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Quantum mechanics and the theory of gravity are presently not compatible. A particular question
is whether gravity causes decoherence - an unavoidable source of noise. Several models for gravi-
tational decoherence have been proposed, not all of which can be described quantum mechanically
[1–3]. In parallel, several experiments have been proposed to test some of these models [4–6], where
the data obtained by such experiments is analyzed assuming quantum mechanics. Since we may
need to modify quantum mechanics to account for gravity, however, one may question the validity of
using quantum mechanics as a calculational tool to draw conclusions from experiments concerning
gravity.
Here we propose an experiment to estimate gravitational decoherence whose conclusions hold even

if quantum mechanics would need to be modified. We first establish a general information-theoretic
notion of decoherence which reduces to the standard measure within quantum mechanics. Second,
drawing on ideas from quantum information, we propose a very general experiment that allows
us to obtain a quantitative estimate of decoherence of any physical process for any physical theory
satisfying only very mild conditions. Finally, we propose a concrete experiment using optomechanics
to estimate gravitational decoherence in any such theory, including quantum mechanics as a special
case.
Our work raises the interesting question whether other properties of nature could similarly be

established from experimental observations alone - that is, without already having a rather well
formed theory of nature like quantum mechanics to make sense of experimental data.

Experiments aiming to test the presence - and amount
- of gravitational decoherence generally go beyond estab-
lished theory. Many theoretical models for gravitational
decoherence have been proposed [1, 3, 7–15], and it is
wide open if one of these proposals is correct. As such,
experiments are of a highly exploratory nature, aiming
to establish data points to which one may tailor future
theoretical proposals. This task is made even more dif-
ficult by the fact that quantum mechanics and gravity
do not go hand in hand, and indeed quantum mechan-
ics may need to be modified in a yet unknown way in
order to account for gravitational effects such as deco-
herence. We are thus compelled to design an experiment
that provides a guiding light for the search for the right
theoretical model - or indeed new physical theory - whose
conclusions do not rely on quantum mechanics.

Decoherence in QM

As an easy warmup, let us first focus on the concept of
decoherence within quantum mechanics. We first show
how the protocol given in Figure 1 allows us to esti-
mate quantum mechanical decoherence without knowing
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the decoherence process, and without doing quantum to-
mography to determine it. Traditionally, the presence
of decoherence within quantum mechanics is related to
the change of state due to measurement and the ”col-
lapse of the wavefunction”. There are two complimentary
ways to view this based on unconditional and conditional
states. Given some pure quantum state, α|0〉+β|1〉, and
an arbitrarily accurate measurement of the variable di-
agonal in this basis, the post-measurement conditional
states are |0〉 or |1〉 conditioned on the measurement
outcome. On the other hand if this measurement has
taken place but the results are unknown, the resulting
unconditional state is given by the a quantum density
matrix ρ = |α|2|0〉〈0| + |β|2|1〉〈1|. The vanishing of the
off-diagonal matrix elements in the measurement basis
for the post measurement unconditional state forms de-
coherence. If the measurement is not arbitrarily accurate
(i.e. weak) the off-diagonal matrix elements are reduced
but do not vanish. More general forms of decoherence
correspond to a decay of off-diagonal terms in the den-
sity operator ρ with respect to any basis, and can occur
due to the interaction of the system with an environment
that may not be a measurement procedure of any kind.
It is clear that this way of thinking about decoherence is
entirely tied to the quantum mechanical matrix formal-
ism, and also offers little in the way of quantifying the
amount of decoherence in an operationally meaningful
way.
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1 The setup figure

I chose to give the box a black color. This allows to refer to the unknown process as a “black box”. Moreover, I chose to
write person names instead of labels S, A, B and E since this is a rather non-technical figure. Of course, anything in this
figure can still be adjusted. Just let me know if you need a change. In my opinion, the third figure is the one we should
use (with labels created in TikZ), because the text exactly matches the format of the text.

Figure 1.1: The setup figure without labels (one column, imported pdf). Some description of the figure, which
is written in a normal font, while the title of the figure needs to be written in a bold font.
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Figure 1.2: The setup figure with labels created in Adobe Illustrator (one column, imported pdf). Some
description of the figure, which is written in a normal font, while the title of the figure needs to be written in a bold font.
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Figure 1.3: The setup figure with labels created in TikZ (one column, imported pdf & TikZ). Some description
of the figure, which is written in a normal font, while the title of the figure needs to be written in a bold font.
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FIG. 1: Any decoherence process - also known as a (quan-
tum) channel - can be thought of as an interaction UI of
the system A′ with an environment Ein. In quantum me-
chanics, the resulting state is the output of the channel
ρB = ΓA′→B(ρA′) = TrE [UIρA′ ⊗ |ΨEin〉〈ΨEin |U†I ]. In gen-
eral, B may be a smaller or larger system than A′. In the
examples below, however, we will focus on the case where
A′ and B′ have the same dimension, corresponding to the
case where a fixed system A′ = B experiences some inter-
action with another system Ein = E. The channels abil-
ity to preserve quantum information - that is, the amount
of decoherence - can be characterized by how well it pre-
serves entanglement between an outside system A and A′.
We note that our treatment of theories that go beyond stan-
dard quantum mechanics makes no statement whether the
environment is an actual physical system, or merely a mathe-
matical Gedankenexperiment possibly used to describe an in-
trinsic decoherence process. In full generality, the experiment
consists of a Bell experiment in which a source of decoher-
ence is introduced deliberately. For simplictly, we consider
an experiment for the CHSH inequality, although our analy-
sis could easily be extended to any other Bell inequality. In
each run, a source prepares the maximally entangled state
ΦAA′ , where A′ is subsequently exposed to the decoherence
process to be tested. We then perform the standard CHSH
measurements: system A is measured with probability 1/2
using observables A0 = σX and A1 = σZ respectively. Sys-
tem B is measured using observables B0 = (σX − σZ)/

√
2

and B1 = (σX + σZ)/
√

2 with probability 1/2 each. Per-
forming the experiment many times allows an estimate of
β = Tr[ρAB(A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1)].

The modern way of understanding decoherence in
quantum mechanics in a quantitative way is provided
by quantum information theory. One thereby thinks of
a decoherence process as a interaction of a system A′

with an environment as described in Figure 1, resulting
in a quantum channel ΓA′→B . The amount of of deco-
herence can now be quantified by the channel’s ability
to transmit quantum information, i.e., its quantum ca-
pacity (see e.g. [16] and the appendix for further back-
ground). Concretely, one considers n uses of the channel
given by Γ⊗nA′→B , and asks how many qubits k we can
send in relation to n using an error-correcting encoding.
Of particular interest is thereby the so-called single shot
capacity, which determines the largest rate k/n up to a

given error parameter for any choice of n 1. This single-
shot capacity is determined by the so-called min-entropy
Hmin(A|E) [17, 18].

Apart from its information-theoretic significance, the
min-entropy has a beautiful operational interpretation
that also makes its role as a decoherence measure in-
tuitively apparent. Very roughly, the amount of deco-
herence can be understood as a measure of how cor-
related E becomes with A. Suppose we start with a
maximally entangled test state ΦAA′ where the decoher-
ence process is applied to A′. This results in a state
|ΨABE〉 (see Figure 1). If no decoherence occurs, the
output state will be of the form ΦAB ⊗ |0〉〈0 |E where
A′ = B. That is, A and B are maximally entangled, but
A and E are completely uncorrelated. The strongest de-
coherence, however, produces an output state of the form
ΦAE1

⊗ ρE2
⊗ |0〉〈0 |B where A′ = E1 and E = E1E2.

That is, A is now maximally entangled with E1, whereas
A and B are completely uncorrelated. What about the
intermediary regime? The min-entropy can be written as

Hmin(A|E) = − log dA Dec(A|E) , (1)

where dA is the dimension of A, and [19]

Dec(A|E) = max
RE→A′

F 2(ΦAA′ , 11A ⊗RE→A′(ρAE)) . (2)

The maximization above is taken over all quantum oper-
ations RE→A′ on the system E, which aim to bring the
state ρAE as close as possible to the maximally entan-
gled state ΦAA′ . Intuitively, Dec(A|E) can thus be un-
derstood as a measure of how far the output ρAE is from
the setting of maximum decoherence (where ρAE = ΦAE
is the maximally entangled state). If there is no decoher-
ence, we have ρAE = 11/dA⊗ρE giving Dec(A|E) = 1/d2

A
and Hmin(A|E) = log dA. If there is maximum decoher-
ence, we have ρAE1

= ΦAA′ giving Dec(A|E) = 1 and
Hmin(A|E) = − log dA where RE→A′ = TrE2

is simply
the operation that discards the remainder of the environ-
ment E2. A larger value of Dec(A|E) thus corresponds
to a larger amount of decoherence. In the quantum case,
Dec(A|E) can be computed using any semi-definite pro-
gramming solver [20, 21].

We hence see that in quantum mechanics, the rele-
vant measure of decoherence is simply Dec(A|E). How
can we estimate it an experiment? Our goal in deriv-
ing this estimate will be to rely on concepts that we can
later extend beyond the realm of quantum theory, deriv-
ing a universally valid test. It is clear that to estimate
Dec(A|E) we need to make a statement about the entan-
glement between A and E - yet E is inaccesible to our
experiment. A property of quantum mechanics known as
the monogamy of entanglement [22] nevertheless allows

1 The asymptotic quantity often considered in information theory
arises in the limit of n → ∞, but the single-shot capacity gives
more refined statements which are valid for any n.
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such an estimate: if ρAB is highly entangled, then ρAE
is necessarily far from highly entangled. Since low en-
tanglement in ρAE means that Dec(A|E) is low, a test
that is able to detect entanglement between A and B
should help us bound Dec(A|E) from above. We note
that whereas any experimental proposal demands that
we specifiy concrete measurements to be performed, our
conclusions remain valid even if we do not have full con-
trol over the measurements, possibly because they are
also somehow affected by an gravitational interaction in
an unknown fashion. Dealing with unknown states and
measurements is the essence of so-called device indepen-
dence [23] in quantum cryptography. Allowing arbitrary
measurements again forms a crucial stepping stone, en-
abling us to extend our results beyond quantum mechan-
ics.

Beyond QM

The real challenge is to show that the conclusions of
our test remain valid even outside of quantum mechanics.
Since we want to make as few assumptions as possible, we
consider the most general probabilistic theory, in which
we are only given a set of possible states Ω and measure-
ments on these states. Every measurement is thereby a
collection of effects ea : Ω → [0, 1] satisfying ea(ω) > 0
and

∑
a ea(ω) = 1 for all ω ∈ Ω. We also refer to a

measurement as an instrument M = {ea}a. The label a
corresponds to a measurement outcome ’a’. The notion
of separated systems A, B and E is in general difficult to
define uniquely. We thus again make the most minimal
assumption possible in which we identify ”systems” A, B
and E by sets of measurements that can be performed.
For simplicitly, we take measurements and operations in
the sets A,B, and E to commute, but do not impose any
other strucuture. We thus merely use labels A and B
and E for commuting measurements. This means that
for maps going from a system E to an output system A′

like RE→A′ the map is really from E to E and we use A′
merely to remind ourselves we consider a restricted class
of measurements on the output. Again, this is analogous
to quantum mechanics where such measurements consist
of operators on A′ and the identity elsewhere (see ap-
pendix for a discussion).

The first obstacle consists of defining a general no-
tion of decoherence. We saw that quantumly decoher-
ence can be quantified by how well correlations between
A and A′ are preserved, and this can be measured by
how well the decoherence process preserves the maxi-
mally correlated state. Indeed, we can also quantify clas-
sical noise in terms of how well it preserves correlations,
where the maximally correlated state takes on the form
(1/dA)

∑
a |a〉〈a |A ⊗ |a〉〈a |A′ for some classical symbols

a. We hence start by defining the set of maximally cor-
related states, by observing a crucial and indeed defining
property of the maximally correlated in quantum me-
chanics. Concretely, A and A′ are maximally entangled

if and only if for any von Neumann measurement on A,
there exists a corresponding measurement on A′ giving
the same outcome. Again, the same is also true classically
but made trivial by the fact that only one measurement is
allowed. In analogy, we thus define the set of maximally
correlated states as

ΨAA′ =
{

Φ ∈ ΩAA′ | ∀MA = {eAa }a ∃MB = {eBa }a

such that
∑

a

eAa e
B
a (ω) = 1

}
. (3)

This set coincides with the set of maximally entangled
states in quantum mechanics, where A′ can potentially
contain an additional component σA′ in ΦAA′⊗σA′ which
is irrelevant to our discussion. We thus define

Dec(A|E)ω = sup
RE→A′

sup
ΦAA′∈ΨAA′

F 2(ΦAA′ ,RE→A′(ωAE)) ,

(4)

where ωAE is the state shared between A and E according
to the general physical theory. The fidelity between two
states ω1 and ω2 is thereby defined in full analogy to the
quantum case [25] as

F (ω1, ω2) = inf
M
F (M(ω1),M(ω2)) , (5)

where the minimization is taken over all possible mea-
surements M , and M(ω) denotes the probability distri-
bution over the measurement outcomes of M . That is,
the fidelity can be expressed as the minimum fidelity be-
tween probability distributions of classical measurement
outcomes. How about the transformation RE→A′? In
general, it is difficult to characterize the set of allowed
transformations RE→A′ in arbitrary physical theories,
however we will not need make RE→A′ explicit in or-
der to bound Dec(A|E). Equation (4) gives us the fa-
miliar quantity within quantum mechanics, but provides
us with an a very intuitive way to quantify decoherence
in any physical theory that admits maximally correlated
states. We emphasize that with our general techniques
the latter demand could be weakend to allow all theories,
even those who only have (weak) approximations of max-
imally correlated states. However, as we are not aware
of any physically motivated example of such a theory,
we leave such an extension to future study for clarity of
exposition.

The second challenge is to prove that our test actu-
ally provides a bound on Dec(A|E)ω. Note that without
quantum mechanics to guide us, all that we could rea-
sonably establish by performing measurements on A and
B are the probabilities of outcomes a and b given mea-
surement settings x and y. That is, the probability

Pr[a, b|x, y]ω = eAa e
B
b (ωAB) , (6)

where eAa ∈ MA
x and eBb ∈ MB

y . Yet, given the sys-
tem E is entirely inaccessible to us we have no hope of
measuring Pr[a, b, c|x, y, z]ω directly, where z denotes a
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3 The example channels plot

To make the distinction between the curves as obvious as possible, I use di↵erent colors, di↵erent line styles and sort the
legend in the same order as the curves appear.
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Figure 3.1: The example channels plot (two columns, TikZ & pgfplots with imported csv files). Some
description of the figure, which is written in a normal font, while the title of the figure needs to be written in a bold font.
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FIG. 2: Comparison of the quantum bound with the actual values of Dec(A|E)ρ for some example channels
and measurements (colors online). The black dashdotted line on top shows the quantum bound, i.e. the maximal value of
Dec(A|E)ρ that is compatible with a measured CHSH value β in quantum theory. The other four plots are parametric plots:
The parameter that is varied is the noise parameter of the channel. For each noise parameter, the value of Dec(A|E)ρ of the
resulting state is calculated, as well as the CHSH value β that one would meausre for this state using the standard measurements
in the X-Z-plane that would be optimal for an EPR pair. This measurement happens to be optimal for the resulting state for
the depolarizing channel, but not for the dephasing channels. The orange solid line also shows such a parametric plot for the
dephasing channel, but for that line, the CHSH value β is not calculated for the standard measurement for the EPR pair but
for the measurement that is optimal for the actual resulting state. This is done using a formula found in [24]. The resulting
curve is independent of the dephasing direction.

measurement setting on E with outcome c. Neverthe-
less, similar to quantum entanglement, it is known that
no-signalling distributions are again monogamous [26] -
and it is this fact that allows us to draw conclusions about
E by measuring only A and B. We will therefore make a
non-trivial assumption about the physical theory, namely
that no-signalling holds between A, B and E. We em-
phasize weaker constraints on the amount of signalling
could also lead to a bound - but we are not aware of any
other concrete example to consider. Mathematically, no
signalling means that the marginal distributions obey

∀a, x, y, y′, z, z′ Pr[a|x, y, z]ω = Pr[a|x, y′, z′]ω , (7)

that is, the choice of measurement settings y, y′ and z, z′
does not influence the distribution of the outcomes a. A
set of distributions is no-signalling if such conditions hold
for all marginal distributions.

Abstract experiment

Our method is fully general and can in principle be
used to measure the decoherence of any physical process.
Figure 1 illustrates the general procedure. We create
an entangled pair, and use half of this entangled pair
to probe the unknown decoherence process. To estimate
Dec(A|E) we will make use of the fact that in QM entan-

glement is monogamous, or more generally - when con-
sidering theories beyond QM - that no-signalling correla-
tions are monogamous. This allow us to make statements
about the correlations between A and E, even though we
can only perform measurements on A and B. A test that
allows us to bound Dec(A|E) from observations made
on A and B alone is given by a Bell inequality [31, 32].
For the purpose of illustration, we consider creating an
entangled state ΦAA′ and perform a test based on the
CHSH inequaltity [33] (see Figure 1). We emphasize that
our methods are fully general and could be used in con-
junction with other inequalities and higher dimensional
entangled states.

As an easy warmup, let us first again consider what
happens in quantum mechanics. For now, we assume
that the measurement devices have no memory. That is,
the experiment behaves the same in each round, inde-
pendent on the previous measurements. It is relatively
straight forward to obtain an upper bound on Dec(A|E)
by extending techniques from quantum key distribution
(QKD) [23]. In essence, we maximize Dec(A|E) over all
states that are consistent with the observed CHSH cor-
relator β (see Figure 1). This maximization problem is
simplified by the inherent symmetries of the CHSH in-
equality, allowing us to reduce this optimization problem
to consider only states that are diagonal in the Bell ba-
sis. We proceed to establish properties of min and max
entropies for Bell diagonal states, leading to an upper
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Figures for the main article of the decoherence paper
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1 The regions plot
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Figure 1.1: Allowed values of the decoherence quantity for measured CHSH values (colors online). Part (a)
shows what values of the decoherence quantity are compatible with some measured CHSH value �, assuming either
quantum theory or any other probabilistic theory. The dark green region consists of all points (�, Dec(A|E)⇢) for which
there exists a state ⇢AB and two pairs (A0, A1) and (B0, B1) of observables with the according values, i.e. the bound
is tight. The red region shows pairs (�, Dec(A|E)!) that cannot be realized in any non-signalling probabilistic theory,
but not necessarily all of them. In other words, the curve between the light green area and the red area is a bound on
Dec(A|E)! which is valid for all non-signalling probabilistic theories, but the light green area might still contain forbidden
pairs. What is certain is that a bound for any specific non-signalling probabilistic theory runs below the red region. Part
(b) shows a plot of the border line between the forbidden region and the region which is potentially allowed by GPTs,
making it easier to see where the line runs for values of � close to 2.

1

FIG. 3: Allowed values of the decoherence quantity for
measured CHSH values (colors online). Part (a) shows
what values of the decoherence quantity are compatible with
some measured CHSH value β, assuming either quantum the-
ory or any other probabilistic theory. The dark green region
consists of all points (β,Dec(A|E)ρ) for which there exists
a quantum state ρAB and two pairs (A0, A1) and (B0, B1)
of observables with the according values, i.e. the bound is
tight. The red region shows pairs (β,Dec(A|E)ω) that can-
not be realized in any non-signalling probabilistic theory, but
not necessarily all of them. In other words, the curve between
the light green area and the red area is a bound on Dec(A|E)ω
which is valid for all non-signalling probabilistic theories, but
the light green area might still contain forbidden pairs. What
is certain is that a bound for any specific non-signalling prob-
abilistic theory runs below the red region. Part (b) shows
a zoomed-in plot of the border line between the forbidden
region and the region which is potentially allowed by GPTs,
making it easier to see where the line runs for values of β close
to 2. In a world constrained only by no-signalling, β = 4 is
possible [27–30].

bound. Concretely, we show in the Appendix (Theo-
rem B.1) that

Dec(A|E) 6 h(β) , (8)

where h(β) is an easy optimization problem that can be
solved using Lagrange multipliers. We have chosen not to

weaken this bound by an analytical bound that is strictly
larger, as it is indeed easily evaluated (see Figure 3). If
the devices are allowed memory, then a variant of this
test and some more sophisticated techniques from QKD
nevertheless can nevertheless be shown to give a bound.

