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The second law of thermodynamics places constraints on state
transformations. It applies to systems composed of many particles,
however, we are seeing that one can formulate laws of thermo-
dynamics when only a small number of particles are interacting
with a heat bath. Is there a second law of thermodynamics in this
regime? Here, we find that for processes which are approximately
cyclic, the second law for microscopic systems takes on a different
form compared to the macroscopic scale, imposing not just one
constraint on state transformations, but an entire family of
constraints. We find a family of free energies which generalize
the traditional one, and show that they can never increase. The
ordinary second law relates to one of these, with the remainder
imposing additional constraints on thermodynamic transitions. We
find three regimes which determine which family of second laws
govern state transitions, depending on how cyclic the process is. In
one regime one can cause an apparent violation of the usual
second law, through a process of embezzling work from a large
system which remains arbitrarily close to its original state. These
second laws are relevant for small systems, and also apply to
individual macroscopic systems interacting via long-range inter-
actions. By making precise the definition of thermal operations,
the laws of thermodynamics are unified in this framework, with
the first law defining the class of operations, the zeroth law emerging
as an equivalence relation between thermal states, and the remaining
laws being monotonicity of our generalized free energies.

quantum thermodynamics | quantum information theory |
statistical physics | resource theory | free energy

The original formulation of the second law, due to Clausius
(1), states that “Heat can never pass from a colder to a

warmer body without some other change, connected therewith,
occurring at the same time.” In attempting to apply Clausius’s
statement of the second law to the microscopic or quantum scale,
we immediately run into a problem because it talks about cyclic
processes in which there is no other change occurring at the same
time, and at this scale it is impossible to design a process in which
there is no change, however slight, in our devices and heat engines.
Interpreted strictly, the Clausius statement of the second law
applies to situations which never occur in nature. The same holds
true for other versions of the second law, such as the Kelvin–
Planck statement, where one also talks about cyclic processes, in
which all other objects beside the system of interest are returned
back to their original state. Here, we derive a quantum version of
the Clausius statement, by looking at processes where a micro-
scopic or quantum system undergoes a transition from one state
to another, whereas the environment and working body or heat
engine is returned back to their original state. Whereas macro-
scopically only a single second law restricts transitions, we find that
there is an entire family of more fundamental restrictions at the
quantum level. At the macroscopic scale, and for systems with
short-range correlations, this entire family of second laws becomes
equal to the ordinary second law, but outside of this regime these
other second laws impose additional restrictions on thermody-
namical transitions. What is more, one needs to be more precise
about what one means by a cyclic process. At the macroscopic
scale, the fact that a process is only approximately cyclic has
generally been assumed to be enough to guarantee the second law.

Here, we show that this is not the case in the microscopic regime,
and we therefore needs to talk about “how cyclic” a process is when
stating the second law. We also derive in this work, a zeroth law of
thermodynamics, which is stronger than the ordinary zeroth law.
For thermodynamics at the macroscopic scale, a system in state

ρ can be transformed into state ρ′ provided that the free energy
goes down, where the free energy for a state ρ is

FðρÞ= hEðρÞi− kTSðρÞ; [1]

with T the temperature of the ambient heat bath that surrounds
the system, k the Boltzmann constant, SðρÞ the entropy of the
system, and hEi its average energy. This is a version of the second
law, where we also use the fact that the total energy of the system
and heat bath must be conserved. This criterion governing state
transitions is valid if the system is composed of many particles,
and there are no long-range correlations. In the case of micro-
scopic, quantum, or highly correlated systems, a criterion for
state transitions of a total system was proven in ref. 2 and named
thermo-majorization. This criterion has been conjectured (3) and
serves as a second law in some cases (see also the reformulation
of ref. 4). However, here we will see that if elevated to such high
status without sufficient care, it can be violated. Namely, we
will give examples where ρ→ ρ′ would violate the thermo-
majorization criterion, but nonetheless, the transition is possible
via a cyclic process in which a working body σ––an ancilla or
catalyst––is returned back into its original state. The criterion
of ref. 2 is thus only relevant when additional systems are not
used to aid in the transition.
This phenomenon is related to entanglement catalysis (5),

