.r.t. target c: errp(c, h) = Pry..p[c(x) # h(x)]

» An algorithm (e, §)-PAC-learns C if:

VceeC VD: Pr[ errp(c,h)<e ]>1-96
—_———

h is approximately correct



Complexity of learning

v

Concept: some function ¢ : {0,1}" — {0,1}
Concept class C: some set of concepts

Algorithm (g, )-PAC-learns C if its hypothesis satisfies:

v

VeeC VD: Pr[ errp(c,h)<e [>1-96
~—_————
h is approximately correct
» How to measure the efficiency of the learning algorithm?

» Sample complexity: number of examples used

» Time complexity: number of time-steps used

v

A good learner has small time & sample complexity



VC-dimension determines sample complexity

» Cornerstone of classical sample complexity: VC-dimension

Set S = {s1,...,54} € {0,1}" is shattered by C if
for all a € {0,1}9, there is c € C s.t. Vi € [d] : c(s;) = a

VC-dim(C) = max{d : 3S of size d shattered by C}

» Equivalently, let M be the |C| x 2" matrix whose c-row is the
truth-table of c. Then M contains complete 2¢ x d rectangle

» Blumer-Ehrenfeucht-Haussler-Warmuth'86:
every (e, 0)-PAC-learner for C needs Q <g + @) examples

> Hanneke'16: for every concept class C, there exists an
(€, 6)-PAC-learner using O (g + M) examples



Quantum data

» Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data:
one or more copies of some quantum state, generated by
natural process or experiment

» Bshouty-Jackson'95: suppose example is a superposition
Y. VDX)Ix.c(x))
xe{0,1}n

Measuring this (n + 1)-qubit state gives a classical example,
so quantum examples are at least as powerful as classical

» Next slide: some cases where quantum examples are more
powerful than classical for a fixed distribution D



Uniform quantum examples help some learning problems

) 1
» Quantum example under uniform D: 7 Z |x, c(x))
2 xe{0,1}n
» Hadamard transform can turn this into Z c(s)|s)
s€{0,1}"
&(s) = 3 >, c(x)(—1)¥* are the Fourier coefficients of c.
This allows us to sample s from distribution &(s)?!
» If c is linear mod 2 (c(x) = s - x for one s), then distribution
is peaked at s. We can learn ¢ from one quantum example!

» Bshouty-Jackson'95: efficiently learn Disjunctive Normal Form
(DNF) formulas. Fourier sampling + classical “boosting”

» Reduced sample complexity for juntas, sparse c's, LWE, ...

» But in the PAC model, learner has to succeed for all D



Quantum sample complexity

Could quantum sample complexity be significantly smaller than
classical sample complexity in the PAC model?

» Classical sample complexity is © (g + M)
» Classical upper bound carries over to quantum examples
> Atici & Servedio’'04: lower bound Q (@ +d+ M)

» Arunachalam & dW'17: tight bounds: Q2 (g + %)
quantum examples are necessary to learn C

Hence in distribution-independent learning:

quantum examples are not significantly better than classical examples



Proof sketch of the lower bound

» Let S = {sp,51,...,54} be shattered by C.
Define distribution D with 1 — 8¢ probability on sp,
and 8¢/d probability on each of {si,...,sq4}.

» c-error learner takes T quantum examples and produces
hypothesis h that agrees with c(s;) for > £ of i € {1,...,d}.
This is an approximate state identification problem

» Take a good error-correcting code E : {0,1}* — {0,1}9, with
k = d/4, distance between any two codewords > d/4:
approximating codeword E(z) < exactly identifying E(z)

» We now have an exact state identification problem with 2%
possible states. Quantum learner cannot be much better than
the “Pretty Good Measurement,” and we can analyze
precisely how well PGM can do as a function of T.