E(t) a†

E(t)

g
e

Raman single photon source

E(t)

b, b†

FIG. 4: Probing an optomechanical system. Our goal
is to create two entanglement between two opto-mechanical
cavities. One cavitiy thereby has a movable mirror that intro-
duces gravitational decoherence. Two cavities each contain a
Raman single photon source controlled by an external laser
‘write field’ E(t) [34]. This write-field is used to map excita-
tions in the atomic sources to single photon excitations in the
cavities. The top cavity has fixed end mirrors while the bot-
tom cavity has one mirror that is harmonically bound along
the cavity axis and can move in response to the radiation
pressure force of light in the cavity. The Raman sources are
first prepared in an entangled state. This setup is a modifi-
cation of the one proposed by Bouwmeester [5] in which an
itinerant single photon pulse is injected into a cavity rather
than created intra-cavity as here. Our modification avoids the
problem that the time over which the photons interact with
the mechanical element is stochastic and determined by the
random times at which the photons enter and exit the cavity
through an end mirror. In the new scheme, the cavities are
assumed to have almost perfect mirrors — very narrow line
width [35] (see appendix for details).

How can we hope to attain an estimate outside of quan-
tum mechanics? Let us first give a very loose intuition,
why performing a Bell experiment on A and B, may al-
lows us to bound Dec(A|E)ω. It is well known [26] that
non-signalling correlations are also monogamous. That
is, if we observe a violation of the CHSH inequality as
captured by the measured parameter β, then we know
that the violation between A and E and also between E
and B must be low. Note that the expectation values
Tr[ρAB(Ax ⊗ By)] in terms of quantum observables Ax
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and By can be expresssed in terms of probabilities as

Tr[ρAB(Ax ⊗By)]

=
∑

a∈{±1}
Pr[a, a|x, y]ω − Pr[a,−a|x, y]ω , (9)

where we have again used ωAB in place of ρAB to remind
ourselves that we may be outside of QM. In fact, if β is
larger than what a classical theory allows (β > 2), then E
and B cannot violate the CHSH inequality at all. Let us
now assume by contradiction that the state ωAE shared
between A and E would be close to maximally correlated.
Then by definition of the maximally correlated state, for
every measurement on A, there exists some measurement
on E which yields (almost) the same outcome. Hence, if
ωAE would be close to maximally correlated, then we
would expect that E and B can achieve a similar CHSH
violation than A and B - because E can make measure-
ments that reproduce the same correlations that A can
achieve with B. Yet, we know that this cannot be since
CHSH correlations are monogamous.

In the appendix, we make this rough intuition precise.
While we do not follow the steps suggested by this intu-
ition, we employ a technique that has also been used for
studying monogamy of CHSH correlations [26]. Specif-
ically, we use linear programming as a technique to ob-
tain bounds. We thereby first relate the fidelity to the
statistical distance, which is a linear functional. We are
then able to optimize this linear functional over proba-
bility distributions Pr[a, b, c|x, y, z]ω satisfying linear con-
straints. The first such constraint is given by the fact that
we consider only no-signalling distribtions. The second
by the fact that the marginal distribution Pr[a, b|x, y]ω
leads to the observed Bell violation β. The last one stems
from the fact that maximal correlations can also be ex-
pressed using a linear constraint. Solving this linear pro-
gram for an observed violation β leads to Figure 3.

Optomechanics experiment

To gain insights into the significance of gravitational
decoherence, we examine Diosi’s theory of gravitational

decoherence [1]. This is equivalent to the decoherence
model introduced in Kafri et al. [9]. It can be applied
to an optomechanical cavity in which one mirror is free
to move in a harmonic potential with frequency ωm as
in Figure 4. The master equation for a massive particle
moving in a harmonic potential, including gravitational
decoherence is

dρ

dt
= −iωm[b†b, ρ]− Λ[b+ b†, [b+ b†, ρ]] (10)

where

b =

√
mωm

2~
x̂+ i

1√
2~mωm

p̂ (11)

with x̂, p̂ the usual canonical position and momentum
operators for the moving mirror. We have that

Λ = Λgrav + Λheat , (12)

where the gravitational decoherence rate Λgrav is given
by

Λgrav =
2π

3

G∆

ωm
(13)

with G the Newton gravitational constant and ∆ the den-
sity of the moving mirror. As one might expect Λgrav is
quite small, of the order of 10−8 s−1 for suspended mir-
rors with ωm ∼ 1. The term

Λheat =
kBT

~Q
, (14)

with Q = ω/γm corresponds to mechanical heating. To
see effect of the gravitational term stand out next to the
mechanical heating we thus need to make the tempera-
ture T low. A calculation shows that this model leads to
a dephasing channel Γ(ρ) = pρ+ (1− p)ZρZ† where p is
a function of the density ∆, and the other parameters.
In the appendix, we show that for this model

Dec(A|E)ρ =
1

4

(
1 +

√
1− exp

(
−4

(
1 + 2

(
4πG

3

1

γmωm
∆ +

2kB
~

1

ωm
T

))
g2

0

ω2
m

sin2

(
ωmt

2

)))
, (15)

where G is the Newton gravitational constant, kB is the
Boltzman constant, and ~ the Planck constant (see Fig-
ure 5 for the other parameters). (see Figure 5 for param-
eters)

Discussion

What have we actually learned when performing such
an experiment? We first observe that the measured β
always gives an upper bound on the amount of decoher-
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33

and thus

Dec(A|E)⇢ =
1

4

 
1 +

s
1 � exp

✓
�4

✓
1 + 2

✓
4⇡G

3

1

�m!m
� +

2kB

~
1

!m
T

◆◆
g2
0

!2
m

sin2

✓
!mt

2

◆◆!
(gr. dec. included).

(IV.30)

If gravitational decoherence is absent, then only the mechanical heating contributes to the average vibrational quantum
number, i.e. we have

n = nheat (IV.31)

=
2kB

~
1

!m
T (IV.32)

and thus

Dec(A|E)⇢ =
1

4

 
1 +

s
1 � exp

✓
�4

✓
1 + 2

✓
2kB

~
1

!m
T

◆◆
g2
0

!2
m

sin2

✓
!mt

2

◆◆!
(gr. dec. neglected). (IV.33)

Figure Figure IV.2 shows how the decoherence quantity in equation (IV.30) as a function of time varies for di↵erent
materials of the mechanical element and di↵erent temperatures, compared to the case where there is no gravitational
decoherence as in equation (IV.33). [I have asked Gary Steele about materials used for the mechanical element, and
I picked two that have very di↵erent densities.]

0ms 10ms 20ms
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0.4
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D
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) ⇢

T = 1 nK
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0.5

t

T = 10 nK

0ms 10ms 20ms
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0.3

0.35

0.4

0.45

0.5

t

T = 50 nK

Gravitational decoherence included, density � = 2, 102 ⇥ 104 kg m�3 (rhenium)

Gravitational decoherence included, density � = 2, 7 ⇥ 103 kg m�3 (aluminum)

Gravitational decoherence neglected, (material-independent mechanical heating only)

FIG. IV.2: Predicted values of the decoherence quantity in the optomechanical experiment. The decoherence
quantity Dec(A|E)⇢ as in equation (IV.30) is plotted as a function of time for di↵erent temperatures and two di↵erent materials
of the mechanical element. In addition, Dec(A|E)⇢ is plotted for the case where there is no gravitational decoherence. The
calculations have been made for the experimental parameters g0 = 1 s�1, !m = 1 s�1 and �m = 10�10 s�1.

In order to rule out the model for gravitational decoherence, one needs to measure a CHSH value � which is
incompatible with the value of Dec(A|E)⇢ given in (IV.30). The minimal value �fals of � that needs to be measured
for this falsification can be calculated using Theorem II.1.

FIG. 5: Predicted values of the decoherence quantity in the optomechanical experiment. This figure shows the
predicted values of Dec(A|E)ρ as a function of the running time of the optomechanical experiment for different temperatures
and for different materials of the mechanical element as calculated in the proposed model for gravitational decoherence. In
addition, Dec(A|E)ρ is plotted for the case where gravitational decoherence is not taken into account. When the gap between
the predicted values with and without gravitational decoherence is large enough, the decoherence estimation formalism allows
for a test that potentially falsifies the proposed model for gravitational decoherence. The calculations have been made for the
example experimental parameters g0 = 1 s−1, ωm = 1 s−1 and γm = 10−10 s−1.

ence observed - for any no-signalling theory. This means
that even if quantum mechanics would indeed need to
be modified we can still draw conclusions from the data
we obtain. As such, the observations made in such an
experiment establish a fundamental limit on decoherence
no matter what the theory might actually look like in
detail. It is clear, however, that the bound thus ob-
tained is much weaker than if we had assumed quantum
mechanics. No-signalling is but one of many principles
obeyed by quantum mechanics, and these other features
put stronger bounds on the values that Dec(A|E) can
take. Our motivation for considering theories which are
only constrained by no-signalling is to demonstrate even
such weak demands still allow us to draw meaningful con-
clusions from such an experiment. One can easily adapt
our approach by introducing further constraints on the
probabilities Pr[a, b, c|x, y, z] - but not all of quantum me-
chanics - in order to get stronger bounds. In this case, one
can similarly obtain an upper bound on Dec(A|E) from
the measured data - this time for the more constrained
theory. Also in a fully quantum mechanical world, our
approach yields to a bound (see Figure 3). If we as-
sume quantum mechanics, we may of course also try and
perform process tomography in order to determine the
decoherence process, and indeed any experiment should
try and perform such a tomographic analysis whenever
possible. The appeal of our approach is rather that we
can draw conclusions from the experimental data while
making only very minimal assumptions about the under-
lying physical theory.

One may wonder, why we only upper bound Dec(A|E).
Note that from our experimental statistics we can only
make statements about the overall decoherence observed
in the experiment, namely the gravitational decoherence
(if it exists) as well as any other decoherence introduced
due to experimental imperfections. Finding that the Bell
violation is low (and thus maybe Dec(A|E) might be
large) can thus not be attributed conclusively to the grav-
itational decoherence process, making a lower bound on
Dec(A|E) meaningless if our desire is to make statements
about a particular decoherence process such as gravity.

Second, we observe that our approach can rule out
models of gravitational decoherence but not verify a par-
ticular one. It is important to note that a model for
gravitational decoherence does not stand on its own, but
is always part of a theory on what states, evolutions and
measurements behave like. Given such a physical the-
ory and a model for gravitational decoherence, we know
enough to compute Dec(A|E). In addition, we can com-
pute an upper bound b(β) on Dec(A|E) specific to that
theory, which may give a much stronger bound than no-
signalling alone. Indeed, we see from Figure 3 that this
is the case for quantum mechanics. Given the calculated
Dec(A|E) and the experimentally observed value for b(β),
we can then compare: If Dec(A|E) > b(β), then the
model (or indeed theory) we assumed must be wrong.
However, if Dec(A|E) 6 b(β), then we know that the
model and theory would be consistent with out experi-
mental observations. We discuss this in more detail in
the appendix with a candidate decoherence model that
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has been proposed and which - if it is valid - may be
observed in the experiment suggested above.

Our approach thus provides a guiding light in the
search for gravitational decoherence models. It is very
general, and could in principle be used in conjunction
with other proposed experimental setups and decoher-
ence models. In particular, it could also be used to
probe decoherence models conjectured to arise from de-
coherence affecting macroscopic objects, where there ex-
ist proposals to bring such objects into superposition [6].
Clearly, however, probing such models using entangle-
ment is extremely challenging.

It is a very interesting open question to improve our
analysis and to apply it to other physical theories that
are more constrained than no-signalling, but yet do not
quite yield quantum mechanics. Candidates for this may
come from the study of generalized probabilistic theo-
ries where e.g. [36–41] introduced further constraints in
order to recover quantum mechanics, but also from sug-

gested ways to modify the Schrödinger equation in order
to account for non quantum mechanical noise. Since our
approach could also be applied to higher dimensional sys-
tems, and other Bell inequalities, it is a very interesting
open question whether other Bell inequalities could be
used to obtain stronger bounds on Dec(A|E) from the
resulting experimental observations.
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APPENDIX

Conventions

For this document, we make the following conventions.

• The logarithm is with respect to base 2, i.e. log ≡ log2.

• Hilbert spaces are assumed to be finite-dimensional, unless otherwise stated.

• We denote the set of density operators (states) on a Hilbert space H by H.

• We identify operators on Hilbert spaces with their reordered versions resulting from permutations of systems.
For example, for Hilbert spaces HA, HB , HE and states ΦAE ∈ S(HA ⊗ HE), σB ∈ S(HB), we identify the
state ΦAE ⊗ σB ∈ S(HA⊗HE ⊗HB) with the state in S(HA⊗HB ⊗HE) resulting from the application of the
braiding map HA ⊗HE ⊗HB → HA ⊗HB ⊗HE on ΦAE ⊗ σB .

• For a state ρABE ∈ S(HA⊗HB ⊗HE), we denote its reduced states by according changes of the subscript, e.g.
ρA := TrB(ρAE), ρA := TrB(TrE(ρABE)).

• For a state ρABE ∈ S(HA ⊗HB ⊗HE), entropies are evaluated for the according reduced states, e.g. H(A|B)ρ
is the conditional von Neumann entropy of ρAB = TrE(ρABE) (c.f. equation (A.8)).

Appendix A: Background: Decoherence in quantum theory

In this section, we give a short introduction to decoherence in quantum theory. It consists of concepts, results
and quantities that are well-established in quantum information science [16]. The topics are chosen to facilitate the
understanding of our contributions in equations (A.16) and (B.56) rather than to give a full introduction to the
subject of decoherence. In equation (15), we describe how the dynamical evolution of a system gives rise to a state
of a tripartite system. This tripartite state plays a central role in our later analysis. In equation (A.8), we explain
why the min-entropy is the relevant quantity in the information theoretic analysis of decoherence. The min-entropy
is the quantity that we use for our analysis in equation (A.16). It is also the quantity that serves as our motivation to
define a decoherence quantity for generalized probabilistic theories in equation (B.56). We note that a generalization
of quantum theory by, for example, introducing additional terms into the Schrödinger equation fall under the regime
of generalized theories in our discussion.

1. Dynamical evolution and its tripartite purification

Interaction and non-unitary evolution: Suppose that a system S, initially in a state described by a density
operator ρS ∈ S(HS), undergoes a dynamical evolution over some time interval. If S undergoes this evolution as a
closed system, then according to one of the postulates of quantum mechanics, the state transforms as

ρS 7→ US→S ρS U
†
S→S (A.1)

for a unitary US→S : HS → HS (see Figure 6 (a)). In general, however, the system S may be open, i.e. it may interact
with another system E that is called the environment. We consider the environment E to consist of all the systems
that interact with system S. Taken together, the combined system SE then forms a closed system and hence evolves
as

ρS ⊗ ρE 7→ USE→SE(ρS ⊗ ρE)U†SE→SE , (A.2)

where ρE is the initial state of the environment and USE→SE : HS ⊗HE → HS ⊗HE is a unitary.
We may be ignorant about the environment E and only have access to system S. Our description would then treat

the state of the subsystem S after the evolution as a function of the state ρS of S before the evolution. We arrive at
this description by taking the partial trace over E in expression (A.2):

ρS 7→ TrE
(
USE→SE(ρS ⊗ ρE)U†SE→SE

)
=: ΘS→S(ρS) . (A.3)
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S SUS!S

(a) Closed system

S S

E E
USE!SE

S S⇥S!S

environment invisible

(b) Open system, fixed visible
part

S B

E0 E
USE0!BE

S B⇥S!B

environment invisible

(c) Open system, changing
visible part

FIG. I.1: Di↵erent kinds of dynamical evolution. (a) If a system S evolves as a closed system, its state transformation is
described by a unitary US!S . (b) If it evolves in interaction with another system E that is not part of our description, its state
transformation is described by a TPCPM ⇥S!S . (c) If the visible part of the overall system before and after the evolution is
not the same, we describe the state transformation by a TPCPM ⇥S!B .

In a yet more general case, it may be that after the evolution of the system SE, we do not have access to system S
but to a di↵erent subsystem B of SE. An example would be a two-particle system S interacting with another two-
particle system, where we only have access to one particle (B) of the four particles after the evolution. Mathematically
speaking, the fact that we see a di↵erent subsystem before and after the evolution means that our factorization of
the overall Hilbert space changes: Before the evolution, we write H = HS ⌦HE0 and after the evolution, we write
H = HB ⌦HE (see Figure I.1 (c)). Thus, the unitary evolution of the closed overall system is described by a unitary
USE0!BE : HS ⌦HE0 ! HB ⌦HE . Describing only the accessible part before and after the evolution, we end up
with a TPCPM

⇢S 7! trE

⇣
USE0!BE(⇢S ⌦ ⇢E0)U†

SE0!BE

⌘
=: ⇥S!B(⇢S) . (I.4)

Thus, the evolution of a system S to a system B, when being ignorant about the environment, is described by a
TPCPM ⇥S!B .

Stinespring dilation: We have demonstrated that unitaries on two (or more) systems give rise to TPCPMs on one
system. It is well-known that the converse is also true: Every TPCPM ⇥S!B : S(HS) ! S(HB) can be extended
to a unitary USE0!BE on a larger system in the following sense. For Hilbert spaces HE0 and HE of appropriate
dimensions, it holds that for every pure state |0ih0|E0 on HE0 , there is a unitary

USE0!BE : HS ⌦HE0 ! HB ⌦HE (I.5)

such that

trE(USE0!BE(⇢S ⌦ |0ih0|E0)U†
SE0!BE) = ⇥S!B(⇢S) for all ⇢S 2 S(HS) . (I.6)

This (or an equivalent statement) is the Stinespring dilation theorem [Sti55]. For more details see [Wil13].

Textbook definitions of decoherence: From now on, we will take the viewpoint that the TPCPM ⇥S!B is what
we are given in the first place. Physically speaking, we assume that we are in the setting where all that we observe is
a process in which a system S in some state ⇢S transforms into a state ⇢B of some system B. We think of this as a
channel, into which we input a system S and get a system B as an output. We will therefore often speak of a channel
⇥S!S rather than of a TPCPM ⇥S!S . Our goal in Section I is to find a precise mathematical formulation of the
following question in the quantum theoretical framework: How much does the channel decohere the system?

For the case where S = B, the standard quantum mechanics literature gives some simple descriptions of what the
decoherence of a system under a dynamical evolution is. As an example, consider the case where S is a spin-1/2
particle, initially in the spin “up” state in the x-direction,

⇢S = | "xih"x | , | "xi =
| "zi + | #zip

2
. (I.7)

If the channel ⇥S!S is given by a measurement of the spin in the z-direction, then, written in the z-basis, the state
of the system transforms as

⇢S =

✓
1/2 1/2
1/2 1/2

◆
7!
✓

1/2 0
0 1/2

◆
= ⇥S!S(⇢S) . (I.8)

FIG. 6: Different kinds of dynamical evolution. (a) If a system S evolves as a closed system, its state transformation is
described by a unitary US→S . (b) If it evolves in interaction with another system E that is not part of our description, its state
transformation is described by a TPCPM ΘS→S . (c) If the visible part of the overall system before and after the evolution is
not the same, we describe the state transformation by a TPCPM ΘS→B .

