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Abstract

A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about which
rounds will be used for parameter estimation or key distillation. Here we show that this assumption is
violated for iterative sifting, a sifting procedure that has been employed in some (but not all) of the
recently suggested QKD protocols in order to increase their efficiency. We show that iterative sifting
leads to two security issues: (1) some rounds are more likely to be key rounds than others, (2) the
public communication of past measurement choices changes this bias round by round. We analyze
these two previously unnoticed problems, present eavesdropping strategies that exploit them, and find
that the two problems are independent. We discuss some sifting protocols in the literature that are
immune to these problems. While some of these would be inefficient replacements for iterative sifting,
we find that the sifting subroutine of an asymptotically secure protocol suggested by Lo et al (2005 J.
Cryptol. 18 133-65), which we call LCA sifting, has an efficiency on par with that of iterative sifting.
One of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the finite-
key regime. More precisely, we combine LCA sifting with a certain parameter estimation protocol, and
we prove the finite-key security of this combination. Hence we propose that LCA sifting should replace
iterative sifting in future QKD implementations. More generally, we present two formal criteria for a
sifting protocol that guarantee its finite-key security. Our criteria may guide the design of future
protocols and inspire a more rigorous QKD analysis, which has neglected sifting-related attacks so far.

1. Introduction

Quantum key distribution (QKD) allows for unconditionally secure communication between two parties (Alice
and Bob). A recent breakthrough in the theory of QKD is the treatment of finite-key scenarios, pioneered by
Renner and collaborators (see [ 1], for example). This has made QKD theory practically relevant, since the
asymptotic regime associated with infinitely many exchanged quantum signals is an insufficient description of
actual experiments. In practice, Alice and Bob have limited time, which in turn limits the number of photons
they can exchange. For example, in satellite-based QKD [2] where, say, Bob is on the satellite and Alice is on the
ground, the time allotted for exchanging quantum signals corresponds to the time for the satellite to pass
overhead Alice’s laboratory on the ground. Even if such considerations would not play a role, the necessity of
error correction forces the consideration of finite-size QKD because error correcting codes operate on blocks of
fixed finite length.

Finite-key analysis attempts to rigorously establish the security of finite-size keys extracted from finite raw
data. A systematic framework for such analysis was developed by Tomamichel et al [3] involving the smooth
entropy formalism. This framework was later extended to a decoy-state protocol by Lim et al [4]. An alternative
framework was developed by Hayashi and collaborators [5, 6]. Other extensions of the finite-key framework
include the treatment of device-independency by Tomamichel et al [7], Curty et al [8] and Lim et al [9], and
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continuous-variable protocols by Furrer et al [10] and Leverrier [11]. The framework used in the
aforementioned works, relying on some fairly technical results’, represents the current state-of-the-art in the
level of mathematical rigor for QKD security proofs. These theoretical advances have led to experimental
implementations [ 12—14] with finite-key analysis.

For practical reasons, it is important to consider not only a protocol’s security but also its efficiency. Ideally a
protocol should use as little quantum communication as possible, for a given length of the final secret key. For
example, it was noted by Lo et al [15] that—in the asymptotic regime—protocols with biased basis-choice
probabilities can dramatically decrease the necessary amount of quantum communication per bit of the raw key.
This is because a bias increases the probability that Alice and Bob measure in the same basis. As a consequence,
when Alice and Bob perform the sifting step of the protocol, where they discard the outcomes of all
measurements that have been made in different bases, they lose less data (see figure 2 and the discussion in
section 5).

Some authors have adapted this bias in the basis choice in finite-key protocols and combined it with another
measure to further decrease the amount of data that is lost through sifting. In the resulting sifting scheme, which
we call iterative sifting, Alice and Bob announce previous basis choices while the quantum communication is still
in process, and they terminate the quantum communication as soon as they have collected sufficiently many
measurement outcomes in identical bases. This way, less quantum communication takes place, while at the same
time they always make sure that they collect enough data. The implicit assumption here is that the knowledge of
previous basis choices, but not of upcoming ones, does not help a potential eavesdropper.

As we show in this article, this assumption is wrong. Iterative sifting breaks the security proofs that have been
presented for these protocols. This sifting scheme was part of theoretical protocols [3, 4, 8, 9] and has found
experimental implementations [12]. Therefore, some (but not all) of the recently suggested protocols in QKD
have serious security flaws.