where it can be shown that some forbidden transitions are
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possible, if we can use an additional system σ as a catalyst, i.e., we
may have ρ↛ ρ′ and yet ρ⊗ σ→ ρ′⊗ σ. In the case of thermody-
namics, the catalyst σ may be thought of as a working body or
heat engine which undergoes a cyclic process and is returned
back into its original state. In deciding whether one can trans-
form ρ into ρ′, one therefore needs to ask whether there exists
a working body or other ancillas σ for which ρ⊗ σ→ ρ′⊗ σ (Fig.
1). Thus, thermo-majorization (Fig. 2) should only be applied to
total resources including all possible catalysts and working bodies
and not the system of interest itself. In the case of entanglement
theory, and when the catalyst is returned in exactly the same state,
the criteria for when one pure state may be transformed into
another have been found (6, 7) and they are called trumping
conditions. We will generalize and adapt the trumping conditions
to enable their application to the case of thermodynamics.

Family of Second Laws
Here, we consider all possible cyclic thermodynamical processes,
and show that transition laws are affected by using ancillary
systems which are returned back to their initial state. Rather
than a single free energy that determines which transitions are
possible, we find necessary and sufficient conditions for ther-
modynamic transitions which form not just one but a family of
second laws. We define the free energies

Fα

�
ρ; ρβ

�
dkTDα

�
ρkρβ

�
− kT logZ; [2]

with the Rényi divergences DαðρkρβÞ defined as

Dα

�
ρkρβ

�
=
sgnðαÞ
α− 1

log
X
i

pαi q
1−α
i ; [3]

where pi are the eigenvalues of ρ and qi the eigenvalues of the
thermal state of the system ρβ = e−βHS=Z with Hamiltonian HS,
partition function Z=

P
i;ge

−βEi , and β= 1=T.
We can then state quantum second laws, and ones that hold

for states block diagonal in the energy basis. In the latter case, we
find the following set of second laws:
In the presence of a heat bath of single fixed temperature, the

free energies Fαðρ; ρβÞ do not increase for α≥ 0 That is, ∀α≥ 0,
Fαðρ; ρβÞ≥Fαðρ′; ρβÞ, where ρ and ρ′ are the initial and final
state, respectively. Moreover, if Fαðρ; ρβÞ≥Fαðρ′; ρβÞ holds ∀α≥ 0,

then there exists a catalytic thermal operation that transforms
ρ to ρ′.
We say that the Fαðρ; ρβÞ are monotones––the system always

gets closer to the thermal state, thus the function always de-
creases. By including an auxiliary system as described in ref. 2,
the above statement of the second law is equivalent to the case
where one changes the Hamiltonian of the system, in which case
one could write Fαðρ; ρβÞ≥Fαðρ′; ρβ′Þ, where the initial Hamilto-
nian HS has been changed via external control to the final
Hamiltonian HS′ , with ρβ and ρβ′ being the respective thermal
states. This is described in SI Appendix, section I. Note that in
fact Fαðρ; ρβÞ is a monotone for all α∈ ð−∞;∞Þ but because we
are allowed to borrow a pure state and return it in a state arbi-
trarily close to its initial state, only α≥ 0 is relevant, as can be seen
by noting that if any of the probabilities pi in Eq. 3 are zero, then
for α< 0, Fαðρ; ρβÞ diverges and will thus always be monotonic.
This set of limitations is less stringent than thermo-majoriza-

tion. Not only do these second laws provide limitations, but they
are also sufficient––whenever the free energies of some state ρ
are all greater than for another state ρ′, one can transform ρ into
ρ′. We prove this in SI Appendix. Note that the monotonicity of
[2] establishes a continuous family of conditions, one for each
value of α. However, in the case of larger systems, one can per-
form a quick check, namely: we find that for any distribution p we
can construct smoothed distributions that are very close to p, and
in terms of these smoothed distributions, check two conditions in
terms of the two free energies for α= 0;∞ found in ref. 2. If such
conditions are satisfied on the smoothed distribution, it implies
that the infinite set of conditions is satisfied as well.
For α→ 1, Fαðρ; ρβÞ is equal to the ordinary Helmholtz free en-

