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Machine learning

I Algorithmically finding patterns and generalizations of given
data. For prediction, understanding, theorizing,. . .

I Recently great successes
in image recognition,
natural language processing,
playing Go, . . .

I Different settings for machine learning:

I Supervised learning: labeled examples
I Unsupervised learning: unlabeled examples
I Reinforcement learning: interaction with environment
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Quantum machine learning?

I No need to stick to classical learning algorithms —

What can quantum computers do for machine learning?

I The learner will be quantum, the data may be quantum

Classical learner Quantum learner

Classical data Classical ML This talk

Quantum data ? This talk
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Won’t cover: classical ML to help quantum

I Many-body quantum state tomography with classical neural
networks (Carleo & Troyer’16, Torlai et al.’17)

I In quantum error correction: learn to predict the best
correction operations from the error syndrome measurement
outcomes (Torlai & Melko’16, Baireuther et al.’17)

I Learning to create new quantum experiments & to control
quantum systems (Melnikov et al.’17)

I Classical heuristics beating quantum annealing
(Katzgraber et al.’17)
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How can quantum computing help machine learning?

I Core idea: inputs to learning problem are often
high-dimensional vectors of numbers (texts, images, . . . ).
These can be viewed as amplitudes in a quantum state.

Required number of qubits is only logarithmic in dimension!

Vector v ∈ Rd ⇒ log2(d)-qubit state |v〉 = 1
‖v‖
∑d

i=1 vi |i〉

I So we want to efficiently represent our data as quantum
states, and apply quantum algorithms on them to learn.

Easier said than done. . .

I This talk focuses on provable, non-heuristic parts of QML:

1. Some cases where quantum helps for specific ML problems

2. Some more general quantum learning theory
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Part 1:

Some cases where

quantum helps ML
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Example 1: Principal Component Analysis

I Data: classical vectors v1, . . . , vN ∈ Rd . For example:

I jth entry of vi counts # times document i contains keyword j

I jth entry of vi indicates whether buyer i bought product j

I PCA: find the principal components of

“correlation matrix” A =
∑N

i=1 viv
T
i

Main eigenvectors describe patterns in the data.

Can be used to summarize data, for prediction, etc.

I Idea for quantum speed-up (Lloyd, Mohseni, Rebentrost’13):

IF we can efficiently prepare the |vi 〉 as log2(d)-qubit states,

then doing this for random i gives mixed state ρ = 1
NA.

We want to sample (eigenvector,eigenvalue)-pairs from ρ
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Example 1 (cntd): PCA via self-analysis

I Using few copies of ρ, we want to run U = e−iρ on some σ

I Idea: start with σ⊗ ρ, apply SWAPε, throw away 2nd register.

1st register now has Uεσ(U†)ε, up to error O(ε2).

Repeat this 1/ε times, using a fresh copy of ρ each time.

First register now contains UσU†, up to error 1
εO(ε2) = O(ε)

I Suppose ρ has eigendecomposition ρ =
∑

i λi |wi 〉〈wi |.

Phase estimation maps |wi 〉|0〉 7→ |wi 〉|λ̃i 〉,
where |λi − λ̃i | ≤ δ, using O(1/δ) applications of U

I Phase estimation on another fresh copy of ρ maps

ρ⊗ |0〉〈0| 7→
∑
i

λi |wi 〉〈wi | ⊗ |λ̃i 〉〈λ̃i |

Measuring 2nd register samples |wi 〉|λ̃i 〉 with probability λi
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Example 2: clustering based on PCA

I Data: classical vectors v1, . . . , vN ∈ Rd

Goal: group these into k � N clusters

I Good method: let the k clusters correspond to
top-k eigenvectors of the correlation matrix A =

∑N
i=1 viv

T
i

I Idea for quantum speed-up (Lloyd et al.):

IF we can efficiently prepare the |vi 〉 as log2(d)-qubit states,
then we can use PCA to sample from top eigenvectors of A.

Can build a database of several copies of each of the k top
eigenvectors of A, thus learning the centers of the k clusters
(as quantum states!)
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Example 3: nearest-neighbor classification

I Data: classical vectors w1, . . . ,wk ∈ Rd ,

representing k “typical” categories (clusters)

I Input: a new vector v ∈ Rd that we want to classify,

by finding its nearest neighbor among w1, . . . ,wk

I Idea for quantum speed-up (Äımeur et al.’07; Wiebe et al.’14):

IF we can efficiently prepare |v〉 and |wi 〉 as log2(d)-qubit
states, say in time P, then we can use the SWAP test to
estimate distance ‖v − wi ‖ up to small error, say in time P

Then use Grover’s algorithm on top of this to find

i ∈ {1, . . . , k} minimizing ‖v − wi ‖. Assign v to cluster i

I Complexity: O(P
√
k)
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How to put classical data in superposition?