1.1. Summary of the results
The issue with iterative sifting that we point out is as follows. Typical QKD protocols involve randomly choosing
some rounds to be used for parameter estimation (PE) (i.e. testing for the presence of an eavesdropper Eve) and
other rounds for key generation (KG). Naturally, if Eve knows ahead of time whether a round will be used for PE,
i.e., if Eve knows which rounds will form the sample for testing for an eavesdropper’s presence, then she can
adjust her attack appropriately and the protocol is insecure. Hence a central assumption in the QKD security
analysis is that Eve has no knowledge about the sample. We show that this assumption is violated for iterative
sifting.

To be more precise, the iterative sifting scheme has two problems which, to our knowledge, have been
neither addressed nor noted in the literature:

* Non-uniform sampling: The sampling probability, due to which the key bits and the encoding basis are chosen,
is not uniform®. In other words, there is an a prioribias: Eve knows ahead of time that some rounds are more
likely to end up in the sample than others.

* Basis information leak: Alice and Bob’s public communication about their previous basis choices (which, in
iterative sifting, happens before the quantum communication is over) allows Eve to update her knowledge
about which of the upcoming (qu)bits end up in the sample. As a consequence, the quantum information that
passes the channel thereafter can be correlated to this knowledge of Eve.

It is conceivable that these two problems become smaller as the size of the exchanged data increases. This
would remain to be shown. More importantly, however, the protocols in question are designed to be secure for
finite key lengths. In the light of these two problems, the analysis in the literature does currently not account for
these finite-size effects. This is not a purely theoretical objection but a practically very relevant issue, as we
present some eavesdropping attacks that exploit the problems.

Aswe discuss in section 5, the basis information leak can trivially be avoided by fixing the number of rounds
in advance, and only announcing the basis choices after all quantum communication has taken place. We
examine some sifting protocols from the literature with this property. In contrast to protocols that use iterative
sifting, they often use fresh uniform randomness for the choice of the sample, and therefore are trivially

These results include the uncertainty principle for smooth entropies and the operational meanings of these entropies.

®In general, the sampling probability (which decides over which of the bits are chosen as test bits) is distinguished from the probability
distribution which decides in which basis the information is encrypted. In the literature, however, iterative sifting is combined with
parameter estimation in a way such that bits measured in the X-basis are raw key bits, and bits measured in the Z-basis are used for parameter
estimation. We will discuss this in more detail in the second half of section 2.
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sampling uniformly. This means that they are secure with respect to our concerns. However, we find that there is
room for improvement over these protocols regarding efficiency aspects.

Concretely, we note that one aspect that makes iterative sifting very efficient is the PE protocol that is used
with it: after sifting, it simply uses the Z-bits as the sample for PE and the X-bits for raw key, which is why we call
it the single-basis parameter estimation (SBPE). This is efficient because the sample choice requires no aditional
randomness and no authenticated communication. While SBPE is insecure when used in conjunction with
iterative sifting, it turns out to be secure when used with a sifting subroutine of a protocol suggested by Lo, Chau
and Ardehali (LCA), which we call LCA sifting. The combination of LCA sifting and SBPE is essentially as
efficient as iterative sifting. It has trivially no basis information leak and, as we prove, samples uniformly (see
proposition 2). We therefore suggest this combination in future QKD protocols.

More generally, we find clear and explicit mathematical criteria that are sufficient for a sifting protocol to be
secure in combination with SBPE. In contrast, current literature on QKD does not state such assumptions
explicitly, but rather uses them implicitly.

In our formulation, they take the form of two equations

Po(9) = Po(¥) V0,9 € {0,1}, and 1)
paglel = Pap @ Pol- )

Here, equation (1) expresses the absence of non-uniform sampling, i.e., that the probability Pg () for a
partitioning ¢ of the total rounds into sample rounds and KG rounds is independent of +}. Equation (2)
expresses the absence of basis information leak, which is formally expressed by stating that the classical
communication ©' associated with the sifting process is uncorrelated (i.e., in a tensor product state) with Alice’s
and Bob’s quantum systems A'B'. (The precise details of these two equations will be explained in section 6.) We
find that the two problems are in fact independent. Hence, security from one of the two problems does not imply

security from the other. The two formal criteria can be used to check whether a candidate protocol is subject to
the two problems or not.

1.2. Outline of the paper

We introduce the iterative sifting protocol in section 2, where we also explain our conventions and notation. We
give a detailed description of the two problems with iterative sifting in section 3. We show how these problems
can be exploited in section 4 by presenting some intercept-resend attack strategies.

In section 5, we discuss some sifting protocols that are immune to these problems. We study how ideas of
existing protocols can be combined to get new secure protocols that are more efficient. As a result, we suggest the
aforementioned combination of LCA sifting and SBPE, and prove its security.