ergy FðρÞ, hence our conditions include the ordinary second law
(combined with energy conservation), and we thus see that it is
merely one of many constraints on thermodynamical state transitions.
In the macroscopic regime, and for systems which are not

highly correlated, then Fαðρ; ρβÞ≈F1ðρ; ρβÞ for all α (2, 8), which
explains why the single constraint given by the usual second law
is more or less adequate in this limit. It was previously found that
the quantity FminðρÞ, defined in ref. 2, gives the maximal amount
of work extractable from a system in contact with a reservoir
under all thermal operations (2) (by transforming it to a thermal
state in equilibrium with the bath). This is also the relevant
quantity in a model of alternating adiabatic and isothermal
operations (9). We see this in our newly derived second laws as

Fig. 1. In the microregime, when can a state ρS with Hamiltonian HS be transformed to a state ρS′ and Hamiltonian HS′? To do so, one can couple the system to a
heat bath ρβ = e−βHR=Z with Hamiltonian HR and use any devices as long as they are returned back in their original state (thus wemay think of them as a catalyst––σ)
and we are allowed to perform any action as long as we preserve the overall energy (see below for a more detailed description of these operations, which we call
catalytic thermal operations). Loosely speaking, our second law says that ρS can transit to ρS′ if and only if ρS′ is closer to the thermal state ρβ of the system at inverse
temperature β with respect to all Rényi divergences. In the thermodynamic limit, all these quantities converge so that we recover the usual second law.
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well, for at α= 0, F0ðρ; ρβÞ=FminðρÞ. In the case of trivial Ham-
iltonians, this quantity is a strengthened version of that found
previously in ref. 10 in that we have tight necessary and sufficient
conditions. Generally, we find that although generic state tran-
sitions are affected by catalysts, the results in ref. 2 on distillable
work is not. Likewise, the reverse process, the so-called work of
formation FmaxðρÞ (2) in creating ρ from a thermal state corre-
sponds to α→∞. We thus see that the Helmholtz free energy and
two free energies proposed in ref. 2 are special cases of our family
of conditions and they hold even in the presence of catalysts.
However, in other generic cases of state transitions, we find

that one can distill more work when considering an ancillary
system which is used as a catalyst. As a simple application of our
results, we find that by using an ancillary system, one can erase
or reset a memory register at a lower work cost than previously
known. In particular, this can occur when resetting a memory
register to a pure state, while retaining the state of a reference
system (11, 12). Classically, resetting a memory requires work,
but the authors of ref. 11 found that due to entanglement, there
were cases where a memory could be reset at a cost of a negative
amount of work (i.e., work could actually be extracted while the
memory was reset). Here, we find that even more work can be
extracted during a memory reset. In general, we find that more
work can be extracted in a cyclic process, and in SI Appendix,
section F5 we derive the optimal amount of extractable work in
such a case, providing an operational interpretation for the dif-
ference of Rényi entropies, and an interpretation for when this
quantity is negative.
For states that are not diagonal in the energy basis, we provide

a generalization of the above limitations in terms of quantum
alpha-free energies in SI Appendix, section F. These form a
family of fully quantum second laws, which are necessary but not
sufficient conditions for state transformations. Due to the non-
commutative nature of the state of the system and the thermal
state, our new free energies have a more complicated form and
are based on quantum Rényi divergences (13–15) (see also ref.
16). Defining two quantum versions of Fαðρ; ρβÞ

~Fα

�
ρ; ρβ

�
= kT

sgnðαÞ
α− 1

log tr  ραρ1−αβ − kT logZ [4]

and

F̂α

�
ρ; ρβ

�
= kT

1
α− 1

log
�
tr
�
ρð1−αÞ=2αβ ρρð1−αÞ=2αβ

�α�
− kT logZ ;