A map ΘS→S of the form (A.3) is easily shown to be a trace-preserving completely positive map (TPCPM). Thus, the
evolution of an open system S, when the environment E is not visible, is described by a TPCPM ΘS→S (see Figure 6
(b)).

In a yet more general case, it may be that after the evolution of the system SE, we do not have access to system S
but to a different subsystem B of SE. An example would be a two-particle system S interacting with another two-
particle system, where we only have access to one particle (B) of the four particles after the evolution. Mathematically
speaking, the fact that we see a different subsystem before and after the evolution means that our factorization of
the overall Hilbert space changes: Before the evolution, we write H = HS ⊗ HE′ and after the evolution, we write
H = HB ⊗HE (see Figure 6 (c)). Thus, the unitary evolution of the closed overall system is described by a unitary
USE′→BE : HS ⊗ HE′ → HB ⊗ HE . Describing only the accessible part before and after the evolution, we end up
with a TPCPM

ρS 7→ TrE
(
USE′→BE(ρS ⊗ ρE′)U†SE′→BE

)
=: ΘS→B(ρS) . (A.4)

Thus, the evolution of a system S to a system B, when being ignorant about the environment, is described by a
TPCPM ΘS→B .

Stinespring dilation: We have demonstrated that unitaries on two (or more) systems give rise to TPCPMs on one
system. It is well-known that the converse is also true: Every TPCPM ΘS→B : S(HS) → S(HB) can be extended
to a unitary USE′→BE on a larger system in the following sense. For Hilbert spaces HE′ and HE of appropriate
dimensions, it holds that for every pure state |0〉〈0|E′ on HE′ , there is a unitary

USE′→BE : HS ⊗HE′ → HB ⊗HE (A.5)

such that

TrE(USE′→BE(ρS ⊗ |0〉〈0|E′)U†SE′→BE) = ΘS→B(ρS) for all ρS ∈ S(HS) . (A.6)

This (or an equivalent statement) is the Stinespring dilation theorem [42]. For more details see [16].

Textbook definitions of decoherence: From now on, we will take the viewpoint that the TPCPM ΘS→B is what
we are given in the first place. Physically speaking, we assume that we are in the setting where all that we observe
is a process in which a system S in some state ρS transforms into a state ρB of some system B. We think of this as
a channel ΘS→S , into which we input a system S and get a system B as an output. Our goal in equation (15) is to
find a precise mathematical formulation of the following question in the quantum theoretical framework: How much
does the channel decohere the system?

For the case where S = B, the standard quantum mechanics literature gives some simple descriptions of what the
decoherence of a system under a dynamical evolution is. As an example, consider the case where S is a spin-1/2
particle, initially in the spin “up” state in the x-direction,

ρS = | ↑x〉〈↑x | , | ↑x〉 =
| ↑z〉+ | ↓z〉√

2
. (A.7)
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If the channel ΘS→S is given by a measurement of the spin in the z-direction, then, written in the z-basis, the state
of the system transforms as

ρS =

(
1/2 1/2
1/2 1/2

)
7→
(

1/2 0
0 1/2

)
= ΘS→S(ρS) . (A.8)

One possible observation one can make in (A.8) is that the spin measurement in the z-direction causes the off-diagonal
terms of the density matrix to vanish. This is an extreme case of the dephasing channel in the z-basis, which causes
a loss of the phase information of the superposition (A.7). This loss of phase information is often equated with
decoherence. Another feature of (A.8) that is often said to be the characteristic of decoherence is that ΘS→S turns
an initially pure state into a mixed state.

These descriptions of decoherence, valid in their own right, are not favored by us for mainly three reasons. Firstly,
these are no quantitative measures of decoherence. Secondly, they lack a clear operational meaning. Thirdly, they
rely on the quantum mechanical formalism, in which states are expressed as density operators. It is not clear how to
express them in more general cases that are not described by quantum theory.

In quantum information science, it is very popular to think of the systems arising in the purified picture we just
presented as being controlled by parties with intentions and interests rather than just being dead physical objects.
We will follow this spirit and from now on use the language of a game and speak of parties Alice, Bob and Eve, that
we think of as agents controlling the systems A, B and E.

2. The min-entropy as a measure for decoherence

The coherent information: As mentioned in equation (15), it has been realized in quantum information science
that important quantitative measures of the channel are functions of the state ρABE that we described above. One
such measure quantifying decoherence is the coherent information [43]. It is defined in terms of the conditional von
Neumann entropy

H(A|B)ρ := H(AB)ρ −H(B)ρ , (A.9)

where H(AB)ρ = −Tr(ρAB log(ρAB)) and H(B) = −Tr(ρB log(ρB)) is the von Neumann entropy of the reduced state
ρAB and ρB , respectively. The coherent information is defined as

I(A〉B)ρ := −H(A|B)ρ . (A.10)

The coherent information I(A〉B)ρ has been shown to be related to the quantum channel capacity Q(ΘS→B) of ΘS→B ,
which is known as the Lloyd-Shor-Devetak (LSD) theorem [44–46]. It says that

Q(ΘS→B) = lim
n→∞

1

n
max

ρSn∈S(H⊗nS )
I(An〉Bn)ρ , (A.11)

where I(An〉Bn)ρ is the coherent information for ρAnBn = 11⊗nA ⊗ Θ⊗nS→B(ρAnSn) and ρAnSn is a purification of ρSn .
The state 11⊗nA ⊗ Θ⊗nS→B(ρAnSn) results from the n-fold use of the channel ΘS→B to transmit Sn, i.e. n copies of
system S, while the purification An of Sn remains unchanged. Thus, the r.h.s. of (A.11) is the coherent information
in the limit of infinitely many channel uses. Likewise, the quantum capacity Q(ΘS→B) is the limit of the achievable
rate for quantum data transmission in the limit of infinitely many channel uses. One says that the quantum capacity,
and therefore the coherent information, is an asymptotic quantity. This has the disadvantage that from the coherent
information, only very limited statements about finitely many uses of the channel can be made.
The min-entropy: More insight about the behavior of the channel under finitely many uses can be gained by
considering the corresponding single-shot quantity. To formulate it, note that the state ρABE is pure, in which case
the duality relation H(A|B)ρ = −H(A|E)ρ for the conditional von Neumann entropy holds. This gives us

I(A〉B)ρ = H(A|E)ρ . (A.12)

The corresponding single-shot quantity for the conditional von Neumann entropy H(A|E)ρ is the conditional min-
entropy, or just min-entropy, Hmin(A|E)ρ [20]. It is defined as

Hmin(A|E)ρ = max
σE

sup{λ ∈ R | ρAE 6 2−λ11A ⊗ σE} , (A.13)
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where the maximum is taken over all subnormalized density operators on HE , i.e. all positive operators on HE with
trace between 0 and 1. The min-entropy quantifies the maximal size of a subsystem of A that can be decoupled from
E [17], and thus tells us how many EPR pairs between Alice and Bob can be created [47] given a noisy output state
ρAB . To obtain the single-shot capacity of n channel uses we are - as in the asymptotic case - allowed to optimze over
input states ρAnSn . Clearly, however, the resulting expression can be lower bounded using a particlar input state given
by n copies of the maximally entangled state. This is the test state we employ here, and hence our test also provides
a bound on the single shot capacity. For instance if A is a 2 level system, then the min-entropy readily quantifies the
number of EPR-pairs we can recover, given that we started with n EPR pairs as an input. The min-entropy thus has
a very appealing operational interpretation.

For our purposes, another expression for the min-entropy is more useful. In the following, we use the symbol ' to
denote that two Hilbert spaces are isomorphic, i.e. HA ' HA′ means that the two spaces have the same dimension.
It has been shown [19] that the min-entropy can be expressed as

Hmin(A|E)ρ = − log dA max
RE→A′

F 2(ΦAA′ , 11A ⊗RE→A′(ρAE)) , (A.14)

where dA is the dimension of the Hilbert space HA of system A, A′ is a system with HA′ ' HA, the maximization is
carried out over all TPCPMs RE→A′ from system E to system A′, F (ρ, σ) = Tr

√
ρ1/2σρ1/2 is the fidelity and ΦAA′

is a maximally entangled state on AA′, i.e. ΦAA′ is an element of the set

ΓAA′ :=

{
ΦAA′ ∈ S(HA ⊗HA′)

∣∣∣∣
There are bases {|i〉A}i, {|i〉A′}i of HA, HA′ such that ΦAA′ =
|φ〉〈φ|AA′ with |φ〉AA′ = 1√

dA

∑
i |i〉A ⊗ |i〉A′ .

}
. (A.15)

The choice of ΦAA′ ∈ ΓAA′ , i.e. the choice of bases for HA and HA′ , is irrelevant for the value of Hmin(A|E)ρ. Since
every ΦAA′ = |φ〉〈φ|AA′ ∈ ΓAA′ is pure, we have that F (ΦAA′ , σAA′) =

√
〈φ|σ|φ〉AA′ for any state σAA′ on AA′.

The expression (A.14) provides an intuition for the min-entropy. We think of the system ABE, which is in the
pure state ρABE , as being distributed between Alice, Bob and Eve. Imagine that Eve tries to perform operations on
her share of the system with the intention to bring the reduced state between her and Alice as close as possible to
the maximally entangled state ΦAA′ , where the square of the fidelity is the measure of closeness. The closer Eve can
bring the state to the maximally entangled state, the smaller the min-entropy Hmin(A|E)ρ. The overall situation of
our decoherence analysis is shown in Figure 7.

5

For our purposes, another expression for the min-entropy is more useful. In the following, we use the symbol ' to
denote that two Hilbert spaces are isomorphic, i.e. HA ' HA0 means that the two spaces have the same dimension.
It has been shown [KRS09] that the min-entropy can be expressed as

Hmin(A|E)⇢ = � log dA max
RE!A0

F 2(�AA0 , IA ⌦ RE!A0(⇢AE)) , (I.14)

where dA is the dimension of the Hilbert space HA of system A, A0 is a system with HA0 ' HA, the maximization is

carried out over all TPCPMs RE!A0 from system E to system A0, F (⇢,�) = tr
p
⇢1/2�⇢1/2 is the fidelity and �AA0

is a maximally entangled state on AA0, i.e. �AA0 is an element of the set

�AA0 :=

⇢
�AA0 2 S(HA ⌦HA0)

����
There are bases {|iiA}i, {|iiA0}i of HA, HA0 such that �AA0 =
|�ih�|AA0 with |�iAA0 = 1p

dA

P
i |iiA ⌦ |iiA0 .

�
. (I.15)

The choice of �AA0 2 �AA0 , i.e. the choice of bases for HA and HA0 , is irrelevant for the value of Hmin(A|E)⇢. Since

every �AA0 = |�ih�|AA0 2 �AA0 is pure, we have that F (�AA0 ,�AA0) =
p

h�|�|�iAA0 for any state �AA0 on AA0.
The expression (I.14) provides an intuition for the min-entropy. We think of the system ABE, which is in the pure

state ⇢ABE , as being distributed between Alice, Bob and Eve. Imagine that Eve tries to perform operations on her
share of the system with the intention to bring the reduced state between her and Alice as close as possible to the
maximally entangled state �AA0 , where the square of the fidelity is the measure of closeness. The closer Eve can
bring the state to the maximally entangled state, the smaller the min-entropy Hmin(A|E)⇢. The overall situation of
our decoherence analysis is shown in Figure I.2.

S B

A A

E0 E A0
USE0!BE

RE!A0

FIG. I.2: Overall picture of our decoherence analysis for quantum theory. We interpret Hmin(A|E)⇢ as a measure
for how close Eve can get to maximal entanglement with Alice by applying a transformation RE!A0 on her share of the state
⇢ABE .

[It would be good if you could insert some explanation here: Why do we want to have a / the single-shot quantity?
Which precise operational meaning does Hmin(A|E)⇢ have? What papers are appropriate to be cited here?]

The min-entropy is strictly more informative than the conditional von Neumann entropy in the following sense. In
the iid limit (which stands for independent and identically distributed), where many identically prepared systems go
through the channel and end up in a state ⇢⌦n

AB , the min-entropy converges to the conditional von Neumann entropy:

lim
n!1

1

n
Hmin(An|Bn)⇢⌦n = H(A|B)⇢ . (I.16)

This is known as the asymptotic equipartition property [TRC09]. Thus, in the limit of infinitely many channel
uses, where the asymptotic quantity is relevant, the min-entropy reproduces the conditional von Neumann entropy.
[Actually, I’m not sure how well this fits together with what is written above about the conditional von Neumann
entropy as an asymptotic quantity. There, not H(A|B)⇢ but � limn!1 1

n max⇢Sn2S(H⌦n
S ) H(An|Bn)⇢ is the relevant

quantity.]
To gain some intuition for Hmin(A|E)⇢, we now have a look at some special cases. For these special cases, we

assume that HS ' HA ' HB ' HE . Assume that initially, the state ⇢AS is maximally entangled, i.e. ⇢AS = �AS for
some �AS 2 �AS analogous to (I.15). [We need some explanation why it is interesting or su�cient to consider that
case.] We think of the channel purification USE0!BE as being controlled by Eve. [Is that clear enough or does it need
some more explanation? Things are really getting lengthy. . . ]

• If the adversary Eve leaves system S untouched, i.e. the channel ⇥S!B is the identity channel (or any other
unitary channel), then ⇢AE = d�1

A IA ⌦ ⇢E for some state ⇢E of system E. In that case, Hmin(A|E)⇢ = log dA,
and we say that there is no decoherence.

• In the other extreme case, Eve snatches away the system S and forwards an uncorrelated system to Bob. In
this case, ⇢AE 2 �AE with �AE analogous to equation (I.15) (maximal entanglement between A and E). Then,
Hmin(A|E)⇢ = � log dA, and we say that we have full decoherence.

FIG. 7: Overall picture of our decoherence analysis for quantum theory. We interpret Hmin(A|E)ρ as a measure for
how close Eve can get to maximal entanglement with Alice by applying a transformation RE→A′ on her share of the state
ρABE .

The min-entropy is strictly more informative than the conditional von Neumann entropy in the following sense. In
the iid limit (which stands for independent and identically distributed), where many identically prepared systems go
through the channel and end up in a state ρ⊗nAB , the min-entropy converges to the conditional von Neumann entropy:

lim
n→∞

1

n
Hε

min(An|Bn)ρ⊗n = H(A|B)ρ , (A.16)

where ε > 0 is an arbtirary smoothing parameter. This is known as the asymptotic equipartition property [48]. Thus,
in the limit of infinitely many channel uses, where the asymptotic quantity is relevant, the min-entropy reproduces
the conditional von Neumann entropy.

To gain some intuition for Hmin(A|E)ρ, we now have a look at some special cases. For these special cases, we
assume that HS ' HA ' HB ' HE . Assume that initially, the state ρAS is maximally entangled, i.e. ρAS = ΦAS for
some ΦAS ∈ ΓAS analogous to (A.15). We think of the channel purification USE′→BE as being controlled by Eve.

• If the adversary Eve leaves system S untouched, i.e. the channel ΘS→B is the identity channel (or any other
unitary channel), then ρAE = d−1

A 11A ⊗ ρE for some state ρE of system E. In that case, Hmin(A|E)ρ = log dA,
and we say that there is no decoherence.
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• In the other extreme case, Eve snatches away the system S and forwards an uncorrelated system to Bob. In
this case, ρAE ∈ ΓAE with ΓAE analogous to equation (A.15) (maximal entanglement between A and E). Then,
Hmin(A|E)ρ = − log dA, and we say that we have full decoherence.

• As an intermediate case, we might consider the case where Eve interferes such that she does not end up with
maximal entanglement with Alice but such that she is classically correlated with Alice in some basis, i.e.
ρAE = d−1

A

∑
k |k〉〈k|A ⊗ |k〉〈k|E . In that case, Hmin(A|E)ρ = 0, and we speak of partial decoherence.

Appendix B: Decoherence estimation through CHSH tests in quantum theory

1. Introduction

Our goal is to show that Alice and Bob can estimate the decoherence by performing a Bell experiment. We pose
it as a feasibility problem: is it possible to observe certain statistics in a Bell experiment given a certain level of
decoherence? Solving this problem allows us to determine and plot the feasible region in the space of suitably chosen
parameters.

We look at the simplest Bell experiment, known as the Clauser-Horne-Shimony-Holt (CHSH) [33] scenario. If ρAB
is the state that Alice and Bob share and Aj , Bk for j, k ∈ {0, 1} are the observables they perform, then the CHSH
value equals

β = Tr
(
[A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1]ρAB

)
. (B.1)

As explained previously the min-entropy Hmin(A|E) defined in Eq. (A.13) captures the notion of decoherence
between Alice and Bob (although note that high min-entropy corresponds to low decoherence and vice versa). Since
the range of values that the min-entropy takes depends on the dimension of Alice’s system (denoted by dA), it is only
meaningful to compare scenarios in which dA is fixed. For simplicity, we consider the simplest non-trivial scenario in
which the subsystems held by Alice and Bob are qubits, dA = dB = 2.

We define the feasible region S as follows. A pair of real numbers (u, v), where u ∈ [−1, 1] and v ∈ [0, 2
√

2] belongs
to S if there exists a tripartite state ρABE and binary observables A0, A1 on HA and B0, B1 on HB such that

• subsystems A and B are qubits: dimHA = dimHB = 2

• The conditional min-entropy of A given E equals u: Hmin(A|E) = u.

• The CHSH value given by Eq. (B.1) equals v: β = v.

First note that a CHSH value of v 6 2 can be achieved using trivial measurements (namely {11, 0}) acting on an
arbitrary state. Therefore, for v 6 2 all values of u ∈ [−1, 1] are allowed. For the remainder of the argument we
implicitly assume that v > 2 and the following intuitive argument shows why certain pairs (u, v) must indeed be
forbidden. Consider a point u ≈ −1 and v > 2. According to the operational meaning of the min-entropy (A.14),
u ≈ −1 means that Eve can recover the maximally entangled state with Alice with fidelity close to unity, which
clearly allows Alice and Eve to violate the CHSH inequality. On the other hand, since v > 2 Alice also observes a
CHSH violation with Bob. This violates the monogamy relation for tripartite three-qubit states proved in Ref. [49],
which states that Alice can violate the CHSH inequality with at most one party (even if she is allowed to use different
measurements for different scenarios). This simple argument leads to the conclusion that the region u ≈ −1 and v > 2
is forbidden. In the remainder of this section we show that the non-trivial part of the feasible region S can be fully
characterised by a single inequality.

Theorem B.1: A pair of real numbers (u, v) where u ∈ [−1, 1] and v ∈ (2, 2
√

2] belongs to the feasible region S if
and only if

u > f(v), (B.2)

where

f(v) := 3− 2 log max
cz

(
2
√

1 + cz +

√
1− cz +

v√
2

+

√
1− cz −

v√
2

)
, (B.3)

where the maximization is taken over

−1 6 cz 6 1− v√
2
. (B.4)
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B. Preliminaries

Definition II.2: Let HA, HB be Hilbert spaces of dimension d. A generalized Bell basis for HA ⌦HB is a set

{|�ji}d2

j=1 of d2 pure states on HA ⌦HB which satisfy

trA |�jih�j | =
IB

d
, trB |�jih�j | =

IA

d
for j = 1, . . . , d2 and (II.5)

d2X

j=1

|�jih�j | = IA ⌦ IB . (II.6)

A state ⇢AB 2 S(HA ⌦HB) is called Bell-diagonal if it is diagonal in some generalized Bell basis, i.e. if there exists

a probability distribution {pj}d2

j=1 such that

⇢AB =

d2X

j=1

pj |�jih�j |. (II.7)

Lemma II.3: Let A � 0 be a positive semi-definite operator, let ⇧A be the projector on its support and let |bi be a
normalised vector. Then A � |bihb| i↵

⇧A|bi = |bi and hb|A�1|bi  1. (II.8)

Note that since A might not be invertible, A�1 is only defined on the support of A.