In section 6, we give a more general answer to the question of how the two problems can be avoided by
presenting formal mathematical criteria that a sifting protocol needs to satisfy in order to avoid the problems.
We conclude with a summary in section 7.

2. Iterative sifting and PE
A typical QKD protocol consists of the following subroutines [3]:

(i) Preparation, distribution, measurement and sifting, which we collectively refer to as ‘sifting’.
(i) Parameter estimation.
(iii) Error correction.

(iv) Privacy amplification.

What we discuss in this paper refers to the subroutines (i) and (ii), whereas subroutines (iii) and (iv) are not
of our concern. Even though the word sifting usually only refers to the process of discarding part of the data
acquired in the measurements, we refer to the preparation, distribution, measurement and sifting together as
‘sifting’, because they are intertwined in iterative sifting.

Our focus in this article is on a particular sifting scheme that we call iterative sifting. It has been formulated in
slightly different ways in the literature, where the differences lie mostly in the choice of the wording and in
whether it is realized as a prepare-and-measure protocol [3, 4, 8, 12] or as an entanglement-based protocol [9].
These details are irrelevant for the problems that we describe. Another difference is that some of the above-
mentioned references take into consideration that sometimes, a measurement may not take place (no-detection
event) or may have an inconclusive outcome. This is done by adding a third symbol & to the set of possible
outcomes, turning the otherwise dichotomic measurements into trichotomic ones with symbols {0, 1, @}. We

3
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choose not to do so, because the problems that we describe arise independently of whether no-detection events
or inconclusive measurements take place. Incorporating them would not solve the problems that we address but
rather complicate things and distract from the main issues that we want to point out.

The essence of the iterative sifting protocol is shown in protocol 1. There, and in the rest of the paper, we use
the notation

[r]:={1,2,...,r} forallre N,. 3)

Our formulation of this protocol is close to the one described in [3], with the main difference that we choose an
entanglement-based protocol instead of a prepare-and-measure protocol. This will have the advantage that the
formal criteria in section 6 are easier to formulate, but a prepare-and-measure based protocol would otherwise
be equally valid to demonstrate our points.

In the protocol, Alice iteratively prepares qubit pairs in a maximally entangled state (step 1) and sends one
half of the pair to Bob (step 2)”. Then, Alice and Bob each measure their qubit with respect to a basis
a;, b; € {0, 1}, respectively, where 0 stands for the X-basis and 1 stands for the Z-basis (steps 3 and 4). Thereby,
Alice and Bob make their basis choice independently, where for each of them, 0 (X) is chosen with probability p,,
and 1 (Z) with probability p,. These probabilities p, and p, are parameters of the protocol. The important and
problematic parts of the protocol are step 5 and the subsequent check of the termination condition (TC): after
each measurement, Alice and Bob communicate their basis choice over an authenticated classical channel. With
this information at hand, they then check whether the TC is satisfied: if for at least # of the qubit pairs they had so
far, they both measured in the X-basis, and for at least k of them, they both measured in the Z-basis, the TC is
satisfied and they enter the final phase of the protocol by continuing with Step 6. These quota n and k are
parameters of the protocol. If the condition is not met, they repeat the steps 1-5 (which we call the loop phase of
the protocol) until they meet this condition. Because of this iteration, whose TC depends on the history” of the
protocol run up to that point, we call it the iterative sifting protocol. Its number of rounds is a random variable
that we denote by M. We denote possible values of M by m (see the TC and step 6).

Protocol 1. The iterative sifting protocol.

Iterative sifting

Parameters: n, k € N5 p, p, € [0, 1]with p, + p = 1.
Output: For [ = n + k, the outputsare:
Alice: I-bit string (s;)._, € {0, 1} (sifted outcomes),
Bob: [-bit string (ti)ﬁ-zl € {0, 1}/ (sifted outcomes),
public: [-bit string (¥; )i‘:1 € {0, 1} 'with ;¥ = k (basis choices, sifted), where 0 means X-basis and 1 means Z-basis.
Number of rounds: Random variable M, determined by reaching the termination condition (TC) after step 5.

The protocol
Loop phase: Steps 1-5 are iterated roundwise (round index r = 1, 2, ...) until the TC after step 5 is reached. Starting withround r = 1,
Alice and Bob do:

Step 1: (Preparation): Alice prepares a qubit pair in a maximally entangled state.
Step 2: (Channel use): Alice uses the quantum channel to send half of the qubit pair to Bob.

Step 3: (Random bit generation): Alice and Bob each (independently) generate a random classical bit a, and b,, respectively, where 0
is generated with probability p, and 1 with probability p,.