[5]

we are able to find

• Quantum second laws
A transition from ρ to ρ′ is possible, only if

F̂α

�
ρ; ρβ

�
≥ F̂α

�
ρ′; ρβ

�

for α≥ 1
2 and

F̂α

�
ρβ; ρ

�
≥ F̂α

�
ρβ; ρ′

�

for 1
2≤ α≤ 1 and

~Fα

�
ρ; ρβ

�
≥ ~Fα

�
ρ′; ρβ

�

for 0≤ α≤ 2,
where once again the above laws include transitions where the
Hamiltonian changes by making use of an ancillary system as is
done in ref. 2.

Work Distance
Given the monotonicity of Fαðρ; ρβÞ we may easily compute the
maximum amount of deterministic work which can be extracted
when going from a system in state ρ to one in state ρ′. Namely, in
ref. 2 we introduced the notion of a work bit, or “wit,” which
starts off in state j0i and gets raised or lowered to a state jW i
with energyW. This corresponds to extracting an amount of work
W if W is positive, or performing work if W is negative. Because
our second laws concern general state transformations, they can
be applied to the case of deterministic work extraction or to the
case of extracting a fluctuating amount of work, but here we
apply our second laws to the former case.
From them, we know that a transition is possible if and only if

Fα

�
ρ⊗ j0ih0j; ρβ

�
≥Fα

�
ρ′⊗ jW ihW j; ρβ

�
∀α≥ 0; [6]

which implies (SI Appendix, section G) that W =Dworkðρ≻ ρ′Þ is
achievable, where

Dwork
�
ρ≻ ρ′

�
dkT inf

α

�
Fα

�
ρ; ρβ

�
−Fα

�
ρ′; ρβ

��
: [7]

We thus see that the Fαðρ; ρβÞ are very much like free energies,
not only in the sense that they are monotones, but also in the
sense that the amount of work is given by the function’s differ-
ence between the initial and final state (albeit for the minimal
one). The quantity on the right-hand side of Eq. 7 can also be

A B

Fig. 2. Thermo-majorization criterion is as follows: Consider probabilities pðE,gÞ of the initial system ρ to be in the gth state of energy E. Now let us put
pðE,gÞeβE in decreasing order pðE1,g1ÞeβE1 ≥pðE2,g2ÞeβE2 ≥pðE3,g3ÞeβE3 . . .––we say that the eigenvalues are β-ordered. We can do the same for system ρ′. Then
the condition which determines whether we can transform ρ into ρ′ is depicted in the above figure. Namely, for any state, we construct a curve with points k
given by fP e−βEi ,

Pk
i pig. Then a thermodynamical transition from ρ to ρ′ is possible if and only if the curve of ρ lies above the curve of ρ′. One can make

a previously impossible transition possible by adding work in the form of the pure state ψW which will scale each point by an amount e−βW horizontally (2).
The above criteria should not be applied to the system of interest alone, but the system plus any additional resources which are used to enable the transition.
In the example above (A) we cannot transform ρ into ρ′ without performing work (or vice versa). However, by using a resource σ which is returned in its initial
state, we see in B that ρ⊗ σ thermo-majorizes ρ′⊗ σ so that we can make a thermodynamical transition from ρ to ρ′ without adding additional work.
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thought of as a distance measure between states, as was done with
the thermo-majorization criterion in ref. 4 and we will henceforth
refer to it as the work distance from ρ to ρ′.

Approximately Cyclic Processes
As in the context of entanglement theory (17–20), we consider
thermodynamics as a resource theory (2, 21–23), where we are
allowed to implement a class of operations, and then quantify the
resources which cannot be created under the class of operations.
For thermodynamics, various classes of operations have been
considered in the microregime (2, 9, 21, 24–32). In particular, we
consider thermal operations (2, 21, 23) where we allow the sys-
tems of interest ρ to be coupled to a thermal reservoir ρR in the
thermal state at temperature T, and we allow arbitrary unitaries
between the system, working body, and reservoir which conserve
energy. Energy conservation is important, because we need to
account for all sources of energy which might get added to our
system. Operations which pump energy into or from the system
can be incorporated into the paradigm by including the source of
energy as an ancillary system. This paradigm is equivalent to ones
in which we allow interaction Hamiltonians rather than unitaries,
or where we allow for a Hamiltonian which changes with time,
provided that all ancillas are carefully accounted for (23).
In this article we consider a natural additional ingredient,