1. Two-qubit states

A two-qubit state written in the Pauli basis takes the form

⇢AB =
1

4

�
IA ⌦ IB +

X

j

aj�j ⌦ IB + IA ⌦
X

j

bj�j +
X

j,k

Tjk�j ⌦ �k

�
, (II.9)

where all the summations go over {x, y, z}. It is known that for every state there exists a local unitary UA ⌦ UB

which diagonalizes the correlation tensor (i.e. ensures that Tjk = 0 for j 6= k) and since all the properties we consider
are invariant under local unitaries we can make this assumption without loss of generality. We denote these diagonal
entries Txx, Tyy and Tzz by cx, cy and cz, respectively, which simplifies the expression to

⇢AB =
1

4

�
IA ⌦ IB +

X

j

aj�j ⌦ IB + IA ⌦
X

j

bj�j +
X

j

cj�j ⌦ �j

�
. (II.10)

While the definition of f might seem complicated, it is straightforward to see that f is monotonically increasing in v
and evaluating f(v) numerically for a particular value of v is straightforward since the function to be maximized is
concave. The feasible region S is plotted below.
The proof of Theorem B.1 is conceptually simple, but it requires a wide array of technical tools, which we present in
equation (B.4). In equations (B.52) and (B.54) we prove the direct and converse parts of Theorem B.1, respectively.

2. Preliminaries

Definition B.2: Let HA, HB be Hilbert spaces of dimension d. A generalized Bell basis for HA ⊗ HB is a set
{|Φj〉}d

2

j=1 of d2 pure states on HA ⊗HB which satisfy

TrA|Φj〉〈Φj | =
11B
d
, TrB |Φj〉〈Φj | =

11A
d

for j = 1, . . . , d2 and (B.5)

d2∑

j=1

|Φj〉〈Φj | = 11A ⊗ 11B . (B.6)

A state ρAB ∈ S(HA⊗HB) is called Bell-diagonal if it is diagonal in some generalized Bell basis, i.e. if there exists
a probability distribution {pj}d

2

j=1 such that

ρAB =

d2∑

j=1

pj |Φj〉〈Φj |. (B.7)

Lemma B.3: Let A > 0 be a positive semi-definite operator, let ΠA be the projector on its support and let |b〉 be a
normalised vector. Then A > |b〉〈b | iff

ΠA|b〉 = |b〉 and 〈b |A−1|b〉 6 1. (B.8)

Note that since A might not be invertible, A−1 is only defined on the support of A.

a. Two-qubit states

A two-qubit state written in the Pauli basis takes the form

ρAB =
1

4

(
11A ⊗ 11B +

∑

j

ajσj ⊗ 11B + 11A ⊗
∑

j

bjσj +
∑

j,k

Tjkσj ⊗ σk
)
, (B.9)
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where all the summations go over {x, y, z}. It is known that for every state there exists a local unitary UA ⊗ UB
which diagonalizes the correlation tensor (i.e. ensures that Tjk = 0 for j 6= k) and since all the properties we consider
are invariant under local unitaries we can make this assumption without loss of generality. We denote these diagonal
entries Txx, Tyy and Tzz by cx, cy and cz, respectively, which simplifies the expression to

ρAB =
1

4

(
11A ⊗ 11B +

∑

j

ajσj ⊗ 11B + 11A ⊗
∑

j

bjσj +
∑

j

cjσj ⊗ σj
)
. (B.10)

Without loss of generality, we assume that |cx| > |cy| > |cz| and cx, cy > 0. As shown in Ref. [50] every Bell-diagonal
state of two qubits (up to local unitaries which, again, we can safely ignore) can be written as

ρAB =

4∑

j=1

pj |Φj〉〈Φj |, (B.11)

where {pj}4j=1 is a probability distribution and |Φ1,2〉 = |00〉±|11〉√
2

and |Φ3,4〉 = |01〉±|10〉√
2

. It is easy to verify that

ρAB =
1

4

(
11A ⊗ 11B +

∑

j

cjσj ⊗ σj
)
, (B.12)

where

cx = p1 − p2 + p3 − p4 ,

cy = −p1 + p2 + p3 − p4 , (B.13)
cz = p1 + p2 − p3 − p4 .

b. Non-locality

Definition B.4: For a bipartite quantum state ρAB the maximum CHSH value is defined as

βmax(ρAB) := max
A0,A1,B0,B1

Tr
[
(A0 ⊗B0 +A0 ⊗B1 +A1 ⊗B0 −A1 ⊗B1)ρAB

]
, (B.14)

where the maximisation is taken over all Hermitian, binary observables.

Note that for all states βmax > 2 and we say that the state violates the CHSH inequality if βmax > 2. It was shown
in Ref. [51] that if ρAB is a state of two qubits then the value of βmax is fully determined by the correlation tensor.
Adopting the convention |cx| > |cy| > |cz| we have

βmax(ρAB) =

{
2 if c2x + c2y 6 1,

2
√
c2x + c2y otherwise.

(B.15)

c. Entropic measures of entanglement

To derive a bound on the min-entropy Hmin(A|E)ρ, we will use a closely related quantity, namely the max-entropy.

Definition B.5: For a bipartite quantum state ρAB the conditional max-entropy (or just max-entropy) is
defined as

Hmax(A|B) = max
σB

log dAF
2(ρAB , πA ⊗ σB) , (B.16)

where πA is the maximally mixed state on A and the maximisation is taken over all states on B.

The proof uses the following known properties of the min- and max-entropies.
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Lemma B.6 (Duality, [19]): Let ρABC be a tripartite state. Then

Hmax(A|B)ρ +Hmin(A|C)ρ > 0,

and the equality holds iff ρABC is pure.

Lemma B.7 (Data-processing inequality, [20]): For an arbitrary tripartite state ρABC we have

Hmax(A|B) > Hmax(A|BC). (B.17)

Lemma B.8 (Conditioning on classical information, Proposition 4.6 of [52]): Let ρABK be a tripartite state where
K is a classical register:

ρABK =
∑

k

pk τ
k
AB ⊗ |k〉〈k |. (B.18)

Then

Hmax(A|BK)ρABK = log
(∑

k

pk 2
Hmax(A|B)

τk
AB

)
. (B.19)

Finally, we need an explicit expression for the max-entropy of a Bell-diagonal state. Note that by assumption
dA = dB = d.

Lemma B.9: Let ρAB be a Bell-diagonal state of form (B.7). Then the conditional max-entropy equals

Hmax(A|B) = − log d+ 2 log
(∑

j

√
pj

)
. (B.20)

To prove Lemma B.9 we use the fact that the optimization problem which appears in the definition of the max-entropy
(B.16) can be written as a semidefinite program (SDP) [53]. More specifically, given ρAB we have Hmax(A|B) = log λ,
where λ is the value of the following SDP for ρABC being an arbitrary purification of ρAB

PRIMAL : minimize µ

subject to µ11B > trA(ZAB)

ZAB ⊗ 11C > ρABC
ZAB ∈ P(HAB)

µ > 0

DUAL : maximize Tr(ρABCYABC)

subject to TrC(YABC) 6 11A ⊗ σB
TrσB 6 1

YABC ∈ P(HABC)

σB ∈ P(HB)

where P(H) denotes the set of positive semi-definite operators acting on H. By providing feasible solutions for the
PRIMAL and the DUAL we show that for Bell-diagonal states

λ =
1

d

(∑

j

√
pj

)2

(B.21)

which is precisely the statement of Lemma B.9.

Proof. Let ρABC = |ψABC〉〈ψABC | be a purification of ρAB , e.g.

|ψABC〉 =
∑

j

√
pj |Φj〉 ⊗ |j〉. (B.22)

For the PRIMAL consider

ZAB =
(∑

j

√
pj

)∑

k

√
pk|Φk〉〈Φk |, (B.23)

µ =
1

d

(∑

j

√
pj

)2

. (B.24)
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Clearly, ZAB > 0, µ > 0 and since TrA(ZAB) = 1
d

(∑
j

√
pj
)2
11B the first constraint is easy to check. The last

inequality we need to check is
(∑

j

√
pj

)∑

k

√
pk|Φk〉〈Φk | ⊗ 11C > ρABC . (B.25)

We apply Lemma B.3 to A = ZAB ⊗ 11C and |b〉 = |ψABC〉. The projector on the support of ZAB ⊗ 11C equals

Π =
∑

j:pj>0

|Φj〉〈Φj | ⊗ 11C (B.26)

and it is easy to verify that Π|ψABC〉 = |ψABC〉. Moreover, since (ZABC)−1 = (ZAB)−1 ⊗ 11C we have

(∑

m

√
pm〈Φm| ⊗ 〈m|

)

(∑

j

√
pj

)−1 ∑

k:pk>0

1√
pk
|Φk〉〈Φk | ⊗ 11C



(∑

n

√
pn|Φn〉 ⊗ |n〉

)
(B.27)

=
(∑

j

√
pj

)−1
(∑

m

√
pm〈Φm| ⊗ 〈m|

)( ∑

n:pn>0

|Φn〉 ⊗ |n〉
)

= 1. (B.28)

Showing that ZAB and µ constitute a valid solution to the PRIMAL implies that λ 6 1
d

(∑
j

√
pj
)2.

For the DUAL consider

YABC =
1

d

∑

jk

|Φj〉〈Φk| ⊗ |j〉〈k|, (B.29)

σB =
11B
d
. (B.30)

Note that YABC is proportional to a rank-1 projector. The first constraint gives

TrC(YABC) =
1

d

∑

j

|Φj〉〈Φj | =
1

d
11A ⊗ 11B = 11A ⊗ σB (B.31)

and the remaining ones are easily verified to be true. The value of this solution equals Tr(ρABCYABC) = 1
d

(∑
j

√
pj
)2

which implies that λ > 1
d

(∑
j

√
pj
)2.

d. Sufficiency of considering Bell-diagonal states

To prove the converse part of Theorem B.1, we will use the following argument, which is similar in spirit and inspired
by the symmetrization argument presented in Ref. [23].

Lemma B.10: Let ρAB be an arbitrary state of two qubits. Then, there exists a Bell-diagonal state σAB which
satisfies

βmax(ρAB) = βmax(σAB) and Hmax(A|B)σ > Hmax(A|B)ρ. (B.32)

Proof. We present an explicit construction of σAB which meets the requirements. According to Eq. (B.10), ρAB can
be written as

ρAB =
1

4

(
11A ⊗ 11B +

∑

j

ajσj ⊗ 11B + 11A ⊗
∑

j

bjσj +
∑

j

cjσj ⊗ σj
)
. (B.33)

Moreover, consider the following random unitary channel

Λ(ρAB) =
1

4

4∑

j=1

(Uj ⊗ Uj)ρAB(U†j ⊗ U†j ), (B.34)
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where U1 = 11, U2 = σx, U3 = σy and U4 = σz. It is easy to verify that for j ∈ {x, y, z}

Λ(σj ⊗ 11B) = Λ(11A ⊗ σj) = 0 (B.35)

because each Pauli operator commutes with identity and itself but anticommutes with the other two unitaries. This
implies that σAB = Λ(ρAB) is Bell-diagonal. Moreover, one can check that the map preserves the correlation tensor,
i.e. for j ∈ {x, y, z}

Λ(σj ⊗ σj) = σj ⊗ σj , (B.36)

which implies that βmax(ρAB) = βmax(σAB). To check the last property consider the following state

σABK =
1

4

4∑

j=1

(Uj ⊗ Uj)ρAB(U†j ⊗ U†j )⊗ |j〉〈j |. (B.37)

By the data processing inequality, we have Hmax(A|B)σ > Hmax(A|BK)σ and by conditioning on classical information
we have

Hmax(A|BK)σ = log
( 4∑

j=1

1

4
· 2Hmax(A|B)τj

)
, (B.38)

where τ jAB = (Uj ⊗ Uj)ρAB(U†j ⊗ U†j ). (B.39)

Since the max-entropy is invariant under local unitaries we have Hmax(A|B)τj = Hmax(A|B)ρ for j ∈ {x, y, z} which
implies that

Hmax(A|B)σ > Hmax(A|BK)σ = Hmax(A|B)ρ. (B.40)

The final technical lemma concerns the problem of maximizing the max-entropy of a Bell-diagonal state of two qubits
whose maximal CHSH violation is fixed.

Lemma B.11: Let ρAB be a Bell-diagonal state of two qubits, whose maximal CHSH violation equals β ∈ (2, 2
√

2].
Then, the max-entropy of ρAB satisfies the following inequality

Hmax(A|B) 6 −f(β) (B.41)

for function f defined in Eq. (B.3). Moreoever, there exists a state which saturates this inequality.

Proof. According to Lemma B.9 the max-entropy of a Bell-diagonal state of two qubits equals

Hmax(A|B) = −1 + 2 log
( 4∑

j=1

√
pj

)
. (B.42)

Here, it is convenient to express the probabilities through the correlation coefficients cx, cy, cz. Inverting Eqs. (B.13)
gives

p1 =
1

4
(1 + cx − cy + cz), p2 =

1

4
(1− cx + cy + cz), (B.43)

p3 =
1

4
(1 + cx + cy − cz), p4 =

1

4
(1− cx − cy − cz), (B.44)

which allows us to write

Hmax(A|B) = −3 + 2 log g(cx, cy, cz), (B.45)

where

g(cx, cy, cz) =
√

1 + cx − cy + cz +
√

1− cx + cy + cz +
√

1 + cx + cy − cz +
√

1− cx − cy − cz. (B.46)
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In the space of correlation coefficients the feasible set are the triples (cx, cy, cz) for which the function g(cx, cy, cz) is
well-defined (the expressions under the roots must be non-negative). As before, we assume without loss of generality
that |cx| > |cy| > |cz| and cx, cy > 0. Then, the maximal CHSH violation (we are only interested in states that violate
the CHSH inequality) is given by Eq. (B.15)

β = 2
√
c2x + c2y.

Since in our case β is fixed, the angular parametrisation takes the form

cx =
q√
2

sin
(
φ+

π

4

)
and cy =

q√
2

cos
(
φ+

π

4

)
,

where q = β√
2
and φ ∈ [0, π/4] (which ensures cx > cy > 0). Note that

cx + cy = q cosφ,

cx − cy = q sinφ.

It is easy to check that the allowed range of cz is

q sinφ− 1 6 cz 6 1− q cosφ.

Note that we should also impose the condition |cz| 6 |cy| but as it turns out the optimal solution will satisfy it even
if we do not include it explicitly. To maximize the max-entropy it is sufficient to maximize function g defined in
Eq. (B.46), which in the angular parametrisation equals

g(φ, cz) =
√

1 + cz + q sinφ+
√

1 + cz − q sinφ+
√

1− cz + q cosφ+
√

1− cz − q cosφ, (B.47)

over

R =
{

(φ, cz) : φ ∈ [0, π/4], q sinφ− 1 6 cz 6 1− q cosφ
}
. (B.48)

The maximum is achieved either in the interior (denoted by Rint) or at the boundary. Let us start by ruling out the
first option. Function g is differentiable everywhere in Rint and the partial derivatives are

∂g

∂cz
=

1

2
√

1 + cz + q sinφ
+

1

2
√

1 + cz − q sinφ
+

−1

2
√

1− cz + q cosφ
+

−1

2
√

1− cz − q cosφ
, (B.49)

∂g

∂φ
=

q cosφ

2
√

1 + cz + q sinφ
+

−q cosφ

2
√

1 + cz − q sinφ
+

−q sinφ

2
√

1− cz + q cosφ
+

q sinφ

2
√

1− cz − q cosφ
. (B.50)

To prove that there is no maximum in the interior, it suffices to show that there is no (φ, cz) ∈ Rint such that both
derivatives vanish ∂g

∂cz
= ∂g

∂φ = 0. To do this we consider the following linear combination

s(φ, cz) = 2 sinφ · ∂g
∂cz

+
2

q
· ∂g
∂φ

=
sinφ+ cosφ√
1 + cz + q sinφ

+
sinφ− cosφ√
1 + cz − q sinφ

+
−2 sinφ√

1− cz + q cosφ

and show that s(φ, cz) = 0 has no solution in Rint. Since the last term of s(φ, cz) is negative, a necessary condition
for s(φ, cz) = 0 is that the sum of the first two terms is non-negative, which is equivalent to

sinφ+ cosφ√
1 + cz + q sinφ

> cosφ− sinφ√
1 + cz − q sinφ

.

This can be rearranged to give

cz >
q

2 cosφ
− 1,

which contradicts the second inequality in the definition of Rint as shown below.

cz >
q

2 cosφ
− 1 and 1− q cosφ > cz (B.51)

=⇒ 1− q cosφ >
q

2 cosφ
− 1 ⇐⇒ 1

2 cosφ
+ cosφ <

2

q
. (B.52)
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It is easy to check that the left-hand side of the final inequality is always at least
√

2, while the right hand side is
always at most

√
2. This proves that the final (strict) inequality is always false, which implies that s(φ, cz) = 0 has

no solutions in Rint and that g(φ, cz) has no maximum in Rint.
The boundaries cz = q sinφ− 1 and cz = 1− q cosφ correspond to one of the expression under the roots being zero.

Since the square root function has infinite slope at 0, such solutions cannot be optimal. Therefore, the maximum
must be achieved at the boundary φ = 0. Combining Equations (B.45) and (B.47) and setting φ = 0 leads directly to
the statement of the lemma.

To show that the solution of the optimization problem satisfies |cz| 6 |cy|, it is sufficient to show that for φ = 0
and cz = −cy = −q/2 the partial derivative ∂g/∂cz is strictly positive.

3. The direct part

Here, we show (by an explicit construction) that points described by v ∈ (2, 2
√

2] and f(v) 6 u 6 1 are allowed.
Lemma B.11 shows that for v ∈ (2, 2

√
2] there exists a Bell-diagonal state of two qubits whose max-entropy equals

Hmax(A|B) = −f(v). (B.53)

By duality (Lemma B.6), if ρABE is an arbitrary purification, the conditional min-entropy equals

Hmin(A|E) = f(v). (B.54)

In this example u = f(v), which corresponds to a point lying precisely on the boundary defined in Theorem B.1. In
order to obtain higher values of u (all the way up to 1), it suffices to apply noise of appropriate strength to subsystem
E.

4. The converse part

Here, we show that every feasible point (u, v) must satisfy u > f(v). Consider a state ρABE for which Hmin(A|E)ρ = u
and which for some measurements achieves the CHSH value of v. Clearly, βmax(ρAB) > v and by Lemma B.6
Hmax(A|B)ρ > −u. Applying the symmetrization argument (Lemma B.10) gives rise to a Bell-diagonal state σAB
such that Hmax(A|B)σ > −u and βmax(σAB) > v. By Lemma B.11 these quantities must satisfy

Hmax(A|B)σ 6 −f
(
βmax(σAB)

)
, (B.55)

which implies that

u > −Hmax(A|B)σ > f
(
βmax(σAB)

)
> f(v), (B.56)

where the last inequality follows from the fact that f is monotonically increasing.

Appendix C: Decoherence estimation through CHSH tests in GPTs

In this section, we are going to develop a framework for decoherence analysis in analogy to equation (15), but
without assuming that nature is correctly described by quantum theory. Instead, we will work in a framework that
makes only minimal assumptions about the probabilistic structure of measurements. This allows to make statements
in cases where quantum theory might not be a correct description of nature.

In equation (B.56), we define a framework for probabilistic theories that has become a standard one in the literature.
Besides defining the core structure in equation (B.56), we explain in equation (C.8) how we extend this framework
to make it suitable for analyzing tripartite states, in a way that allows us to make a decoherence analysis that is
analogous to the quantum case.