Step 4: (Measurement): Alice measures her share in the X-basis (if a, = 0) or in the Z-basis (ifa, = 1), and stores the outcome ina
classical bit y,. Likewise, Bob measures his share in the X-basis (if b, = 0) orin the Z-basis (if b, = 1), and stores the out-
come in a classical bit yr’.

Step 5: (Interim report): Alice and Bob communicate their basis choice a, and b, over a public authenticated channel. Then they
determine the sets

u(r) = {j € [rlla; = bj = 0},
v(r) = {j € [rllaj = bj = 1}

TC: Ifthecondition (u(r)| > nand|v(r)| > k)isreached, Alice and Bob set m := r and proceed with step 6. Otherwise, they
increment r by one and repeat from step 1.

Choosing a maximally entangled state as the state that Alice prepares maximizes the probability that the correlation test in the PE (after
sifting) is passed, i.e. the maximally entangled state maximizes the robustness of the protocol. However, for the security of the protocol,
which is the concern of the present article, the choice of the state that Alice prepares is irrelevant.

8 . . . . .
By the history of a protocol run, we mean the record of everything that happened during the run of the protocol. In the case of iterative
sifting, this means the random bits a,, b,, the measurement outcomes y,, )/r/ etc.

4
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(Continued.)
Final phase: The following steps are performed only once:

Step 6: (Random discarding): Alice and Bob choose asubset 1 C u (1) of size nat random, i.e. each subset of size k is equally likely
to be chosen. Analogously, they choose a subset v C v () of size k at random. Then they discard the bits a, b;, , and yr’ for
whichr & u U v.

Step 7: (Order-preserving relabeling): Let ; be the ith element of « U v. Then Alice determines (s;)._, € {0, 1}/, Bob determines
(t)'_, € {0, 1}!and together they determine (3;)!_, € {0, 1}/, whereforevery i € [I],

/!
Si = )/,X» = )/Vi’ 791' = ari(:hr,‘)-

Step 8: (Output): Alice [Bob] locally outputs (s;)!_, [(#)}_,], and they publicly output (¥;)._,.

After the loop phase of the protocol, in which the whole data is generated, Alice and Bob enter the final phase
of the protocol, in which this data is processed. This processing consists of discarding data of rounds in which
Alice and Bob measured in different bases, as well as randomly discarding a surplus of data for rounds where
both measured in the same basis, where a ‘surplus’ refers to having more than n(k) rounds in which both
measured in the X (Z) basis, respectively. This discarding of surplus is done to simplify the analysis of the
protocol, which is easier if the number of bits where both measured in the X (Z) basis is fixed to a number 7 (k).
Since after the loop phase, Alice and Bob can end up with more bits measured in this same basis, they throw away
surplus at random. Finally, after throwing away the surplus, Alice and Bob locally output the remaining bit
strings (s;)!_, and (t;)!_, of measurement outcomes and publicly output the remaining bit string (9;)}_, of basis
choices.

Iterative sifting is problematic, but to fully understand why, one needs to see how the output of the iterative
sifting protocol is processed in the subsequent subroutine (ii), the PE, where Alice and Bob check for the
presence of an eavesdropper. Protocols that use iterative sifting use a particular protocol for PE. To make clear
what we are talking about, we have written it out in protocol 2.

Alice and Bob start the protocol with the strings (s;)!_,, (#;)'_, and (¢;)\_, that they got from sifting. Then, in
afirst step, they communicate the fest bits. The test bits are those bits s;, ¢; that resulted from measurements in
the Z-basis, i.e. the bits s;, ¢; with isuch that ¥, = 1. Then, they determine the fraction of the test bits that are
different for Alice and Bob, i.e. they determine the test bit error rate. If it is higher than a certain protocol
parameter g, ; € [0, 1], theyabort. Otherwise, theylocally output the raw keys, which are the bits s;, ¢; that result
from measurements in the X-basis, i.e. those s;, t; with i for which ; = 0.

Itis important to emphasize that if the output of iterative sifting serves as the input of the PE protocol as in
protocol 2, then the bits that result from measurements in the X-basis are used for the raw key, and the bits that
result from measurements in the Z-basis are used for PE (i.e. they form the sample for the PE). Hence, the sample
is determined by the basis choice; no additional randomness is injected to choose the sample.

Protocol 2. The single-basis parameter estimation (SBPE) protocol.