namely, we allow additional resources such as a heat engine and
working body (or ancilla system) C in state ρinC which must be
returned in its initial form. Considering such resources is crucial
because the experimenter who is trying to extract work or otherwise
manipulate a system should be allowed as much ingenuity as
possible. However, to ensure that work is not being added to the
system from the heat engine itself, we demand that the thermo-
dynamic process be cyclic, in the sense that the additional
resources are returned in state ρoutC , which is approximately equal
to its original state ρinC . In essence, how cyclic a process is can be
understood in terms of how good an approximation ρinC is to ρoutC .
In the macroscopic case, the notion of cyclicity in a process has
not been deemed important––it was assumed that it was enough
to take the initial and final state of the heat engine as being close
to the same macroscopic state. We find that this is not the case,
even if one demands that the initial and final states are arbitrarily
close. This is increasingly important when we are manipulating
microscopic systems, where small differences can have more
noticeable effects. We find that depending on the desired ap-
proximation, i.e., depending on how cyclic we demand the pro-
cess to be, there are several different regimes of second laws.
The simplest case is where ρinC = ρoutC , that is, the process is

perfectly cyclic and the catalyst is restored to its original form. In
this setting, we have the second law as stated above. However, no
real process is perfectly cyclic, and so it is important to consider
the case where ρinC ≈ ρoutC . This requires us to derive approximate
transformation conditions which we expect to also find application
in entanglement theory, and are contained in SI Appendix, section G.
We find that the form the second law takes when the process is
not perfectly cyclic depends on the degree to which our process is
cyclic. We find three separate regimes which are quantified by
how cyclic the process is, in terms of how close ρinC is to ρoutC .
In the first regime, we demand that the change in the working

body through a cycle is small, in the sense that DworkðρoutC ≻ ρinC Þ≤ e.
In other words, any change in the working body could be corrected
by applying a small amount of work. In this case, we recover the
second laws as stated above.
The second regime is when the change in the working body has

error inversely proportional to the number of particles it has, i.e.,��ρinC−ρoutC

��
1 ≤ e=logN, where N is the dimension of the catalyst.

In this case, we retrieve the standard second law. The ordinary
free energy continues to govern whether a thermodynamical
transition is possible, whereas the Rényi divergences do not.
We thus see that the ordinary second law can arise in the

macroscopic limit, or if we allow processes which deviate from
being cyclic in a manner which is constant per number of par-
ticles in the working body. We detail this in SI Appendix, section
F4 by showing that when the standard second law holds, we can
construct a catalyst to enable the transition while being returned
with small error per particle.
Finally, we consider the regime where we simply demand that

the process is close to cyclic regardless of the size of the ancillary
system. i.e.,

��ρinC−ρoutC

��
1 ≤ e. Because « can be arbitrarily small,

one would imagine that for such an approximately cyclic process
one recovers a second law of some sort. Nonetheless, we find
that for any «, no matter how small, one can construct a working
body, and cyclic process, such that one can pump heat from a
cold reservoir to a hot reservoir, in violation of the Clausius
statement of the second law. In fact, we can make arbitrary state
transformations by taking the size of the working body to be so
large that work can be extracted from a single heat bath, while
barely modifying the state of the working body. This is related
to a phenomenon in entanglement theory known as embezzling
(33). For example, for any desired approximation e there exists
a dimension d such that the catalyst ρinC =

Pd
j=11=jjjihjj allows us

to transform any initial state ρ to any final state ρ′ such that��ρinC−ρoutC

��
1 ≤ e.