In equation (C.19), we will define a decoherence quantity Dec(A|E)ω for GPTs as an analogue of the quantum
min-entropy Hmin(A|E)ρ. This will be our quantity of interest for the decoherence analysis for GPTs. We will first
motivate an expression for Dec(A|E)ω in equation (C.19), inspired by expression (A.14) for the min-entropy in the
quantum case. This expression will require us to say what a maximally entangled state in a GPT is. We will define
it in equation (C.22).

equation (C.34) is devoted to finding a bound on our decoherence quantity in terms of the CHSH winning probability
for Alice and Bob. This is a measurable quantity in the case where the channel is an iid (for independent and
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identically distributed) channel, meaning that it behaves identically in repeated uses of the channel without building
up correlations amongst systems going through the channel in different uses of it. This is a practically relevant case,
giving our bound a practical meaning. This bound allows us to infer non-trivial statements about decoherence from
measured data when, apart from the iid assumption, we assume only very little about the behavior of nature. We
approach our bound by first bounding our fidelity-based decoherence quantity by a trace distance-based quantity. We
will then bound this trace distance-based quantity in terms of the CHSH winning probability for Alice and Bob by a
quantity that can be expressed as a linear program.

Finally, in equation (C.89), we show how our bound can be expressed as a linear program and present the numerical
results. This is followed by a discussion of the physical interpretation of our numerical findings.

1. The framework

a. A basic framework for GPTs

Frameworks for probabilistic theories in which quantum theory and classical theory can be formulated as special
cases have already been considered some decades ago [54–56]. After some period of oblivion, a seminal paper by Hardy
[57] caused a revival in the interest in such frameworks (see, for example, [36–41] and references therein). Today, they
are generally refered to as frameworks for generalized probabilistic theories [58].

We formalize our decoherence analysis for GPTs in the abstract state space framework [59–62]. It is one rigorous
formalization of what a generalized probabilistic theory is, amongst a few equivalent or closely related ones that can
be found in the literature (see the references cited above). We prefer it for its concise and precise formulation. For
the sake of brevity, we will not go far beyond the mere mathematical definitions related to abstract state spaces here.
For a detailed introduction to abstract state spaces, see [63].

Definition C.1: An abstract state space is a triple (V, V +, u), where V is a finite- dimensional real vector space,
V + is a cone2 in V which is closed3 and generating4 and u ∈ V ∗ is a linear functional5 on V such that u(ω) > 0 for
all ω ∈ V + \ {0}. The functional u is called the unit effect.

Definition C.2: For an abstract state space (V, V +, u), we define the following induced structure (see Figure 8):
The normalized states are the elements of the set

Ω := {ω ∈ V + | u(ω) = 1} . (C.1)

The subnormalized states are the elements of the set

Ω6 := {ω ∈ V + | u(ω) 6 1} . (C.2)

The effects are the elements of the set

E := {e ∈ V ∗ | 0 6 e(ω) 6 1 ∀ω ∈ Ω} . (C.3)

The measurements are the elements of the set

M :=

{
M ⊆ E finite

∣∣∣∣∣
∑

e∈M
e = u

}
. (C.4)

An effect respresents a measurement outcome. If a system in a state ω is measured with respect to a measurement
M = {e1, . . . , en}, then ek(ω) is the probability that the measurement yields the outcome associated with ek.

2 A subset V + ⊆ V is a cone in V if
(C1) V + + V + ⊆ V +,

(C2) αV + ⊆ V + for all α > 0,

(C3) V + ∩ (−V +) = {0},

3 We assume the standard topology on V , i.e. the only linear Hausdorff topology on V .
4 A cone V + ⊆ V is generating if V + − V + = V .
5 For a finite-dimensional vector space V , we denote by V ∗ the dual space of V , i.e. the vector space of linear functionals on V .
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Definition III.2: For an abstract state space (V, V +, u), we define the following induced structure (see Figure III.1):
The normalized states are the elements of the set

⌦ := {! 2 V + | u(!) = 1} . (III.1)

The subnormalized states are the elements of the set

⌦ := {! 2 V + | u(!)  1} . (III.2)

The e↵ects are the elements of the set

E := {e 2 V ⇤ | 0  e(!)  1 8! 2 ⌦} . (III.3)

The measurements are the elements of the set

M :=

(
M ✓ E finite

�����
X

e2M

e = u

)
. (III.4)

⌦

⌦
u(!) = 1

0

FIG. III.1: Visualization of an abstract state space. The set V + is a cone in a vector space V , here shown as a cone with
a square base. The normalized states ⌦ are given by the intersection of V + with the plane on which the functional u takes the
value 1. The set ⌦ consists of those elements of V + on which the functional u takes values between 0 and 1.

An e↵ect respresents a measurement outcome. If a system in a state ! is measured with respect to a measurement
M = {e1, . . . , en}, then ek(!) is the probability that the measurement yields the outcome associated with ek.

Example III.3 (Quantum theory): The probabilistic structure of measurements on a (finite-dimensional) quantum
system can be formulated as an abstract state space. For a quantum system with an associated Hilbert space H,
consider the abstract state space (V, V +, u) = (Herm(H), Pos(H), tr), where V = Herm(H) is the real vector space
of Hermitian operators on H, V + = Pos(H) is the cone of positive operators on H and u = tr is the trace on H.
According to Definition III.2, this yields the states ⌦ = {⇢ 2 Pos(H) | tr(⇢) = 1}, which are precisely the density
operators on H. Analogously, ⌦ are the subnormalized density operators. The e↵ects are the functionals induced
by POVM elements via the trace, E = {tr(P · ) | P 2 Pos(H), P  IH}. Accordingly, the measurements are the
sets of functionals that are induced by POVMs, M = {{tr(Pk · ) | Pk 2 {Pk}k} | {Pk}k is a POVM}. This precisely
reproduces the structure of measurement statistics in quantum theory. For further details, see [Pfi12]. ⌅

By our definition, E is the set of all linear functionals e such that 0  e(!)  1 for all ! 2 ⌦. The underlying
assumption that every such linear functional represents a physical measurement outcome has been called the no-
restriction hypothesis [Udu12]. A priori, there seems to be no immediate physical reason for this assumption, and
some authors have argued about how to weaken this assumption [JL13]. For our purposes here, it is not relevant
whether the no-restriction hypothesis holds, and weakening the assumption complicates the definitions. Thus, we
assume it for simplicity.

In Section III B, we will define a decoherence quantity Dec(A|E)! analogous to the quantum min-entropy
Hmin(A|E)⇢. We will take our inspiration from expression (I.14) for the quantum min-entropy, which involves the
fidelity as a measure of closeness of quantum states. Therefore, it is desirable to have a generalization of the fidelity
to states in abstract state spaces. Such a generalization is easily found once it is noticed that the quantum fidelity of
two states can be expressed as the Bhattacharyya coe�cient (or classical fidelity) of the two probability distributions
that the two states induce, minimized over all measurements. More precisely, the quantum fidelity satisfies [NC00]

F (⇢,�) = min
{Pk}k

X

k

p
tr(Pk⇢) tr(Pk�) , (III.5)

FIG. 8: Visualization of an abstract state space. The set V + is a cone in a vector space V , here shown as a cone with a
square base. The normalized states Ω are given by the intersection of V + with the plane on which the functional u takes the
value 1. The set Ω6 consists of those elements of V + on which the functional u takes values between 0 and 1.

Example C.3 (Quantum theory): The probabilistic structure of measurements on a (finite-dimensional) quantum
system can be formulated as an abstract state space. For a quantum system with an associated Hilbert space H,
consider the abstract state space (V, V +, u) = (Herm(H),Pos(H),Tr), where V = Herm(H) is the real vector space
of Hermitian operators on H, V + = Pos(H) is the cone of positive operators on H and u = Tr is the trace on H.
According to Definition C.2, this yields the states Ω = {ρ ∈ Pos(H) | Tr(ρ) = 1}, which are precisely the density
operators on H. Analogously, Ω6 are the subnormalized density operators. The effects are the functionals induced
by POVM elements via the trace, E = {Tr(P · ) | P ∈ Pos(H), P 6 11H}. Accordingly, the measurements are the
sets of functionals that are induced by POVMs,M = {{Tr(Pk · ) | Pk ∈ {Pk}k} | {Pk}k is a POVM}. This precisely
reproduces the structure of measurement statistics in quantum theory. For further details, see [63]. �

By our definition, E is the set of all linear functionals e such that 0 6 e(ω) 6 1 for all ω ∈ Ω. The underlying
assumption that every such linear functional represents a physical measurement outcome has been called the no-
restriction hypothesis [40]. A priori, there seems to be no immediate physical reason for this assumption, and some
authors have argued about how to weaken this assumption [64]. For our purposes here, it is not relevant whether the
no-restriction hypothesis holds, and weakening the assumption complicates the definitions. Thus, we assume it for
simplicity.

In equation (C.19), we will define a decoherence quantity Dec(A|E)ω analogous to the quantum min-entropy
Hmin(A|E)ρ. We will take our inspiration from expression (A.14) for the quantum min-entropy, which involves the
fidelity as a measure of closeness of quantum states. Therefore, it is desirable to have a generalization of the fidelity
to states in abstract state spaces. Such a generalization is easily found once it is noticed that the quantum fidelity of
two states can be expressed as the Bhattacharyya coefficient (or classical fidelity) of the two probability distributions
that the two states induce, minimized over all measurements. More precisely, the quantum fidelity satisfies [25]

F (ρ, σ) = min
{Pk}k

∑

k

√
Tr(Pkρ)Tr(Pkσ) , (C.5)

where the minimization runs over all POVMs {Pk}k on the Hilbert space on which ρ and σ are defined. The sum in
(C.5) is precisely the Bhattacharyya coefficient of the probability distributions that the POVM {Pk}k induces on the
states ρ and σ. This motivates us to define the fidelity for abstract state spaces as follows.

Definition C.4: Let (V, V +, u) be an abstract state space with normalized states Ω and measurements M. For
states ω, τ ∈ Ω, we define the fidelity of ω and τ as

F (ω, τ) := inf
M∈M

b(ω, τ |M) , where b(ω, τ |M) =
∑

e∈M

√
e(ω)

√
e(τ) . (C.6)

The quantity b(ω, τ |M) is theBhattacharyya coefficient (or sometimes called the classical fidelity) of the probability
distributions that the measurement M induces on the states ω and τ .

The fidelity as defined in Definition C.4 precisely reduces to the quantum fidelity in the case where the abstract state
space is a quantum state space. In addition to the fidelity, in equation (C.34) we will also consider a generalization of
the quantum trace distance D(ρ, σ) = 1

2Tr|ρ−σ| in order to formulate a bound on Dec(A|E)ω. Somewhat analogously
to the fidelity, the quantum trace distance is equal to the total variation distance (or classical trace distance) between
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the two probability distributions that the two states induce, maximized over all measurements [25]:

D(ρ, σ) = max
{Pk}k

1

2

∑

k

|Tr(Pkρ)− Tr(Pkσ)| . (C.7)

This motivates the following definition.

Definition C.5: Let (V, V +, u) be an abstract state space with normalized states Ω and measurements M. For
states ω, τ ∈ Ω, the trace distance between ω and τ is given by

D(ω, τ) := sup
M∈M

d(ω, τ |M) , where d(ω, τ |M) =
1

2

∑

e∈M
|e(ω)− e(τ)| (C.8)

The quantity d(ω, τ |M) is the total variation distance (or sometimes called the classical trace distance) between
the probability distributions that the measurement M induces on the states ω and τ .

Note that the fidelity and the trace distance take values between 0 and 1 for all states. For squares of the quantities
F , b, D and d, we will write the square sign right after the letter, e.g. we will write F 2(ω, τ) instead of (F (ω, τ))2.

b. A tripartite framework for GPTs

In equation (C.19), we will consider a tripartite situation for the decoherence analysis, analogous to equation (15).
This requires us to model a tripartite scenario mathematically since such a structure is not induced by an abstract
state space (V, V +, u) alone. We need to specify it as additional structure. Our goal here is to do this with the weakest
possible assumptions, resulting in a very general validity of the bounds we derive.

Instead of assuming individual state spaces for every party, we only consider their overall combined state space,
modelled by an abstract state space (V, V +, u) and all its induced structure as in Definitions C.1 and C.2. This has
the advantage that we do not have to make assumptions about how individual state spaces combine to multipartite
state spaces, keeping our assumptions weak. For our purposes, the only structure that we need to add to an abstract
state space (V, V +, u) to make it suitable for the description of a tripartite scenario are the local transformations
that each individual party can perform. The local measurements of the three parties are then induced by these local
transformations.

We consider three parties, which we call Alice (A), Bob (B) and Eve (E) as before. We begin our considerations by
assuming that there are three sets T A, T B and T E , containing all the transformations that Alice, Bob and Eve can
perform, respectively. By a transformation, we mean a linear map T : V → V which maps states to subnormalized
states, i.e. T (Ω) ⊆ Ω6 (or, equivalently, T (V +) ⊆ V + and (u ◦ T )(ω) 6 u(ω) for all ω ∈ V +). We can consider the
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T , T ′ are linear maps V → V which map Ω inside Ω6, then the same is true for the composition T ◦ T ′ (we denote
the composition of maps by a ◦ symbol).

We assume that the three parties act individually at spatially separated locations. Relativistic considerations lead to
the consistency requirement that transformations performed by different parties must commute, e.g. if Alice performs
a transformation TA ∈ T A and Bob performs a transformation TB ∈ T B , then the total transformation must satisfy
TA ◦ TB = TB ◦ TA.

For our purposes, we do not need to specify the sets T A, T B and T E any further; the only requirement is that
transformations of distinct parties commute. The sets T A, T B and T E define the systems A, B and E, i.e. we define
the individual parties via the transformations that they can perform. This leads us to the following definition.

Definition C.6: A tripartite scenario is a quadruplet

SABE = ((V, V +, u), T A, T B , T E) , (C.9)

where (V, V +, u) is an abstract state space, and where

T A, T B , T E ⊆
{
T : V → V linear

∣∣ T (Ω) ⊆ Ω6
}

(C.10)

are such that for all P, P ′ ∈ {A,B,E} with P 6= P ′, it holds that TP ◦ TP ′ = TP ′ ◦ TP for all TP ∈ T P and for all
TP ′ ∈ T P ′ . We call the elements of T A, T B and T E the local transformations of A, B and E, respectively.
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It is absolutely natural to define tripartite scenarios via commuting transformations rather than via a tensor product
structure. In quantum theory, the two approaches are equivalent in finite dimensions (we will talk about this below).
In more general infinite-dimensional cases, where it is not known whether the two approaches are equivalent, things
are usually formalized in a commutative way rather than via tensor products (see [65], for example). Knowing about
the equivalence in finite dimensions, we will formulate some quantum examples in the tensor product structure below.

Example C.7 (A tripartite quantum scenario): One can formulate a tripartite situation in quantum theory as a
tripartite scenario. Based on Example C.3, consider the tripartite scenario

((Herm(H),Pos(H),Tr), T A, T B , T E) , where (C.11)
H = HA ⊗HB ⊗HE , (C.12)
T A = {RA ⊗ 11B ⊗ 11E | RA is a trace non-increasing CPM on Herm(HA)} , (C.13)
T B = {11A ⊗RB ⊗ 11E | RB is a trace non-increasing CPM on Herm(HB)} , (C.14)
T E = {11A ⊗ 11B ⊗RE | RE is a trace non-increasing CPM on Herm(HE)} , (C.15)

where CPM stands for completely positive map. Having tensor product form, the local transformations of different
parties commute. �

For our purposes, Definition C.6 is all the structure one needs to specify. The local measurements are induced by
the local measurements. We formalize this via the noation of a local instrument [56]. To get an intuition for what an
instrument is, consider a Stern-Gerlach experiment. A spin-1/2 particle enters a magnet and undergoes one of two
transformations: It either gets deflected upwards or downwards. Which of the two transformations it undergoes is
determined probabilistically. Then it hits a screen, which reveals which of the two transformations the particle has
undergone. This way, a measurement has been performed in two stages: a probabilistic application of a transformation
and a detection. The sum of the probabilities of detecting the particle at the top or the bottom of the screen is one.
If the state of the particle is described by a state ω ∈ Ω of an abstract state space, we may model this by a set of two
transformations {Tup, Tdown}. Such a set is an instrument. The norm u(Tup(ω)) is the probability that the particle
is deflected upwards, and likewise for u(Tdown(ω)). Thus, u can be seen to play the role of the screen, detecting the
particle. The requirement that the particle must undergo one of the two deflections reads u◦Tup +u◦Tdown = u. The
transformation Tup is the analogue of the transformation ρ 7→ PupρPup in quantum theory, where Pup is the projector
onto the spin-up state. Since u is given by the trace in quantum theory, the probability for the upward-deflection to
occur is given by Tr(PupρPup) = Tr(Pupρ), which is precisely the Born rule.

A local instrument is such a set of transformations where all the transformations are the local transformations of
one party. This motivates the following definition.

Definition C.8 (Local instruments): For a tripartite scenario SABE = ((V, V +, u), T A, T B , T E) with Ω as defined
in Definition C.2, we define the local instruments as the elements of

IP :=

{
IP ⊆ T P finite

∣∣∣∣∣
∑

TP∈IP
u ◦ TP = u

}
for P ∈ {A,B,E} . (C.16)

Example C.9 (Local instruments in a tripartite quantum scenario): Considering the tripartite scenario of Exam-
ple C.7, we get that the local instruments are given by

IP =

{
IP ⊆ T P

∣∣∣∣∣
∑

TP∈IP
TP is a TPCPM

}
for P ∈ {A,B,E} . �

Remark C.10 (Local measurements): The definition of local instruments gives us a notion of local measurements
as well. Consider a tripartite scenario SABE = ((V, V +, u), T A, T B , T E) with its set of measurementsM. It is easily
verified that for a local transformation TA ∈ T A, the map u◦TA is an effect (as defined in Definition C.2). Likewise, for
a local instrument IA ∈ IA, the set {u◦TA | TA ∈ IA} is a measurement. We interpret it as a measurement performed
by Alice. We can also consider composite measurements where several parties locally perform measurements. For
local instruments IA ∈ IA and IB ∈ IB , for example, the set {u ◦ TA ◦ TB | TA ∈ IA, TB ∈ IB} is a measurement. We
interpret it as a composite measurement where Alice and Bob each perform local measurements, described by IA and
IB . The analogous holds for other parties and combinations thereof.
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Example C.11 (Local measurements in a tripartite quantum scenario): Based on Examples C.7 and C.9, we can
say how local measurements look like in a tripartite quantum scenario. A local effect of Alice is of the form

ρABE 7→ Tr(RA ⊗ 11B ⊗ 11E(ρABE)) (C.17)

for a trace non-increasing CPM RA on Herm(HA). However, for every such CPM, there is a POVM element PA on
HA such that6

Tr((PA ⊗ 11B ⊗ 11E)ρABE) = Tr(RA ⊗ 11B ⊗ 11E(ρABE)) . (C.18)

This recovers the Born rule. Analogously, a composite measurement where Alice and Bob each perform local mea-
surements consists of local effects of the form

ρABE 7→ Tr(RA ⊗RB ⊗ 11E(ρABE)) = Tr((PA ⊗ PB ⊗ 11E)ρABE) (C.19)

for POVM elements PA, PB on HA, HB . Thus, in our tripartite quantum example, local measurements reduce to
POVM measurements of product form. �

In Examples C.7, C.9 and C.11, instead of choosing a tensor factorization forH and setting the local transformations
to be acting non-trivially on one tensor factor, we could have chosen sets of transformations that merely commute,
without a tensor product structure. The question of whether the resulting measurement statistics in that case would
be different from the case with the tensor factor structure is known as Tsirelson’s problem [66, 67]. More precisely,
the question is the following. Let H be a Hilbert space, let ρ be a density operator on H, let {Pk}k, {Ql}l be POVMs
on H such that PkQl = QlPk for all k, l. Tsirelson’s problem is: Does there necessarily exist Hilbert spaces HA, HB ,
a density operator σ on HA⊗HB and POVMs {Rk}k on HA and {Sl}l on HB such that Tr(PkQlρ) = Tr((Rk⊗Sl)σ)
for all k, l? In the case where H is finite-dimensional, the answer is known to be affirmative. For infinite-dimensional
Hilbert spaces, the answer is still unknown.