High success probability = T > Q (g + M)



Similar results for agnostic learning

» Agnostic learning: unknown distribution D on (x, £) generates
examples. We want to learn to predict bit £ from x.
This allows to model situations where we only have “noisy”
examples for the target concept; maybe no fixed target
concept even exists

Best t from C h OPT =min P 14
» Best concept from C has error min (x,E)LD[C(X)# ]

» Goal of the learner: output h € C with error < OPT + ¢

» Classical sample complexity: T = © (;% + M)

&

NB: generalization error ¢ = O(1/+/T), not O(1/T) as in PAC

» Again, we show the quantum sample complexity is the same,
by analyzing PGM to get optimal quantum bound



Pretty good tomography

» Suppose we have some copies available of n-qubit mixed
state p, and some observables we could measure

» Learning p requires roughly 22" measurements (& copies of p).
This “full tomography” is very expensive already for n = 8

> Aaronson’'06 used a classical PAC-learning result to get:

Let £ be set of measurement operators and D distribution on &.
From O(n) i.i.d. data points of the form (E, T Ep)), where
E ~ D, we can learn an n-qubit state o such that:

If E ~ D, then with high probability, T{ Ep) ~ Tr(Ec).

» This learning algorithm has bad time complexity in general,
but can be efficient in special cases (e.g., stabilizer states)

» Aaronson’l7 also defined shadow tomography: find a o that’s
good for all E € £ using n - polylog(|€|) copies of p



Active learning

» In some situations, instead of passively receiving examples for
the target concept ¢ : {0,1}" — {0,1} that we want to learn,
we can actively “probe it”

» Membership query: ask ¢(x) for any x € {0,1}" of our choice

» Cases where quantum membership queries help:
» Linear functions C = {c(x) =s-x|s € {0,1}"}:
Fourier sampling learns target with 1 membership query

» Point functions C = {6, | z € {0,1}"}:
Grover learns target with O(\/27) membership queries

» Quantum improvement cannot be very big: if C can be learned
by @ quantum membership queries, then it can also be
learned by O(n Q3) classical queries (Servedio & Gortler'04).

Has been improved by log Q factor (ACLW'18)



Quantum improvements in time complexity

» Kearns & Vazirani'94 gave a concept class that is not
efficiently PAC-learnable if factoring is hard

Angluin & Kharitonov'95: concept class that is not efficiently
learnable from membership queries if factoring is hard

» But factoring is easy for a quantum computer! Servedio &
Gortler'04: these classes can be learned efficiently using Shor

> Servedio & Gortler'04: If classical one-way functions exist,
then 3C that is efficiently exactly learnable from membership
queries by quantum but not by classical computers.

Proof idea: use pseudo-random function to generate instances
of Simon's problem (special 2-to-1 functions). Simon's
algorithm can solve this efficiently, but classical learner would
have to distinguish random from pseudo-random



Summary & Outlook

v

Quantum machine learning combines two great fields

» You can get quadratic speed-ups for some ML problems,
exponential speed-ups are under strong assumptions.
Biggest issue: how to put big classical data in superposition

v

In some scenarios: provably no quantum improvement

v

Still, this area is very young, and | expect much more

» Optimization tools for quantum machine learning algorithms:

Minimization / maximization (Grover's algorithm)
Solving large systems of linear eqns (HHL algor.)
Solving linear and semidefinite programs
Gradient-descent with faster gradient-calculation
Physics methods: adiabatic computing, annealing

vV vy vy VvVYyy



Some open problems

» Find a good ML-problem on classical data with a quantum
method circumventing classical-data-to-quantum-data issue

» Find a good ML-problem where the HHL linear-systems solver
can be applied & its pre-conditions are naturally satisfied

» Efficiently learn constant-depth formulas from uniform
quantum examples, generalizing Bshouty-Jackson's DNF

» Show that if concept class C can be learned with @ quantum
membership queries, then it can also be learned with
O(Q? + @n) classical membership queries

» Can we do some useful quantum ML on
~ 100 qubits with moderate noise?



Further reading: Many recent surveys

> Wittek, Quantum machine learning: What quantum
computing means to data mining, Elsevier, 2014

» Schuld et al., An introduction to quantum machine learning,
arXiv:1409.30

» Adcock et al., Advances in quantum machine learning,
arXiv:1512.0290

» Biamonte et al., Quantum machine learning, arXiv:1611.093

» Arunachalam & de Wolf, A survey of quantum learning
theory, arXiv:1701.06806

» Ciliberto et al., Quantum machine learning: a classical
perspective, arXiv:1707.08561

» Dunjko & Briegel, Machine learning & artificial intelligence in
the quantum domain, arXiv:1709.02779