Discussion
The second law is often seen as arising from an experimenter’s
lack of control over the system of interest. Here we see that this
is not the case––we obtain our fundamental limitations even in
the case where the experimenter can access the microscopic
degrees of freedom of the heat bath and couple it in an arbitrary
way with the system. The reason that such fine control does not
lead to a violation of the second law is related to the fact that a
Maxwell’s demon with microscopic control over a system cannot
violate the second law––a demon which knows the positions and
momenta of the particles of a system, must record this in-
formation in a memory, which then needs to be reset at the end
of a cyclic process (34, 35). For the same reason, an ability to
access the degrees of freedom of the heat bath would also require
work to perform such a memory resetting step. Remarkably, al-
though the limitations are derived assuming that one can perform
all possible operations, work distillation and formation is achievable
using a very limited set of operations––namely, changing the energy
levels of the system, and putting parts of the system in thermal
contact with the reservoir.
We have derived a family of fundamental limitations on ther-

modynamical state transformations for both quasi-classical states
and fully quantum states. Because these limitations are given in
terms of generalizations of the free energy, they can be thought of
as second laws, combined with the first law, i.e., energy conserva-
tion. For an isolated system, one could take the second law to be
the increase in the Rényi entropies, which holds if the allowed class
of operations are mixtures of unitaries. This can be thought of as
resulting from a coarse-graining or lack of information about the
full dynamics, but we do not consider this approach in detail here.
Thinking of thermodynamics as a resource theory allows us

to reformulate the laws of thermodynamics in a very natural way.
In essence, the zeroth law defines the set of allowed free states
(the thermal state), the first law the set of allowed operations
(namely, energy conserving unitaries), and the second law is
derived from these conditions to specify the set of allowed
transitions. This has the advantage of separating out laws of
fundamental physics, e.g., that evolution be unitary and energy
conserving, from those of thermodynamics.
To state the zeroth and first law of thermodynamics more

explicitly, let us define the set of catalytic thermal operations
introduced here.

• Catalytic thermal operations:
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Given a system in initial state ρS with respect to Hamiltonian
HS, and a fixed parameter β> 0 (denoting the inverse tempera-
ture of the thermal reservoir), we can

i) borrow a catalyst system in state σ with regard to some
Hamiltonian HC and return it in a state at least « close to
σ. What one means by close will determine which family of
second laws apply, and in the subsequent statement we invoke
the most stringent conditions, namely closeness in terms of
work distance,

ii) add an arbitrary number of copies of states τ from a set S.
The zeroth law, stated below, will imply that the only choice
is S = fðτ;HRÞjτ= e−βHR=ZRg with any Hamiltonian HR, and
ZR being the partition function of HR,

iii) perform any unitary operation U such that ½U;HS +HR +
HC�= 0 (the first law), and

iv) perform partial trace over systems R and C.

Note that the demand that the unitary commutes with the total
Hamiltonian implies that energy is conserved. Conversely, it is
easy to see that the only processes that conserve energy for an
arbitrary state must commute with the Hamiltonian. We em-
phasize that the equivalence of this paradigm to others has al-
ready been addressed in ref. 23. We here view the first law not as
something which is a consequence of thermodynamics, but rather
one which defines what thermodynamics is.

•Zeroth law:

Let S = fðτ;HRÞjτ= ρRβ = e−βHR=Z  is  a  thermal  state  for HRg. If
ðτ;HRÞ∉S, then arbitrary state transitions are possible and the
theory becomes trivial. This is derived in SI Appendix, section D.
We thus see that the ordinary zeroth law is replaced by the fol-

lowing fact: if our class of operations includes energy-conserving
operations and the ability to add an arbitrary number of copies of
some state τ corresponding to a Hamiltonian HR, then the only
pair of (τ;HR) which does not make for a trivial theory (in the

sense that all state transformations would be possible), is if
τ= ρβ, where ρβ is the thermal state (2) with respect to HR. This
is related to the fact that the thermal state is the only state that is
completely passive, i.e., one cannot draw work from arbitrary
number of copies of the state (36). Taking a resource perspec-
tive, we now see we have an equivalence relation on S which
defines for us the notion of temperature. More precisely, we will
call ðτ1;HR1Þ and ðτ2;HR2Þ equivalent resources if and only if no
work can be gained from τ⊗ℓ1