I Given vector v ∈ Rd : how to prepare |v〉 = 1
‖v‖
∑d

i=1 vi |i〉 ?

I Assume quantum-addressable memory: Ov : |i , 0〉 7→ |i , vi 〉

1. Find µ = maxi |vi | in O(
√
d) steps (Dürr-Høyer min-finding)

2. 1√
d

∑
i |i〉

Ov7→ 1√
d

∑
|i , vi 〉 7→ 1√

d

∑
|i , vi 〉( viµ |0〉+

√
1− v2

i
µ2
|1〉)

O−1
v7→ 1√

d

∑
i |i〉(

vi
µ |0〉+

√
1− v2

i
µ2
|1〉) = ‖v‖

µ
√
d
|v〉|0〉+ |w〉|1〉

3. Boost |0〉 by O

(
µ
√
d

‖v ‖

)
rounds of amplitude amplification

I Expensive for “peaked” v ; cheap for “uniform” or “sparse” v

(but there you can efficiently compute many things classically!)
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Example 4: Recommendation systems

I m users, n products (movies),

unknown m × n preference matrix P =


. . .

. . .

Pij

. . .
. . .


Assume ∃ rank-k approximation Pk ≈ P, for some k � m, n

I Information about P comes in online: user i likes movie j .
System can only access partial matrix P̂ with this information

I Goal: provide new recommendation to user i
by sampling from ith row of P (normalized)

I Classical methods: construct rank-k completion P̂k from P̂,
hope that P̂k ≈ P. Time poly(k ,m, n)

I Kerenidis & Prakash’16: quantum recommendation system
polylog(mn) update & poly(k , log(mn)) recommendation time
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Example 4: Quantum recommendation system (sketch)

I “Subsample matrix”: P̂ij =

{
Pij/p with probability p
0 otherwise

I P̂k : projection of P̂ on its top-k singular vectors.

Achlioptas & McSherry’01: P̂k ≈ P in Frobenius distance.

Hence for most i : ith row of P̂k is close to ith row of P

I For most i , sampling from ith row of P̂k is similar to sampling
from ith row of P, so gives a good recommendation for user i

I Non-zero entries of P̂ come in one-by-one. Kerenidis &
Prakash create data structure (polylog(mn) update time)

that can generate |ith row of P̂〉 in polylog(mn) time

I When asked for a recommendation for user i :

generate |ith row of P̂〉, project onto largest singular vectors
of P̂ (via phase estimation), measure resulting quantum state
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Many other attempts at using quantum for ML

I k-means clustering

I Support Vector Machines

I Training perceptrons (≈depth-1 neural networks)

I Quantum deep learning (=deep neural networks)

I Training Boltzmann machines for sampling

I . . .

Problems:

I How to efficiently put classical data in superposition?

I How to use reasonable assumptions about the data (also in
classical ML; much work is heuristic rather than rigorous)

I We don’t have a large quantum computer yet. . .



15/ 30

Part 2:

Some more general

quantum learning theory
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Supervised learning

I Concept: some function c : {0, 1}n → {0, 1}.
Think of x ∈ {0, 1}n as an object described by n “features”,
and concept c as describing a set of related objects

I Goal: learn c from a small number of examples: (x , c(x))

grey brown teeth huge c(x)

1 0 1 0 1

0 1 1 1 0

0 1 1 0 1

0 0 1 0 0

Output hypothesis could be: (x1 OR x2) AND ¬x4
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Making this precise: Valiant’s “theory of the learnable”

I Concept: some function c : {0, 1}n → {0, 1}
Concept class C: set of concepts (small circuits, DNFs,. . . )

I Example for an unknown target concept c ∈ C:
(x , c(x)), where x ∼ unknown distribution D on {0, 1}n

I Goal: using some i.i.d. examples, learner for C should output
hypothesis h that is probably approximately correct (PAC).

h is a function of examples and of learner’s randomness.