Thus, for finite-dimensional quantum systems, we can restrict ourselves to the case with the tensor product structure
without loss of generality. For abstract state spaces, however, an analogous restriction might cause a loss of generality.
The advantage of our weak definition of a tripartite scenario is that we do not need to know the answer to an equivalent
of Tsirelson’s problem for generalized probabilistic theories. The downside is that it makes defining an equivalent of
the min-entropy more difficult. We will deal with this issue in the next subsection.

Notation: From now on, whenever we speak of a tripartite scenario SABE , we implicitly assume that all its parts
and induced structures are denoted as in Definitions C.1, C.2, C.6 and C.8 without restating it, i.e. instead of writing
“Let SABE = ((V, V +, u), T A, T B , T E) be a tripartite scenario, let Ω be its set of normalized states, . . . ”, we will only
write “Let SABE be a tripartite scenario”.

2. A decoherence quantity for GPTs

a. Motivation of an expression that quantifies decoherence

We are now going to motivate an expression for the central quantitiy Dec(A|E)ω for our decoherence analysis for
GPTs. We take our inspiration from expression (A.14) for the quantum min-entropy, which we repeat here for the
reader’s convenience:

Hmin(A|E)ρ = − log dA max
RE→A′

F 2(ΦAA′ , 11A ⊗RE→A′(ρAE)) . (A.14 revisited)

There are two issues that prevent us from directly translating expression (A.14) into our framework. The first issue
is that in equation (C.8), to keep our framework as general as possible, we have defined a tripartite scenario with an
overall state space (V, V +, u) with tripartite states Ω. We do not have notions of individual state spaces at hand.
Thus, we do not have an analogue of a reduced state ρAE or of a transformation RE→A′ from one state space to
another.

6 This can be seen from the Kraus representation of RA: Tr(RA(ρA)) = Tr(
∑
k FkρAF

†
k ) = Tr(

∑
k F
†
kFkρA) = Tr(PAρA) for PA =∑

k F
†
kFk. (We omitted the other tensor factors for brevity.)
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The second issue is that we do not know what the analogue of a maximally entangled state ΦAA′ in our framework
is. We resolve the first issue here in equation (C.19), arriving at an expression for Dec(A|E)ω. In equation (C.22), we
will then define what a maximally entangled state is in our framework.

Expression (A.14), which involves the state ρAE and TPCPMs RE→A′ , can be transformed to an expression in
which both the state and the TPCPMs are purified (see Figure 9). This expression will be our motivation for the
expression for Dec(A|E)ω. The maximization over TPCPMs from E to A′ is replaced by a maximization over unitaries
from EE′′ to A′A′′, where E′′ and A′′ are ancilla systems extending system E and A′, respectively. This is precisely
the purification (or Stinespring dilation) of a channel as in equation (15). Since systems EE′′ and A′A′′ have the
same dimension, we can identify their Hilbert spaces and regard the resulting Hilbert space as the Hilbert space of
a system Etot. This system involves all subsystems that the third party needs to control in order to bring itself as
close as possible to maximal entanglement with Alice. Since UEtot is a transformation on system Etot alone, we can
translate it into our generalized framework.
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FIG. III.2: Purification of equation (I.14). Part (a) shows the system and maps involved in expression (I.14) for the
quantum min-entropy. In expression (III.20), we purify this situation, as shown in (b), to arrive at a situation with three
parties A, B and Etot, and with a map UEtot which acts on one system Etot alone rather than mapping from one system to
another.

The state ⇢AE is replaced by a purification ⇢ABE . We choose the purifying system B to be the channel’s output
system, which gives us the overall picture of our decoherence analysis as shown in Figure III.3.
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FIG. III.3: Overall picture of our decoherence analysis for GPTs. Since the purifying system B in expression (III.20)
is not specified, we can choose it such that it fits our situation for the decoherence analysis.

The following gives a precise formulation of the purification of expression (I.14). It can be proved using purification
and Stinespring dilation. Let HA, HE be finite-dimensional Hilbert spaces of dimensions dA, dE , respectively, let
⇢AE 2 S(HA ⌦HE). Then, for any purification ⇢ABE 2 S(HA ⌦HB ⌦HE) of ⇢AE , any Hilbert spaces HA0 , HA00 and
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system, which gives us the overall picture of our decoherence analysis as shown in Figure III.3.
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FIG. 9: Purification of equation (A.14). Part (a) shows the system and maps involved in expression (A.14) for the quantum
min-entropy. In expression (C.20), we purify this situation, as shown in (b), to arrive at a situation with three parties A, B
and Etot, and with a map UEtot which acts on one system Etot alone rather than mapping from one system to another.

The state ρAE is replaced by a purification ρABE . We choose the purifying system B to be the channel’s output
system, which gives us the overall picture of our decoherence analysis as shown in Figure 10.
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is not specified, we can choose it such that it fits our situation for the decoherence analysis.

The following gives a precise formulation of the purification of expression (I.14). It can be proved using purification
and Stinespring dilation. Let HA, HE be finite-dimensional Hilbert spaces of dimensions dA, dE , respectively, let
⇢AE 2 S(HA ⌦HE). Then, for any purification ⇢ABE 2 S(HA ⌦HB ⌦HE) of ⇢AE , any Hilbert spaces HA0 , HA00 and

FIG. III.2: Purification of equation (I.14). Part (a) shows the system and maps involved in expression (I.14) for the
quantum min-entropy. In expression (III.20), we purify this situation, as shown in (b), to arrive at a situation with three
parties A, B and Etot, and with a map UEtot which acts on one system Etot alone rather than mapping from one system to
another.

The state ⇢AE is replaced by a purification ⇢ABE . We choose the purifying system B to be the channel’s output
system, which gives us the overall picture of our decoherence analysis as shown in Figure III.3.
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FIG. III.3: Overall picture of our decoherence analysis for GPTs. Since the purifying system B in expression (III.20)
is not specified, we can choose it such that it fits our situation for the decoherence analysis.

The following gives a precise formulation of the purification of expression (I.14). It can be proved using purification
and Stinespring dilation. Let HA, HE be finite-dimensional Hilbert spaces of dimensions dA, dE , respectively, let
⇢AE 2 S(HA ⌦HE). Then, for any purification ⇢ABE 2 S(HA ⌦HB ⌦HE) of ⇢AE , any Hilbert spaces HA0 , HA00 and

FIG. 10: Overall picture of our decoherence analysis for GPTs. Since the purifying system B in expression (C.20) is
not specified, we can choose it such that it fits our situation for the decoherence analysis.

The following gives a precise formulation of the purification of expression (A.14). It can be proved using purification
and Stinespring dilation. Let HA, HE be finite-dimensional Hilbert spaces of dimensions dA, dE , respectively, let
ρAE ∈ S(HA⊗HE). Then, for any purification ρABE ∈ S(HA⊗HB ⊗HE) of ρAE , any Hilbert spaces HA′ , HA′′ and
HE′′ of dimension dA′ = dA, dA′′ = dAdE and dE′′ = d2

A, respectively, any maximally entangled state ΦAA′ ∈ ΓAA′
and any pure state |0〉〈0|E′′ ∈ S(HE′′), it holds that

Hmin(A|E)ρ = − log dA max
UEtot

max
σBA′′

F 2(ΦAA′ ⊗ σBA′′ , (11AB ⊗ UEtot)ρABEtot(11AB ⊗ U†Etot
)) , (C.20)

where ρABEtot = ρABE ⊗ |0〉〈0|E′′ and where the first maximization ranges over unitaries

UEtot : HE ⊗HE′′ → HA′ ⊗HA′′ , where HA′ ⊗HA′′ ' HE ⊗HE′′ =: HEtot (C.21)

and the second maximization ranges over pure states σBA′′ ∈ S(HB ⊗HA′′).
Now we translate expression (C.20) into our generalized framework. We interpret the system Etot as the system

controlled by Eve, and therefore rename Etot → E.

• Since we want to arrive at an expression that does not make unnecessary assumptions about the mathematical
description of the physical situation, we avoid the factor dA present in (C.20). We look for a GPT analogue of
maxUEtot

maxσBA′′ F
2(ΦAA′ ⊗σBA′′ , (11AB ⊗UEtot)ρABEtot(11AB ⊗U†Etot

)), omitting − log dA. As a consequence,
we will have Hmin(A|E)ρ = − log dADec(A|E)ρ in quantum theory (see Example C.14).
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• We replace the maximization over all unitaries UEtot acting on system Etot by a supremum7 over all local
transformations TE ∈ T E . 8

• We generalize the quantum fidelity to the fidelity in abstract state spaces as defined in Definition C.4.

• We replace the state ρABEtot = ρABE ⊗ |0〉〈0|E′′ by a state ω ∈ Ω.

• If we look at the state ΦAA′ ⊗ σBA′′ , we see that it is a state of maximal entanglement between Alice (A) and
Eve (A′A′′) in the sense that by performing measurements with elements of the form PA⊗PA′⊗11B⊗11A′′ , they
can get any statistics that two parties A and A′ would be able to get by performing local measurements on the
maximally entangled state ΦAA′ . We translate this into our framework by assuming that there is a set ΨAE of
“states with maximal correlation between Alice and Eve”. Instead of minimizing over states ΦAA′ ⊗ σBA′′ , we
then minimize over the set ΨAE .

We postpone the discussion of how such a set ΨAE looks like. We will give a definition of such a set in equation (C.22)
below. For now, we write down an expression for our decoherence quantity Dec(A|E)ω that depends on the choice of
such a set ΨAE ⊆ Ω. According to what we have just discussed, the expression is

sup
TE∈T E

sup
ψ∈ΨAE

F 2(ψ, TE(ω)) . (C.22)

We interpret the decoherence to be high when this quantity is high and vice versa, which is the opposite of Hmin(A|E)ρ
(see the end of equation (15)). Before we can define Dec(A|E)ω, however, we need to specify what a maximally
entangled state in a GPT is.

b. Definition of maximal correlation in GPTs

The expression (C.22) for our decoherence quantity Dec(A|E)ω contains a maximization over a set ΨAE ⊆ Ω which
we interpret to be the set of states with maximal correlation between Alice and Eve. We now define this set.

Definition C.12: For a tripartite scenario SABE , we define the set ΨAE of states with maximal correlation
between Alice and Eve by

ΨAE :=

{
ψ ∈ Ω

∣∣∣∣
For every binary local instrument IA = {T 0

A, T
1
A} ∈ IA, there is a binary local

instrument IE = {T 0
E , T

1
E} ∈ IE such that (u ◦T 0

A ◦T 0
E)(ψ) + (u ◦T 1

A ◦T 1
E)(ψ) = 1.

}
. (C.23)

Definition C.12 can be read as follows. The superscripts 0 and 1 of the elements of the instruments IA and IE stand
for measurement outcomes, so (u ◦ T 0

A ◦ T 0
E)(ψ) or (u ◦ T 1

A ◦ T 1
E)(ψ) is the probability that Alice and Eve both get

outcome 0 or both get outcome 1, respectively, when they measure with respect to IA, IE , respectively. Thus, the sum
of these probabilities is the probability that Alice’s and Eve’s measurement outcomes are perfectly correlated. This
means that for a state ψ ∈ ΨAE , it holds that for every binary measurement of Alice, there is a binary measurement
for Eve such that their measurement outcomes are perfectly correlated.

A closer look at some subtleties is advisable here, both to avoid confusion and to see the advantages of the weak
assumptions that define our framework. With reference to Example C.11, one may point out that that the set




σ ∈ S(HA ⊗HB ⊗HE)

∣∣∣∣∣∣∣∣

For every binary POVM {P 0
A, P

1
A} on HA, there is a binary POVM

{P 0
E , P

1
E} on HE such that

Tr((P 0
A ⊗ 11B ⊗ P 0

E)σ) + Tr((P 1
A ⊗ 11B ⊗ P 1

E)σ) = 1 .





(C.24)

7 We do not assume enough about T E to guarantee that the maximum is achieved, so we replace it by a supremum.
8 One might raise the objection that in the quantum case, Example C.7, the unitaries only correspond to those elements of T E which
bijectively map the space of density operators onto itself. It would be possible to include this restriction, but we decide not to do so,
for two reason: We want to keep things simple, and we want to avoid the assumption that actions that the third party can perform can
be purified as in the quantum case.
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is empty. This may seem to make our definition of ΨAE incompatible with quantum theory. Note, however, that the
set




σ ∈ S(HA ⊗HB ⊗HE)

∣∣∣∣∣∣∣∣

For every binary projective measurement {P 0
A, P

1
A} on HA, there is a

binary projective measurement {P 0
E , P

1
E} on HE such that

Tr((P 0
A ⊗ 11B ⊗ P 0

E)σ) + Tr((P 1
A ⊗ 11B ⊗ P 1

E)σ) = 1 .





(C.25)

is not empty as long as dimHE > dimHA. If, as in equation (C.19), HE = HA′ ⊗HA′′ with HA′ ' HA, then this set
contains all the states of the form ΦAA′ ⊗σBA′′ with ΦAA′ ∈ ΓAA′ as in (C.20). The advantage of our weak definition
of the local transformations is that it does not force to see T A as the analogue of the set of all CPMs of the form
RA ⊗ 11B ⊗ 11E , but that it can be considered to be the analogue of all such CPMs which induce a functional of the
form σ 7→ Tr(Pσ), where P is a projector. Example C.11 can be modified accordingly (see Example C.14 below).
This makes our definition of ΨAE compatible with quantum theory.

With Definition C.12 at hand, we are finally ready to define the decoherence quantity.

Definition C.13: Let SABE be a tripartite scenario, let ω ∈ Ω. We define the the decoherence quantity of ω by

Dec(A|E)ω := sup
TE∈T E

sup
ψ∈ΨAE

F 2(ψ, TE(ω)) (C.26)

Example C.14: We consider a special case of a tripartite scenario in quantum theory. Consider

((Herm(H),Pos(H),Tr), T A, T B , T E) , where (C.27)
H = HA ⊗HB ⊗HE (C.28)

T A =

{
RA ⊗ 11B ⊗ 11E

∣∣∣∣
RA is a trace non-increasing CPM on Herm(HA) such that there is a
projector PA on HA with Tr(PAρA) = Tr(RA(ρA)) for all ρA ∈ S(HA)

}
, (C.29)

and analogously for T B and T E . In addition, we assume for simplicity that HA ' HE . In this case,

ΨAE =




σ ∈ S(HA ⊗HB ⊗HE)

∣∣∣∣∣∣∣∣

For every binary projective measurement {P 0
A, P

1
A} on HA, there

is a binary projective measurement {P 0
E , P

1
E} on HE such that

Tr((P 0
A ⊗ 11B ⊗ P 0

E)σ) + Tr((P 1
A ⊗ 11B ⊗ P 1

E)σ) = 1 .





(C.30)

= {ΦAE ⊗ σB | ΦAE ∈ ΓAE , σB ∈ S(HB)} , (C.31)

where ΓAE is the set of maximally entangled states on S(HA ⊗HE) analogous to (A.15). For a pure state ρABE ∈
S(HA ⊗HB ⊗HE), this gives us

Dec(A|E)ρ = max
RE

max
ΦAE

max
σB

F 2(ΦAE ⊗ ρB , 11A ⊗ 11B ⊗RE(ρABE)) (C.32)

= max
RE

F 2(ΦAE , 11A ⊗RE(ρAE)) (C.33)

=
1

dA
2−Hmin(A|E)ρ . (C.34)

Hence, Hmin(A|E)ρ = − log dADec(A|E)ρ. �

3. Bounds on the decoherence quantity for GPTs

The goal of this subsection is to derive an upper bound on Dec(A|E)ω in terms of the CHSH winning probability of
Alice and Bob. This is a practically relevant bound: On the premise that the channel behaves identically in multiple
uses and does not build up correlations between different uses (such a channel is said to be iid, for independent and
identically distributed), this winning probability can be estimated through repeated measurements on Alice’s and
Bob’s side. What we show is that this estimate in turn gives a bound on Dec(A|E)ω. In this section, we formulate
this bound as a minimization problem which we solve and interpret in equation (C.89).

In the following, we derive a lower bound on − log Dec(A|E)ω. We make the convention that − log 0 =∞, where∞
is a symbol for which we accept the inequality ∞ > r for every real number r. This lower bound on − log Dec(A|E)ω
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then gives us an upper bound on Dec(A|E)ω. In a first step, we bound the fidelity-based quantity − log Dec(A|E)ω
by a trace distance-based quantity. This has the advantage that the resulting optimization problems which give us
the bounds can be solved using linear programming.

Proposition C.15: Let SABE be a tripartite scenario, let ω ∈ Ω. Then

− log Dec(A|E)ω > inf
TE∈T E

inf
ψ∈ΨAE

D2(ψ, TE(ω)) . (C.35)

The following lemma is useful for the proof of Proposition C.15 below.

Lemma C.16: For all x ∈ (0, 1], it holds that − log(x2) > 2(1− x).

Proof. We have that − log(x2) = −2 log(x), so the claim is equivalent to

(x− 1)− log(x) > 0 for all x ∈ (0, 1] . (C.36)

The functions F (x) = log(x) and G(x) = x − 1 are differentiable on R>0. Thus, by the fundamental theorem of
calculus, it holds that for all x ∈ R>0,

F (x) = F (1) +

∫ x

1

f(y)dy , G(x) = G(1) +

∫ x

1

g(y)dy where f(y) =
d

dy
F (y) , g(y) =

d

dy
G(y) , (C.37)

so for all x ∈ (0, 1], we have that

(x− 1)− log(x) = G(x)− F (x) =

∫ x

1

g(y)− f(y)dy = −
∫ 1

x

1− 1

ln(2)y︸ ︷︷ ︸
<0 for all y∈(0,1]

dy > 0 . (C.38)

This proves the claim.

Proof of Proposition C.15. Since the right hand side of (C.35) is a finite real number, the inequality trivially holds if
Dec(A|E)ω = 0 by the above convention. Thus, we assume in the following that Dec(A|E)ω > 0. We have that

− log Dec(A|E)ω = − log sup
TE∈T E

sup
ψ∈ΨAE

F 2(ψ, TE(ω)) (C.39)

= − log

(
sup

TE∈T E
sup

ψ∈ΨAE

F (ψ, TE(ω))

)2

(C.40)

For x ∈ (0, 1], it holds that − log x2 > 2(1− x) (see Lemma C.16). Thus, since

sup
TE∈T E

sup
ψ∈ΨAE

F (ψ, TE(ω)) ∈ (0, 1] , (C.41)

we get that

− log Dec(A|E)ω > 2

(
1− sup

TE∈T E
sup

ψ∈ΨAE

F (ψ, TE(ω))

)
(C.42)

= inf
TE∈T E

inf
ψ∈ΨAE

2(1− F (ψ, TE(ω))) (C.43)

= inf
TE∈T E

inf
ψ∈ΨAE

sup
M∈M

2(1− b(ψ, TE(ω)|M)) . (C.44)

For the Bhattacharyya coefficient b and the total variation distance d, it has been shown [68] that for any two
probability distributions distributions, it holds that 2(1 − b) > d2. Since this is true in particular for the two
probability distributions that the measurement M induces on the states ψ and TE(ω), we get that

− log Dec(A|E)ω > inf
TE∈T E

inf
ψ∈ΨAE

sup
M∈M

d2(ψ, TE(ω)|M) (C.45)

= inf
TE∈T E

inf
ψ∈ΨAE

D2(ψ, TE(ω)) , (C.46)

as claimed.
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The idea that the fidelity and the trace distance are related is not new. In quantum theory, the Fuchs-van de
Graaf inequalities (FvdG) relate the two quantities [69]. Inequality (C.35) is not completely analogous to the FvdG
inequalities: It makes use of the logarithm in (C.35), which allows to apply classical relations that lead to a stronger
bound than with the application of the FvdG inequalities.