1 ⊗ τ⊗ℓ2
2 for arbitrary number of

copies ℓ1 and ℓ2. Thus, the ordinary zeroth law is replaced here by
a unique condition which tells us what class of free states makes
thermodynamics nontrivial.
Here, our derivation of the second laws is information theoretic

in nature, requiring none of the assumptions usually required for
the second law to hold. This includes ergodicity, mixing, coarse-
graining of degrees of freedom, and lack of control over the sys-
tem. Monotonicity of Fαðρ; ρβÞ thus provides a powerful tool to
determine what sorts of thermodynamical transitions are possible
on the quantum scale, or equally well for systems which have long-
range interactions. From a foundational perspective, the laws of
thermodynamics take on a very simple and elegant form––a class
of operations and a set of statistical distances to the free state ρβ
which can never decrease. One hopes that such information the-
oretic laws can be used to discover a broad range of thermody-
namical phenomena at the quantum level.

ACKNOWLEDGMENTS. We thank Robert Alicki, Piotr Cwiklinski, Milan
Mosonyi, Sandu Popescu, Joe Renes, Marco Tomamichel, and Andreas
Winter for useful discussions, and Max Frenzel for comments on our draft.
J.O. is supported by the Royal Society. M.H. is supported by the Foundation
for Polish Science TEAM project cofinanced by the European Union Euro-
pean Regional Development Fund. N.N. and S.W. are supported by the Na-
tional Research Foundation and Ministry of Education (MOE), Singapore
as well as MOE Tier 3 Grant “Random numbers from quantum processes”
(MOE2012-T3-1-009).

1. Clausius R (1850) Ueber die bewegende kraft der wärme und die gesetze, welche sich
daraus für die wärmelehre selbst ableiten lassen. Ann Phys 155(3):368–397.

2. Horodecki M, Oppenheim J (2013) Fundamental limitations for quantum and nano
thermodynamics. Nat Commun 4, 2059.

3. Ruch E (1975) The diagram lattice as structural principle A. New aspects for repre-
sentations and group algebra of the symmetric group B. Definition of classification
character, mixing character, statistical order, statistical disorder; a general principle
for the time evolution of irreversible processes. Theor Chem Acc 38(3):167–183.

4. Egloff D, Dahlsten OCO, Renner R, Vedral V (2012) Laws of thermodynamics beyond
the von Neumann regime. arXiv preprint:1207.0434.

5. Jonathan D, Plenio MB (1999) Entanglement-assisted local manipulation of pure
quantum states. Phys Rev Lett 83:3566–3569.

6. Klimesh M (2007) Inequalities that collectively completely characterize the catalytic
majorization relation. arXiv:0709.3680.

7. Turgut S (2007) Catalytic transformations for bipartite pure states. J Phys Math Gen
40:12185–12212.

8. Tomamichel M (2012) A framework for non-asymptotic quantum information theory.
arXiv:1203.2142.

9. Åberg J (2013) Truly work-like work extraction via a single-shot analysis. Nat Commun
4:1925.

10. Dahlsten OCO, Renner R, Rieper E, Vedral V (2011) Inadequacy of von Neumann
entropy for characterizing extractable work. New J Phys 13(5):053015.

11. del Rio L, Åberg J, Renner R, Dahlsten O, Vedral V (2011) The thermodynamic meaning
of negative entropy. Nature 474(7349):61–63.

12. Faist P, Dupuis F, Oppenheim J, Renner R (2012) A quantitative Landauer’s principle.
arXiv preprint:1211.1037.

13. Hiai F, Mosonyi M, Petz D, Bény C (2011) Quantum f-DIVERGENCES and error cor-
rection. Rev Math Phys 23:691–747.

14. Müller-Lennert M, Dupuis F, Szehr O, Fehr S, Tomamichel M (2013) On quantum Renyi
entropies: A new definition and some properties. J Math Phys 54(12):122203.