Error of h w.r.t. target c : errD(c, h) = Prx∼D [c(x) 6= h(x)]

I An algorithm (ε, δ)-PAC-learns C if:

∀c ∈ C ∀D : Pr[ errD(c, h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ
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Complexity of learning

I Concept: some function c : {0, 1}n → {0, 1}
Concept class C: some set of concepts

I Algorithm (ε, δ)-PAC-learns C if its hypothesis satisfies:

∀c ∈ C ∀D : Pr[ errD(c, h) ≤ ε︸ ︷︷ ︸
h is approximately correct

] ≥ 1− δ

I How to measure the efficiency of the learning algorithm?

I Sample complexity: number of examples used

I Time complexity: number of time-steps used

I A good learner has small time & sample complexity
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VC-dimension determines sample complexity

I Cornerstone of classical sample complexity: VC-dimension

Set S = {s1, . . . , sd} ⊆ {0, 1}n is shattered by C if
for all a ∈ {0, 1}d , there is c ∈ C s.t. ∀i ∈ [d ] : c(si ) = ai

VC-dim(C) = max{d : ∃S of size d shattered by C}

I Equivalently, let M be the |C| × 2n matrix whose c-row is the
truth-table of c . Then M contains complete 2d × d rectangle

I Blumer-Ehrenfeucht-Haussler-Warmuth’86:

every (ε, δ)-PAC-learner for C needs Ω
(
d
ε + log(1/δ)

ε

)
examples

I Hanneke’16: for every concept class C, there exists an

(ε, δ)-PAC-learner using O
(
d
ε + log(1/δ)

ε

)
examples
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Quantum data

I Let’s try to circumvent the problem of putting classical data
in superposition, by assuming we start from quantum data:
one or more copies of some quantum state, generated by
natural process or experiment

I Bshouty-Jackson’95: suppose example is a superposition∑
x∈{0,1}n

√
D(x)|x , c(x)〉

Measuring this (n + 1)-qubit state gives a classical example,
so quantum examples are at least as powerful as classical

I Next slide: some cases where quantum examples are more
powerful than classical for a fixed distribution D
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Uniform quantum examples help some learning problems

I Quantum example under uniform D:
1√
2n

∑
x∈{0,1}n

|x , c(x)〉

I Hadamard transform can turn this into
∑

s∈{0,1}n
ĉ(s)|s〉

ĉ(s) = 1
2n
∑

x c(x)(−1)s·x are the Fourier coefficients of c .

This allows us to sample s from distribution ĉ(s)2!

I If c is linear mod 2 (c(x) = s · x for one s), then distribution
is peaked at s. We can learn c from one quantum example!

I Bshouty-Jackson’95: efficiently learn Disjunctive Normal Form
(DNF) formulas. Fourier sampling + classical “boosting”

I Reduced sample complexity for juntas, sparse c’s, LWE, . . .

I But in the PAC model, learner has to succeed for all D
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Quantum sample complexity

Could quantum sample complexity be significantly smaller than
classical sample complexity in the PAC model?

I Classical sample complexity is Θ
(
d
ε + log(1/δ)

ε

)
I Classical upper bound carries over to quantum examples

I Atici & Servedio’04: lower bound Ω
(√

d
ε + d + log(1/δ)

ε

)
I Arunachalam & dW’17: tight bounds: Ω

(
d
ε + log(1/δ)

ε

)
quantum examples are necessary to learn C

Hence in distribution-independent learning:

quantum examples are not significantly better than classical examples
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Proof sketch of the lower bound

I Let S = {s0, s1, . . . , sd} be shattered by C.
Define distribution D with 1− 8ε probability on s0,
and 8ε/d probability on each of {s1, . . . , sd}.

I ε-error learner takes T quantum examples and produces
hypothesis h that agrees with c(si ) for ≥ 7

8 of i ∈ {1, . . . , d}.
This is an approximate state identification problem

I Take a good error-correcting code E : {0, 1}k → {0, 1}d , with
k = d/4, distance between any two codewords > d/4:
approximating codeword E (z) ⇔ exactly identifying E (z)

I We now have an exact state identification problem with 2k

possible states. Quantum learner cannot be much better than
the “Pretty Good Measurement,” and we can analyze
precisely how well PGM can do as a function of T .