For the bounds that we are going to derive, the notion of a non-signalling distribution is central. Our bounds are
essentially minimizations of functions over sets of non-signalling distributions Pr[a, b, c|x, y, z]ω and Pr[a, c|x, z]ψ with
certain additional properties.

Definition C.17: A set of numbers Pr[a, b, c|x, y, z]ω ∈ [0, 1], indexed by numbers a, b, c ∈ {0, 1} which we call
outcomes, and numbers x, y, z ∈ {0, 1} which we call settings, is a non-signalling distribution if

normalization:
∑

a,b,c

Pr[a, b, c|x, y, z]ω = 1 for all x, y, z ∈ {0, 1} , (C.47)

no-signalling:
∑

a

Pr[a, b, c|0, y, z]ω =
∑

a

Pr[a, b, c|1, y, z]ω for all b, c, y, z ∈ {0, 1} , (C.48)

∑

b

Pr[a, b, c|x, 0, z]ω =
∑

b

Pr[a, b, c|x, 1, z]ω for all a, b, x, y ∈ {0, 1} , (C.49)

∑

b

Pr[a, b, c|x, y, 0]ω =
∑

b

Pr[a, b, c|x, y, 1]ω for all a, b, x, y ∈ {0, 1} . (C.50)

Similarly, a set of numbers Pr[a, c|x, z]ψ ∈ [0, 1], indexed by outcomes a, c ∈ {0, 1} and settings x, z ∈ {0, 1} is a
non-signalling distribution if

normalization:
∑

a,c

Pr[a, c|x, z]ψ = 1 for all x, z ∈ {0, 1} , (C.51)

no-signalling:
∑

a

Pr[a, c|0, z]ψ =
∑

a

Pr[a, c|1, z]ψ for all c, z ∈ {0, 1} , (C.52)

∑

c

Pr[a, c|x, 0]ψ =
∑

c

Pr[a, c|x, 1]ψ for all a, x ∈ {0, 1} . (C.53)

The interpretation of equations (C.48) to (C.50) is that it is impossible for each of the three parties to signal to
the other two parties by influencing their measurement statistics with the choice of the measurement setting. These
one-party no-signalling constraints imply all the multi-party no-signalling constraints, saying that no collection of
parties can signal to the remaining parties [70], so we do not need to require these constraints separately.

Now we are going to formulate the bound on − log Dec(A|E)ω in terms of the CHSH winning probability of Alice
and Bob. Assume that Alice, Bob and Eve are in a situation described by a tripartite scenario SABE . Suppose that
Alice and Bob have estimated that for the state ω ∈ Ω that they are analyzing, their CHSH winning probability is at
least λ for some λ ∈ [0, 1]. Formulated in our tripartite scenario language, this means that they have found out that
for local instruments

I0
A = {T 0|0

A , T
1|0
A } ∈ IA, I0

B = {T 0|0
B , T

1|0
B } ∈ IB , (C.54)

I1
A = {T 0|1

A , T
1|1
A } ∈ IA, I1

B = {T 0|1
B , T

1|1
B } ∈ IB , (C.55)

it holds that
1

4

∑

x,y

∑

a,b
a⊕b=xy

(
u ◦ T a|xA ◦ T b|yB

)
(ω) > λ . (C.56)

In that case, what can Alice and Bob infer about − log Dec(A|E)ω? We have seen in Proposition C.15 that this
quantity is lower bounded by infTE∈T E infψ∈ΨAE D

2(ψ, TE(ω)). Alice’s and Bob’s estimate on their CHSH winning
probability can be translated into a bound on this quantity. This is shown by the following proposition.

Proposition C.18: Let SABE be a tripartite scenario, let ω ∈ Ω be a state. If the CHSH winning probability of Alice
and Bob is at least λ, i.e. if there are local instruments I0

A, I
1
A, I

0
B and I1

B as in (C.54) and (C.55) and a λ ∈ [0, 1]
such that (C.56) is satisfied, then

inf
TE∈T E

inf
ψ∈ΨAE

D(ψ, TE(ω)) > min
x,z∈{0,1}

Pr[a,b,c|x,y,z]ω∈Dω(λ)
Pr[a,c|x,z]ψ∈Dψ

1

2

∑

a,c

∣∣∣∣∣Pr[a, c|x, z]ψ −
∑

b

Pr[a, b, c|x, y, z]ω
∣∣∣∣∣ , (C.57)
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where Dω(λ) is the set of non-signalling distributions for Alice, Bob and Eve such that Alice and Bob have a CHSH
winning probability of at least λ, i.e.

Dω(λ) =





Pr[a, b, c|x, y, z]ω

∣∣∣∣∣∣∣∣∣∣

Pr[a, b, c|x, y, z]ω is a non-signalling distribution such that

1

4

∑

x,y

∑

a,b
a⊕b=xy

∑

c

Pr[a, b, c|x, y, z]ω > λ ,




. (C.58)

and where Dψ is the set of non-signalling distributions for Alice and Eve such that their measurement outcomes are
perfectly correlated when they choose the same measurement setting, i.e.

Dψ =

{
Pr[a, c|x, z]ψ

∣∣∣∣
Pr[a, c|x, z]ψ is a non-signalling distribution
such that Pr[a = c|x = z]ψ = 1.

}
. (C.59)

Proposition C.18 reduces our problem of lower bounding the decoherence quantity for GPTs to an optimization
over non-signalling distributions. This allows us to use linear programming techniques, which in similar ways have
been used in [26] to answer questions about non-signalling distributions.

We need the following lemma for the proof of Proposition C.18 below.

Lemma C.19: Let SABE be a tripartite scenario, let ω, ψ ∈ Ω. Then, for all local instruments (IA, IB , IE) ∈
IA × IB × IE , it holds that

inf
TE∈T E

D(ψ, TE(ω)) > 1

2
inf

TE∈T E

∑

TA∈IA
UE∈IE

∣∣∣∣∣(u ◦ TA ◦ UE)(ψ)−
∑

TB∈IB
(u ◦ TA ◦ TB ◦ UE ◦ TE)(ω)

∣∣∣∣∣ . (C.60)

Proof. It is sufficient to show that for all ω, ψ ∈ Ω, for all TE ∈ T E and for all (IA, IB , IE) ∈ IA × IB × IE ,

D(ψ, TE(ω)) > 1

2

∑

TA∈IA
UE∈IE

∣∣∣∣∣(u ◦ TA ◦ UE)(ψ)−
∑

TB∈IB
(u ◦ TA ◦ TB ◦ UE ◦ TE)(ω)

∣∣∣∣∣ . (C.61)

This is what we are going to show now. Let ω, ψ ∈ Ω, let TE ∈ T E , let (IA, IB , IE) ∈ IA × IB × IE . Then

D(ψ, TE(ω)) = sup
M∈M

d(ψ, TE(ω)|M) =
1

2
sup
M∈M

∑

e∈M
|e(ψ)− e(TE(ω))| . (C.62)

If instead of taking the supremum overM, we only evaluate the expression for a particular element ofM, we get a
lower bound on (C.62). We choose the element (c.f. Remark C.10)

{u ◦ TA ◦ UE | TA ∈ IA, UE ∈ IE} ∈ M . (C.63)

Hence,

D(ψ, TE(ω)) > 1

2

∑

TA∈IA
UE∈IE

|(u ◦ TA ◦ UE)(ψ)− (u ◦ TA ◦ UE ◦ TE)(ω)| . (C.64)

By the definition of a local instrument, u =
∑
TB∈IB u ◦ TB . Thus,

D(ψ, TE(ω)) > 1

2

∑

TA∈IA
UE∈IE

∣∣∣∣∣(u ◦ TA ◦ UE)(ψ)−
∑

TB∈IB
(u ◦ TB ◦ TA ◦ UE ◦ TE)(ω)

∣∣∣∣∣ (C.65)

=
1

2

∑

TA∈IA
UE∈IE

∣∣∣∣∣(u ◦ TA ◦ UE)(ψ)−
∑

TB∈IB
(u ◦ TA ◦ TB ◦ UE ◦ TE)(ω)

∣∣∣∣∣ , (C.66)

where in the last equality, we made use of the fact that transformations of different parties commute.
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Proof of Proposition C.18. It is sufficient to show that for every ψ ∈ ΨAE , the claimed inequality holds without the
minimization over ΨAE , i.e.

inf
TE∈T E

D(ψ, TE(ω)) > min
x,z∈{0,1}

Pr[a,b,c|x,y,z]ω∈Dω(λ)
Pr[a,c|x,z]ψ∈Dψ(ΨAE ,λ)

1

2

∑

a,c

∣∣∣∣∣Pr[a, c|x, z]ψ −
∑

b

Pr[a, b, c|x, y, z]ω
∣∣∣∣∣ . (C.67)

By means of Lemma C.19, we know that for all x, y ∈ {0, 1} and every IE ∈ IE ,

inf
TE∈T E

D(ψ, TE(ω)) > 1

2
inf

TE∈T E

∑

a∈{0,1}
UE∈IE

∣∣∣∣∣∣
(u ◦ T a|xA ◦ UE)(ψ)−

∑

b∈{0,1}
(u ◦ T a|xA ◦ T b|yB ◦ UE ◦ TE)(ω)

∣∣∣∣∣∣
. (C.68)

Let ψ ∈ ΨAE , let I0
E = {U0|0

E , U
1|0
E }, I1

E = {U0|1
E , U

1|1
E } ∈ IE be local instruments for Eve such that

(u ◦ T 0|0
A ◦ U0|0

E )(ψ) + (u ◦ T 1|0
A ◦ U1|0

E )(ψ) = 1 , (C.69)

(u ◦ T 0|1
A ◦ U0|1

E )(ψ) + (u ◦ T 1|1
A ◦ U1|1

E )(ψ) = 1 , (C.70)

which exist according to the definition of ΨAE (Definition C.12). It holds that for every x, y, z ∈ {0, 1},

inf
TE∈T E

D(ψ, TE(ω)) > 1

2
inf

TE∈T E

∑

a,c∈{0,1}

∣∣∣∣∣∣
(u ◦ T a|xA ◦ U c|zE )(ψ)−

∑

b∈{0,1}
(u ◦ T a|xA ◦ T b|yB ◦ U c|zE ◦ TE)(ω)

∣∣∣∣∣∣
. (C.71)

=
1

2
inf

TE∈T E

∑

a,c∈{0,1}

∣∣∣∣∣∣
Pr[a, c|x, z]ψ −

∑

b∈{0,1}
Pr[a, b, c|x, y, z]ω

∣∣∣∣∣∣
, (C.72)

where

Pr[a, c|x, z]ψ = (u ◦ T a|xA ◦ U c|zE )(ψ) , (C.73)

Pr[a, b, c|x, y, z]ω = (u ◦ T a|xA ◦ T b|yB ◦ U c|zE ◦ TE)(ω) . (C.74)

Hence,

inf
TE∈T E

D(ψ, TE(ω)) > 1

2
min
x,y,z

inf
TE∈T E

∑

a,c∈{0,1}

∣∣∣∣∣∣
Pr[a, c|x, z]ψ −

∑

b∈{0,1}
Pr[a, b, c|x, y, z]ω

∣∣∣∣∣∣
. (C.75)

Pr[a, c|x, z]ψ forms a non-signalling distribution: For the normalization, note that for all x, z ∈ {0, 1}, we have that

∑

a,c

Pr[a, c|x, z]ψ =
∑

a,c

(u ◦ T a|xA ◦ U c|zE )(ψ) =

(∑

a

u ◦ T a|xA

)

︸ ︷︷ ︸
u

◦
(∑

c

U
c|z
E

)
(ψ) (C.76)

=

(∑

c

u ◦ U c|zE

)
(ψ) = u(ψ) = 1 . (C.77)

For the no-signalling condition, note that for all c, z ∈ {0, 1}, it holds that

∑

a

Pr[a, c|0, z]ψ =

((∑

a

u ◦ T a|0A

)
◦ U c|zE

)
(ψ) = (u ◦ U c|zE )(ψ) =

((∑

a

u ◦ T a|1A

)
◦ U c|zE

)
(ψ) (C.78)

=
∑

a

Pr[a, c|1, z]ψ , (C.79)
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and that for all a, x ∈ {0, 1}, it holds that

∑

c

Pr[a, c|x, 0]ψ =
∑

c

(u ◦ T a|xA ◦ U c|0E )(ψ) =
∑

c

(u ◦ U c|0E ◦ T
a|x
A )(ψ) =

((∑

c

u ◦ U c|0E

)
◦ T a|xA

)
(ψ) (C.80)

= (u ◦ T a|xA )(ψ) =

((∑

c

u ◦ U c|1E

)
◦ T a|xA

)
(ψ) =

∑

c

Pr[a, c|x, 1]ψ , (C.81)

where in the second equality, we made use of the fact that local transformations of different parties commute. Anal-
ogously, for every TE ∈ T E , Pr[a, b, c|x, y, z]ω is a non-signalling distribution. Moreover, Pr[a, b, c|x, y, z]ω satisfies

1

4

∑

x,y

∑

a,b
a⊕b=xy

∑

c

Pr[a, b, c|x, y, z]ω =
1

4

∑

x,y

∑

a,b
a⊕b=xy

∑

c

(u ◦ T a|xA ◦ T b|yB ◦ U c|zE ◦ TE)(ω) (C.82)

=
1

4

∑

x,y

∑

a,b
a⊕b=xy

(∑

c

(u ◦ U c|zE ◦ TE
)

︸ ︷︷ ︸
u

◦T a|xA ◦ T b|yB )(ω) (C.83)

> λ , (C.84)

where the inequality is one of the assumptions of the proposition. Furthermore, Pr[a, c|x, 1]ψ satisfies

Pr[0, 0|0, 0]ψ + Pr[1, 1|0, 0]ψ = (u ◦ T 0|0
A ◦ U0|0

E )(ψ) + (u ◦ T 1|0
A ◦ U1|0

E )(ψ) = 1 , (C.85)

Pr[0, 0|1, 1]ψ + Pr[1, 1|1, 1]ψ = (u ◦ T 0|1
A ◦ T 0|1)(ψ) + (u ◦ T 1|1

A ◦ U1|1
E )(ψ) = 1 (C.86)

(where we made use of (C.69) and (C.70)), which we may abbreviate as Pr[a = c|x = z]ψ = 1. Thus, for every
TE ∈ T E , we have that Pr[a, b, c|x, y, z]ω ∈ Dω(λ) and Pr[a, c|x, z]ψ ∈ Dψ. Thus,

inf
TE∈T E

D(ψ, TE(ω)) > 1

2
min
x,y,z

inf
Pr[a,b,c|x,y,z]ω∈Dω(λ)

Pr[a,c|x,z]ψ∈Dψ(ΨAE ,λ)

∑

a,c∈{0,1}

∣∣∣∣∣∣
Pr[a, c|x, z]ψ −

∑

b∈{0,1}
Pr[a, b, c|x, y, z]ω

∣∣∣∣∣∣
. (C.87)

Since Pr[a, b, c|x, y, z]ω satisfies the no-signalling property, the right hand side of (C.87) is independent of y, so the
minimization only needs to be performed over x and z. Moreover, the infimum over the sets Dω(λ) and Dψ is a
minimum because it is the infimum of a continuous function over a convex polytope, which is always attained (see
equation (C.89) for more details). This completes the proof.

Corollary C.20 (The bound): Let SABE be a tripartite scenario, let ω ∈ Ω be a state. If the CHSH winning
probability of Alice and Bob is at least λ (in the above sense), then

Dec(A|E)ω 6 2−δ
2(λ) , (C.88)

where

δ(λ) = min
x,z∈{0,1}

Pr[a,b,c|x,y,z]ω∈Dω(λ)
Pr[a,c|x,z]ψ∈Dψ

1

2

∑

a,c

∣∣∣∣∣Pr[a, c|x, z]ψ −
∑

b

Pr[a, b, c|x, y, z]ω
∣∣∣∣∣ , (C.89)

Proof. This is a direct consequence of Propositions C.15 and C.18.

4. Evaluation of the bound and results

a. Formulation of the bound as a linear program

In this subsection, we evaluate the bound (C.88). To this end, we rewrite (C.89) in terms of linear programs.
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Linear Program: The bound δ(λ), which is a function δ : [0, 1] → [0, 1], is given as follows. For all λ ∈ [0, 1], the
value δ(λ) is the solution of the linear program

minimize δ(λ)
subject to Pr[a, b, c|x, y, z]ω ∈ Dω(λ)

Pr[a, c|x, z]ψ ∈ Dψ
δ(λ) >

∑
a,c δ

xz
ac ∀x, z ∈ {0, 1}

δxzac > 1
2 (Pr[a, c|x, z]ψ −

∑
b Pr[a, b, c|x, 0, z]ω) > −δxzac ∀a, c, x, z ∈ {0, 1}

(C.90)

This is a linear program in 97 variables:
{

Pr[a, b, c|x, y, z]ω
}
a,b,c,x,y,z∈{0,1} 64 variables

{
Pr[a, c|x, y]ψ

}
a,c,x,z∈{0,1} + 16 variables

{
δxzac
}
a,c,x,z∈{0,1} + 16 variables

δ(λ) + 1 variable
= 97 variables

We have already written out the constraints for these 97 variables as (in)equalities. The third and fourth line are
already written as such in the program description, and for the first two lines, we refer to the following:

constraint (in)equalities
Pr[a, b, c|x, y, z]ω ∈ Dω(λ) (C.47) to (C.50) and inequality in (C.58)
Pr[a, c|x, z]ψ ∈ Dψ(λ) (C.51) to (C.53) and equation in (C.59)

The inequalities define a convex polytope over which the convex function δ(λ) is minimized, so the minimum is
attained. It is straightforward to bring these inequalities into the standard form of linear programming. We solved
the resulting linear program using standard linear programming routines in Mathematica and Octave.

b. Solution of the linear program and discussion of the results
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D. Evaluation of the bound and results

1. Formulation of the bound as a linear program

In this subsection, we evaluate the bound (III.88). To this end, we rewrite (III.89) in terms of linear programs.

Linear Program: The bound �(�), which is a function � : [0, 1] ! [0, 1], is given as follows. For all � 2 [0, 1], the
value �(�) is the solution of the linear program

minimize �(�)
subject to Pr[a, b, c|x, y, z]! 2 D!(�)

Pr[a, c|x, z] 2 D 

�(�) � P
a,c �

xz
ac 8x, z 2 {0, 1}

�xz
ac � 1

2 (Pr[a, c|x, z] �P
b Pr[a, b, c|x, 0, z]!) � ��xz

ac 8a, c, x, z 2 {0, 1}

(III.90)

This is a linear program in 97 variables:

�
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�
Pr[a, c|x, y] 

 
a,c,x,z2{0,1} + 16 variables

�
�xz
ac

 
a,c,x,z2{0,1} + 16 variables

�(�) + 1 variable

= 97 variables

We have already written out the constraints for these 97 variables as (in)equalities. The third and fourth line are
already written as such in the program description, and for the first two lines, we refer to the following:

constraint (in)equalities
Pr[a, b, c|x, y, z]! 2 D!(�) (III.47) to (III.50) and inequality in (III.58)
Pr[a, c|x, z] 2 D (�) (III.51) to (III.53) and equation in (III.59)

The inequalities define a convex polytope over which the convex function �(�) is minimized, so the minimum is
attained. It is straightforward to bring these inequalities into the standard form of linear programming. We solved
the resulting linear program using standard linear programming routines in Mathematica and Octave.

2. Solution of the linear program and discussion of the results
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FIG. III.4: Plot of the result. The bound 2��2(�) is non-trivial precisely when the CHSH winning probability for Alice and
Bob is non-classical, i.e. � > 3/4.