15. Wilde MM, Winter A, Yang D (2014) Strong converse for the classical capacity of
entanglement-breaking and Hadamard channels. Communications in Mathematical
Physics 331(2):593–622.

16. Pautrat Y, Pillet C-A, Jaksic V, Ogata Y (2010) Entropic fluctuations in quantum statistical
mechanics. An introduction. Quantum Theory from Small to Large Scales: Lecture Notes
of the Les Houches Summer School, Vol 95 (Oxford Univ Press, Oxford), pp 245–315.

17. Bennett CH, Bernstein HJ, Popescu S, Schumacher B (1996) Concentrating partial
entanglement by local operations. Phys Rev A 53(4):2046–2052.

18. Bennett CH, et al. (1996) Purification of noisy entanglement and faithful teleporta-
tion via noisy channels. Phys Rev Lett 76(5):722–725.

19. Horodecki M, Oppenheim J, Horodecki R (2002) Are the laws of entanglement theory
thermodynamical? Phys Rev Lett 89(24):240403.

20. Devetak I, Harrow AW, Winter A (2008) A resource framework for quantum Shannon
theory. Information Theory, IEEE Transactions on 54(10):4587–4618.

21. Janzing D, Wocjan P, Zeier R, Geiss R, Beth T (2000) Thermodynamic cost of reliability
and low temperatures: Tightening Landauer’s principle and the second law. Int J
Theor Phys 39:2717–2753.

22. Horodecki M, Horodecki P, Oppenheim J (2003) Reversible transformations from pure to
mixed states and the unique measure of information. Phys Rev A 67:062104.

23. Brandao FGSL, Horodecki M, Oppenheim J, Rennes J, Spekkens RW (2011) The re-
source theory of quantum states out of thermal equilibrium. arXiv:1111.3812.

24. Skrzypczyk P, Short AJ, Popescu S (2013) Extracting work from quantum systems.
arXiv:1302.2811.

25. Alicki R (1979) The quantum open system as a model of the heat engine. J Phys Math
Gen 12:L103–L107.

26. Allahverdyan AE, Nieuwenhuizen TM (2000) Extraction of work from a single thermal
bath in the quantum regime. Phys Rev Lett 85(9):1799–1802.

27. Feldmann T, Kosloff R (2006) Quantum lubrication: Suppression of friction in a first-prin-
ciples four-stroke heat engine. Phys Rev E Stat Nonlin Soft Matter Phys 73(2 Pt 2):025107.

28. Linden N, Popescu S, Skrzypczyk P (2010) How small can thermal machines be? The
smallest possible refrigerator. Phys Rev Lett 105(13):130401.

29. Gemmer J, Michel M, Michel M, Mahler G (2009) Quantum Thermodynamics: Emergence
of Thermodynamic Behavior within Composite Quantum Systems (Springer, Berlin).

30. Hovhannisyan KV, Perarnau-Llobet M, Huber M, Acín A (2013) The role of entan-
glement in work extraction. arXiv preprint:1303.4686.

31. Alicki R, Fannes M (2013) Entanglement boost for extractable work from ensembles
of quantum batteries. Phys Rev E Stat Nonlin Soft Matter Phys 87(4):042123.

32. Gelbwaser-Klimovsky D, Alicki R, Kurizki G (2013) How much work can a quantum
device extract from a heat engine? arXiv:1306.1472.

33. van Dam W, Hayden P (2003) Universal entanglement transformations without com-
munication. Phys Rev A 67(6):060302.

34. Bennett CH (1982) The thermodynamics of computation-A review. Int J Theor Phys 21:
905–940.

35. Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J
Res Develop 5:183.

36. Pusz W, Woronowicz SL (1978) Passive states and KMS states for general quantum
systems. Commun Math Phys 58(3):273–290.

Brandão et al. PNAS | March 17, 2015 | vol. 112 | no. 11 | 3279

PH
YS

IC
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1411728112/-/DCSupplemental/pnas.1411728112.sapp.pdf