High success probability ⇒ T ≥ Ω
(
d
ε + log(1/δ)

ε

)
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Similar results for agnostic learning

I Agnostic learning: unknown distribution D on (x , `) generates
examples. We want to learn to predict bit ` from x .
This allows to model situations where we only have “noisy”
examples for the target concept; maybe no fixed target
concept even exists

I Best concept from C has error OPT = min
c∈C

Pr
(x ,`)∼D

[c(x) 6= `]

I Goal of the learner: output h ∈ C with error ≤ OPT + ε

I Classical sample complexity: T = Θ
(

d
ε2

+ log(1/δ)
ε2

)
NB: generalization error ε = O(1/

√
T ), not O(1/T ) as in PAC

I Again, we show the quantum sample complexity is the same,
by analyzing PGM to get optimal quantum bound
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Pretty good tomography

I Suppose we have some copies available of n-qubit mixed
state ρ, and some observables we could measure

I Learning ρ requires roughly 22n measurements (& copies of ρ).

This “full tomography” is very expensive already for n = 8

I Aaronson’06 used a classical PAC-learning result to get:

Let E be set of measurement operators and D distribution on E .
From O(n) i.i.d. data points of the form (E ,Tr(Eρ)), where
E ∼ D, we can learn an n-qubit state σ such that:

If E ∼ D, then with high probability, Tr(Eρ) ≈ Tr(Eσ).

I This learning algorithm has bad time complexity in general,
but can be efficient in special cases (e.g., stabilizer states)

I Aaronson’17 also defined shadow tomography: find a σ that’s
good for all E ∈ E using n · polylog(|E|) copies of ρ
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Active learning

I In some situations, instead of passively receiving examples for
the target concept c : {0, 1}n → {0, 1} that we want to learn,
we can actively “probe it”

I Membership query: ask c(x) for any x ∈ {0, 1}n of our choice

I Cases where quantum membership queries help:

I Linear functions C = {c(x) = s · x | s ∈ {0, 1}n}:
Fourier sampling learns target with 1 membership query

I Point functions C = {δz | z ∈ {0, 1}n}:
Grover learns target with O(

√
2n) membership queries

I Quantum improvement cannot be very big: if C can be learned
by Q quantum membership queries, then it can also be
learned by O(nQ3) classical queries (Servedio & Gortler’04).

Has been improved by logQ factor (ACLW’18)
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Quantum improvements in time complexity

I Kearns & Vazirani’94 gave a concept class that is not
efficiently PAC-learnable if factoring is hard

Angluin & Kharitonov’95: concept class that is not efficiently
learnable from membership queries if factoring is hard

I But factoring is easy for a quantum computer! Servedio &
Gortler’04: these classes can be learned efficiently using Shor

I Servedio & Gortler’04: If classical one-way functions exist,
then ∃C that is efficiently exactly learnable from membership
queries by quantum but not by classical computers.

Proof idea: use pseudo-random function to generate instances
of Simon’s problem (special 2-to-1 functions). Simon’s
algorithm can solve this efficiently, but classical learner would
have to distinguish random from pseudo-random
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Summary & Outlook

I Quantum machine learning combines two great fields

I You can get quadratic speed-ups for some ML problems,
exponential speed-ups are under strong assumptions.

Biggest issue: how to put big classical data in superposition

I In some scenarios: provably no quantum improvement

I Still, this area is very young, and I expect much more

I Optimization tools for quantum machine learning algorithms:

I Minimization / maximization (Grover’s algorithm)
I Solving large systems of linear eqns (HHL algor.)
I Solving linear and semidefinite programs
I Gradient-descent with faster gradient-calculation
I Physics methods: adiabatic computing, annealing
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Some open problems

I Find a good ML-problem on classical data with a quantum
method circumventing classical-data-to-quantum-data issue

I Find a good ML-problem where the HHL linear-systems solver
can be applied & its pre-conditions are naturally satisfied

I Efficiently learn constant-depth formulas from uniform
quantum examples, generalizing Bshouty-Jackson’s DNF

I Show that if concept class C can be learned with Q quantum
membership queries, then it can also be learned with
O(Q2 + Qn) classical membership queries

I Can we do some useful quantum ML on
∼ 100 qubits with moderate noise?
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Further reading: Many recent surveys

I Wittek, Quantum machine learning: What quantum
computing means to data mining, Elsevier, 2014

I Schuld et al., An introduction to quantum machine learning,
arXiv:1409.30

I Adcock et al., Advances in quantum machine learning,
arXiv:1512.0290

I Biamonte et al., Quantum machine learning, arXiv:1611.093

I Arunachalam & de Wolf, A survey of quantum learning
theory, arXiv:1701.06806

I Ciliberto et al., Quantum machine learning: a classical
perspective, arXiv:1707.08561

I Dunjko & Briegel, Machine learning & artificial intelligence in
the quantum domain, arXiv:1709.02779