We plot the result in Figure III.4. The bound 2��
2(�) is non-trivial for values � 2 (3/4, 1]. This is a very satisfactory

result as one cannot expect the bound to be non-trivial for � 2 [0, 3/4]: A CHSH winning probability of at least
� 2 [0, 3/4] for Alice and Bob is always compatible with Dec(A|E)! = 1. To see this, note that the requirement
for a state to yield a CHSH winning probability for Alice and Bob of at least � 2 [0, 3/4] is trivial: Alice and Bob
can choose trivial measurements that always yields 1 as an outcome, independently of the state. More precisely, in

FIG. 11: Plot of the result. The bound 2−δ
2(λ) is non-trivial precisely when the CHSH winning probability for Alice and

Bob is non-classical, i.e. λ > 3/4.

We plot the result in Figure 11. The bound 2−δ
2(λ) is non-trivial for values λ ∈ (3/4, 1]. This is a very satisfactory

result as one cannot expect the bound to be non-trivial for λ ∈ [0, 3/4]: A CHSH winning probability of at least
λ ∈ [0, 3/4] for Alice and Bob is always compatible with Dec(A|E)ω = 1. To see this, note that the requirement
for a state to yield a CHSH winning probability for Alice and Bob of at least λ ∈ [0, 3/4] is trivial: Alice and Bob
can choose trivial measurements that always yields 1 as an outcome, independently of the state. More precisely, in
our tripartite scenario language, we can express this as follows. Certainly, there are tripartite scenarios in which the
identity map 11V and the zero map 0V are in T A, T B and T E .9 For such tripartite scenarios, the condition (c.f.

9 Every tripartite scenario can be turned into such by adding 11V and 0V to the sets of local transformations. In fact, it would be physical
to assume that each set of local transformations contains 11V and 0V .
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(C.54) to (C.56) in equation (C.34))

1

4

∑

x,y

∑

a,b
a⊕b=xy

(
u ◦ T a|xA ◦ T b|yB

)
(ω) > λ ∈ [0, 3/4] for some {T

0|0
A , T

1|0
A }, {T

0|1
A , T

1|1
A } ∈ IA,

{T 0|0
B , T

1|0
B }, {T

0|1
B , T

1|1
B } ∈ IB

(C.91)

is always satisfied because for all ω ∈ Ω,

1

4

∑

x,y

∑

a,b
a⊕b=xy

(
u ◦ T a|xA ◦ T b|yB

)
(ω) =

3

4
for T

0|0
A = T

0|1
A = T

0|0
B = T

0|1
B = 0V ,

T
1|0
A = T

1|1
A = T

1|0
B = T

1|1
B = 11V .

(C.92)

This means that the requirement that the CHSH winning probability for Alice and Bob is at least λ ∈ [0, 3/4] does
not exclude the case ω ∈ ΨAE . In that case, Dec(A|E)ω = supTE∈T E supψ∈ΨAE F

2(ψ, TE(ω)) = 1.

Appendix D: A test for gravitational decoherence

1. An optomechanical setting and its model for gravitational decoherence

The objective here is to create two entangled photonic qubits in which one photon is prepared in an opto-mechanical
system that is itself subject to gravitational decoherence — if there is any — and the other photon is prepared in
an identical cavity except the mirrors are fixed and cannot move. This model is a modification of the model first
proposed by Bouwmeester [5] in which an itinerant single photon pulse is injected into a cavity rather than created
intra-cavity as here. Our modification avoids the problem that the time over which the photons interact with the
mechanical element is stochastic and determined by the random times at which the photons enter and exit the cavity
through an end mirror. In the new scheme, the cavities are assumed to have almost perfect mirrors — very narrow
line width (see for example[35]).

The intracavity single photon Raman source is described in Nisbet-Jones, et al. [34]. In this scheme (see Fig. 12) a
control pulse can quickly and efficiently prepare a cavity mode in a single photon state by driving a Raman transition
between two hyperfine levels we label as |g〉, |e〉. In our scheme there are two optical cavities otherwise identical except
in one of the cavities a mechanical element can respond to the radiation pressure force of light.

We will assume that we can prepare the atomic sources in an arbitrary entangled state |g, e〉+ |e, g〉, for example,
using the trapped ion schemes of Monroe [71]. In addition we will assume that we can make arbitrary rotations in the
g, e subspace of each source and also make fast efficient single shot readout of the state of each source, for example
using fluorescence shelving. This means we can readout the atomic qubit in each cavity in any basis.

The write laser implements the Hamiltonian Hw = i~Ω(t)(a†|e〉〈g|−a|g〉〈e|)/2. This is a rotation in the state space
{|g〉|0〉, |e〉|1〉}. We can thus prepare arbitrary states of the form cos θ/2|g〉|0〉 + sin θ/2|e〉|1〉, where θ is determined
by the pulse area. We will refer to the case of θ = π as a π-pulse. Note that if the source is in the excited state |e〉
and the cavity is in the vacuum, no photon is excited.

Starting with the cavities in the vacuum state the protocol proceeds as follows:

1. prepare the source atoms in the state |g, e〉+ |e, g〉.

2. apply the write laser with a π-pulse

3. free evolution of the OM systems for a time T

4. apply the write laser with a π-pulse

5. readout the atomic state in each cavity.

At the end of Step 2, the state of the sources and the cavities is |ψ2〉 = |e, e〉⊗ (|1, 0〉+ |0, 1〉) where |n,m〉 = |n〉⊗ |m〉
with each factor being a photon number eigenstate.

a. Gravitational decoherence.

We will use Diosi’s theory of gravitational decoherence[1]. This is equivalent to the decoherence model introduced
in Kafri et al. [9]. One mirror of the opto-mechanical cavity is free to move in a harmonic potential with frequency
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E(t) a†

E(t)

g
e

Raman single photon source

E(t)

b, b†

FIG. 12: Two cavities each contain a Raman single photon source controlled by an external laser ‘write field’ E(t). The Raman
sources are first prepared in an entangled state. Only one cavity contains a mechanical element coupled by radiation rouser to
the cavity field.

ωm. The master equation for a massive particle moving in a harmonic potential, including gravitational decoherence
is

dρ

dt
= −iωm[b†b, ρ]− Λgrav[b+ b†, [b+ b†, ρ]] (D.1)

where

b =

√
mωm

2~
x̂+ i

1√
2~mωm

p̂ (D.2)

with x̂, p̂ the usual canonical position and momentum operators. The gravitational decoherence rate Λgrav is given
by

Λgrav =
2π

3

G∆

ωm
(D.3)

with G the Newton gravitational constant and ∆ the density of the mechanical element. As one might expect Λgrav
is quite small, of the order of 10−8 s−1 for suspended mirrors ( as in LIGO) with ωm ∼ 1.

Form a phenomenological perspective the effect of gravitational decoherence is analogous to a Browning heating
effect. To see this we note that the average vibrational quantum number increases diffusively

d〈b†b〉
dt

= 2Λgrav (D.4)

Indeed, one could simulate this effect by adding a stochastic driving force to the mechanical element via the stochastic
Hamiltonian

Hs =
dI

dt
(b+ b†) (D.5)

where I(t) satisfies an Ito stochastic differential equation,

dI(t) =
√

4Λgrav dW (t) (D.6)

where dW (t) is the Weiner increment. Averaging over all histories of the stochastic driving force gives the final term
in Eq. D.1.
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In the absence of mechanical dissipation, there is no steady state. In reality the mechanical quality factor, Q =
ωm/γm, is finite leading to a steady state with mean phonon number given by

〈b†b〉ss =
2Λgrav

γm
(D.7)

This of course assumes that there is no additional mechanical heating (regular thermodynamic kind): hardly a realistic
assumption. This adds a large (comparatively) additional term to Λgrav so that we find (for kBT >> ~ωm),

Λgrav → Λgrav + Λheat , where Λheat =
kBT

~Q
. (D.8)

Given the incredibly large quality factor of Q = 1010, one would need to cool the mechanical element to nano-Kelvin
for the thermodynamical heating to be of the order of the gravitational heating.

b. Optomechanical probe of gravitational decoherence.

The optomechanical Hamiltonian in cavity-one is

Hom = ~ωmb†b+ ~g0(b+ b†) (D.9)

g0 is the single photon optomechanical coupling rate. Typically g0 ∼ 1 s−1 for the sorts of cavities we are considering
here. This is about the same order of magnitude as ωm. In new field OM cavity technologies, g0 can be as high as
103 s−1 however in such cases the mechanical frequency is also typically much higher ∼ tens of MHz. The interaction
time is T which is short compared to the cavity decay time (which we neglect). We will assume that the mechanics
starts in a thermal state, the steady state of the system subject to gravitational decoherence, heating and dissipation.
This is given by

ρom =
1

πn̄

∫
d2α e−

|α|2
n̄ |α〉b〈α| (D.10)

where n̄ = 〈b†b〉ss is the steady state mean phonon number given in Eq. D.7.
It is simplest to work in an interaction picture defined by the mechanical free dynamics,

Hom,I = ~g0(be−iωmt + b†eiωmt) (D.11)

The corresponding unitary evolution operator is

U(t) = eβ(t)b†−β∗(t)b (D.12)

where

β(t) =
g0

ωm
(e−iωmt − 1) (D.13)

The initial state for the OM interaction is the state at the end of Step 2

ρom(0) =
1

2
(|1, 0〉〈1, 0|+ |0, 1〉〈0, 1|+ |1, 0〉〈0, 1|+ |0, 1〉〈1, 0|)⊗ ρm (D.14)

where ρm is the state of the mechanical element at the start of the protocol, a thermal state. We can ignore the state
of the atomic sources at this stage as they do not participate in the OM interaction.

The state of the optomechanical system after an interaction time T is given by

ρom(t) =
1

2

(
|1, 0〉〈1, 0|ρm + |0, 1〉〈0, 1|U(t)ρmU

†(t) + |1, 0〉〈0, 1|ρmU†(t) + |0, 1〉〈1, 0|U(t)ρm
)

(D.15)

The reduced state of the cavity fields is given by tracing out the mechanical degree of freedom,

ρf (t) =
1

2
(|1, 0〉〈1, 0|+ |0, 1〉〈0, 1|+R∗|1, 0〉〈0, 1|+R|0, 1〉〈1, 0|) (D.16)
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where

R = e−(1+2n̄)|β(t)|2/2 (D.17)

where

n̄ = ngrav + nheat (D.18)

:=
2Λgrav

γm
+

2Λheat

γm
(D.19)

with (as above)

Λgrav =
2π

3

G∆

ωm
, Λheat =

kBT

~Q
(D.20)

and

|β(t)|2 =
4g2

0

ω2
m

sin2(ωmt/2) (D.21)

Continuing with the protocol from Step 4, now results in the state of the atom-field system

ρaf (t) = ρa(t)⊗ |00〉〈00| (D.22)

where

ρa(t) =
1

2
(|ge〉〈ge|+ |eg〉〈eg|+R∗|eg〉〈ge|+R|ge〉〈eg|) (D.23)

The suppression of coherence due to the thermal state of the mechanics has been transferred to a reduction of
entanglement in the atomic sources. A readout of the atomic sources will reveal this through either state tomography
or via a reduction in a CHSH correlation for a Bell-type experiment.

The function R(t) is a periodic function of time. At each period of the motion it returns to its initial value of zero
and the cavity field state would return to the fully entangled state it was in after Step 2. If we chose T = 2π/ωm
then the protocol will return the atomic system to the same entangled state in which it began. This is because we
have ignored the heating of the mechanics over the period T so the only way decoherence enters is through the initial
thermal excitation of the mechanics. In effect the protocol is a thermometer. We thus see that for maximum effect
we need to ensure g0 � ωm. On the other hand, gravitational heating requires a small value of ωm and typically
such OM systems have g0/ωm � 1. Perhaps technical advances will enable OM systems with long mechanical periods
and large single photon coupling. Of course this will also require sub hertz cavity line widths. In the (exceptionally)
optimistic case we can take T ∼ 1 nK, ωm ∼ 1 s−1, γm ∼ 10−10 s−1 so that Q ∼ 1010.

2. An experimental test of the model

In equation (C.92) above, an optomechanical setting has been described. Making some assumptions about how
gravitational decoherence influences the optomechanical system, a model has been given that describes how the
state of the optomechanical system changes over time. In this section, we consider this model for the state of the
optomechanical system as given and analyze it using our decoherence test formalism. We calculate the amount of
decoherence that would be introduced to the optomechanical system if the model was correct. We compare this
to the amount of decoherence that one would observe if there was no such gravitational decoherence, determining
the difference between the two predictions. We devise an experiment that aims at estimating the actual amount of
decoherence at a point in time when this difference is maximal. This turns the optomechanical experiment into a test
that allows to falsify the above model for gravitational decoherence if it was wrong. This shows that the decoherence
testing formalsim presented in this work can be applied in situations where the physical process is unknown. It allows
to subject proposed models of the process to a consistency check.

We first present the predicted values of Dec(A|E)ρ of the optomechanical system for the two cases where grav-
itational decoherence is present or absent, respectively, for some example parameters of the experiment. We then
calculate the CHSH value β that one would have to measure in order to falsify the model for gravitational decoherence.



40

The main quantity of interest in our analysis is the decoherence quantity Dec(A|E)ρ for the state ρAB = ρf (t)
desribed in equation (D.16). This can be calculated using Lemma B.9. It turns out to be

Dec(A|E)ρ =
1

4

(
1 +

√
1−R2

)
(D.24)

=
1

4

(
1 +

√
1− exp

(
−4(1 + 2n)

g2
0

ω2
m

sin2

(
ωmt

2

)))
. (D.25)

If the above model is correct and gravitational decoherence occurs, both the gravitational interaction and the me-
chanical heating contribute to the average vibrational quantum number, i.e. we have

n = ngrav + nheat (D.26)

=
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and thus
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(D.28)

If gravitational decoherence is absent, then only the mechanical heating contributes to the average vibrational quantum
number, i.e. we have

n = nheat (D.29)

=
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and thus
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Figure 13 shows how the decoherence quantity in equation (D.28) as a function of time varies for different materials of
the mechanical element and different temperatures, compared to the case where there is no gravitational decoherence
as in equation (D.31).

In order to rule out the model for gravitational decoherence, one needs to measure a CHSH value β which is
incompatible with the value of Dec(A|E)ρ given in (D.28). The minimal value βfals of β that needs to be measured
for this falsification can be calculated using Theorem B.1: Using MATLAB, we numerically evaluated the quantum
bound on Dec(A|E)ρ, which is given as a point-wise maximization problem in Theorem B.1. We inverted the resulting
set of data points and interpolated a function from the resulting data using Mathematica. The resulting function
takes a value of Dec(A|E)ρ as its input and outputs the minimal β that needs to be exceeded in a measurement in
order to rule out the given value of Dec(A|E)ρ. Thus, applying this function to the curves of the Dec(A|E)ρ values
of the gravitational decoherence model in Figure 13 yields the curves for βfals. The results are plotted in Figure 14
for the same materials and temperatures as above.

In order to determine whether it is promising to measure a value of β that lies above βfals, we need to determine
the value βmech of β which is predicted in the case where gravitational decoherence is absent, i.e. where we only have
mechanical heating. We can do that exactly: Equation (D.16) gives us an expression for the state, which we consider
for the value of R given in the case of mechanical heating only, n = nmech. Then we calculate the value of βmech for
the case where the measurements are taken to be the standard CHSH measurements

A0 = σx , A1 = σz ,

B0 =
σx − σz√

2
, B1 =

σx + σz√
2

,

where σx, σz are the Pauli x- and z-operator, respectively. The resulting curves are shown in Figure 14 as solid curves.
It turns out that for the relevant time interval (where βmech is larger than either of the βfals), the curve of βmech for
the standard CHSH measurements is almost identical to the curve one would get for the optimal measurements for
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If gravitational decoherence is absent, then only the mechanical heating contributes to the average vibrational quantum
number, i.e. we have

n = nheat (IV.29)

=
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~
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(gr. dec. neglected). (IV.31)

Figure Figure IV.2 shows how the decoherence quantity in equation (IV.28) as a function of time varies for di↵erent
materials of the mechanical element and di↵erent temperatures, compared to the case where there is no gravitational
decoherence as in equation (IV.31).
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FIG. IV.2: Predicted values of the decoherence quantity in the optomechanical experiment. The decoherence
quantity Dec(A|E)⇢ as in Equation (IV.28) is plotted as a function of time for di↵erent temperatures and two di↵erent materials
of the mechanical element. In addition, Dec(A|E)⇢ is plotted for the case where there is no gravitational decoherence, Equation
(IV.31). The calculations have been made for the experimental parameters g0 = 1 s�1, !m = 1 s�1 and �m = 10�10 s�1.

In order to rule out the model for gravitational decoherence, one needs to measure a CHSH value � which is
incompatible with the value of Dec(A|E)⇢ given in (IV.28). The minimal value �fals of � that needs to be measured
for this falsification can be calculated using Theorem II.1.

[To be continued on Saturday!]

2. Discussion of the test
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FIG. 13: Predicted values of the decoherence quantity in the optomechanical experiment. The decoherence quantity
Dec(A|E)ρ as in Equation (D.28) is plotted as a function of time for different temperatures and two different materials of the
mechanical element. In addition, Dec(A|E)ρ is plotted for the case where there is no gravitational decoherence, Equation
(D.31). The calculations have been made for the experimental parameters g0 = 1 s−1, ωm = 1 s−1 and γm = 10−10 s−1.

each time t. The latter can be calculated using a formula presented in [24]. This is an experimentally desirable fact:
Using a fixed measurement independent of the measurement time is almost optimal.

The most promising measurement time for a falsification of the gravitational decoherence model is given by the
time when βmech (that one may hope to actually measure) is high but βfals (which one needs to exceed) is low. Thus,
the optimal measurement time can be calculated as the time tmax that maximizes the gap function

g(t) := βmech(t)− βfals(t) . (D.32)

This gap function is depends on the density ∆ of the mechanical element and its temperature T . One can see that
temperatures that look promising for a falsification measurement when looking at the Dec(A|E)ρ values in Figure 13
turn out to be too warm when looking at the experimentally relevant analysis of the β values in Figure 14. As an
example, we have calculated the optimal measurement times for T = 1 nK for the densities of aluminum and rhenium.
They are visualized in Figure 15. If there is no gravitational decoherence, one needs to measure values of β that are
∼ 0.1 close (aluminum) or ∼ 0.2 close (rhenium) to the value that one can maximally measure using the standard
CHSH measurements, in order to exclude gravitational decoherence.
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FIG. 14: Minimal CHSH values for the falsification of the gravitational decoherence model. The quantity βfals,
which is the minimal value that needs to be exceeded in the measurement of the CHSH value β in order to rule out the
gravitational decoherence model, is plotted as a function of time for the same materials and temperatures as above. In addition,
the value βmech is plotted, which is the CHSH value that can actually be measured using the standard CHSH measurement in
the case where gravitational decoherence is absent and only mechanical heating contributes to the decoherence.
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Figure 1.1: Minimal CHSH values for the falsification of the gravitational decoherence model. The quantity
�fals, which is the minimal value that needs to be exceeded in the measurement of the CHSH value � in order to rule
out the gravitational decoherence model, is plotted as a function of time for the same materials and temperatures as
above. In addition, the value �mech is plotted, which is the CHSH value that can actually be measured using the standard
CHSH measurement in the case where gravitational decoherence is absent and only mechanical heating contributes to the
decoherence.

1

FIG. 15: Optimal measurement times for ruling out the gravitational decoherence model. The three plots are
identical to the ones in the leftmost box in Figure 14, i.e. for T = 1 nK. In addition, the time tmax at which the gap g(t)
between βmech and βfals is maximal is indicated for the two cases where the material of the mechanical element has the density
of aluminum or rhenium.