Single-basis parameter estimation (SBPE)
Protocol parameters: n, k € N, p, p, € [0, 1]with p. + p, = land g, € [0, 1].
Input: For | = n + k, theinputsare:
Alice: [-bit string (5,-)f~:1 € {0, 1} (measurement outcomes, sifted),
Bob: [-bit string (ti)é:1 € {0, 1}! (measurement outcomes, sifted),
public: I-bit string (¢; )Ll € {0, 1} with i Vi = k (basis choices, sifted), where 0 means X-basis and 1 means Z-basis.
Output: Either no output (if the protocol aborts in step 2) or:
Alice: n-bit string (x; );7:1 € {0, 1} " (rawkey),
Bob: n-bit string (x/)1_, € {0, 1}" (rawkey).

The protocol
Step 1: (Test bit communication): Alice and Bob communicate their test bits, i.e. the bits s;and ¢; with i for which ©J; = 1, over a public
authenticated channel.

Step 2: (Correlation test): Alice and Bob determine the test bit error rate
1
)\test = 2191 (Si 52 ti);
kg
where @ denotes addition modulo 2, and do the correlation test: if Ay < gy they continue the protocol and move on to step 3. If
Atest > 4> they abort.
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(Continued.)
Step 3: (Raw key output): Let i;be the jth element of {i € [I][¥); = 0}. Then Alice outputs the n-bit string (x;)j_, and Bob outputs the n-
bit string (xj’ Yj—1» where

= I — t
Xj=Sip  Xj =t

This is not necessarily a problem by itself. However, as we will show in section 3.1, in iterative sifting, some
rounds are more likely to end up in the sample than other rounds. This leads to non-uniform sampling, which is
aproblem since uniform sampling is one of the assumptions that enter the analysis of the PE. This seems to be
unnoticed so far, as we found that protocols in the literature that use iterative sifting as a subroutine use SBPE as
asubroutine for PE (or something equivalent) [3, 4, 8, 9, 12]. In contrast, the LCA sifting protocol that we discuss
in section 5 does sample uniformly, even if bits from X-measurements are used for the raw key and Z-
measurements are used for paremeter estimation, without injecting additional randomness.

We will discuss randomness injection for the sample choice in more detail in section 5. The idea behind the
PE is the following: if the correlation test passes, then the likelihood that Eve knows much about the raw key is
sufficiently low. The exact statement of this is subtle, and involves more details than are necessary for our
purposes. Werefer to [3] for more details. Here, what is important is that this estimate of Eve’s knowledge is
done via estimating another probability that we call the tail probability p,, (1) which, for i € [0, 1],is given by

ptail(;u) = P[Akey = Atest + ,U/lAtest < qml]- (4)

Here, At is the random variable of the test bit error rate Ay determined in the PE protocol

!
N 3= 70555 @ 1), ®)
k =1
The random variable Ay is the random variable of a quantity that is not actually measured: it is the random
variable of the error rate on the raw key bits if they had been measured in the Z-basis. Since in the actual protocol,
the raw key bits have been measured in the X-basis, the random variable Ay, is the result ofa
Gedankenexperiment rather than an actually measured quantity. We will define Ay, formally in section 6.

The usual analysis, as in [3], aims at proving that

exp ( — 2’(1—”% uz)
Drail (n) < > (6)

pass

where
Ppass = P[Atest < qtol]- @)

Inequality (6) is turned into an inequality about the eavesdropper’s knowledge about the raw key using an
uncertainty relation for smooth entropies 3, 16].

2.1. Notation and terminology

In the following sections, we will have a closer look at the probabilities of certain outputs of the iterative sifting
protocol in protocol 1. For example, in section 3.1 we will consider the probability that iterative sifting with
parameters n = 1, k = 2 outputs the string 9 = (;);_, = (1, 1, 0). Since the output of the protocol is
probabilistic, the output string becomes a random variable. We denote random variables by capital letters and
their values by lower case letters. For example, the random variable for the output string ¢} is denoted by ©, and
the probability of the output string to have a certain value ¥} is P [© = 1J]. For stringsin ¢ = (191‘)5':1 € {0, 1}
we write (79i)§:1 = %119, ... ¥;instead of (ﬂi)le = (Y, V5, ...,9)),1.e. we omit the brackets and commas. For
example, we write 110 € {0, 1} %instead of (1, 1, 0) € {0, 1}3,so the probability that we calculate in

section 3.1is P[© = 110]. Other random variables that we consider include the random variable A; (B,) of
Alice’s (Bob’s) first basis choice a, (b;) or the random variable M of the number m of total rounds performed in
the loop phase of the iterative sifting protocol.

To simplify the calculations, it is convenient to introduce the following terminology. For a round rin the
loop phase of the iterative sifting protocol, ris an X-agreement if a, = b, = 0, r isa Z-agreementifa, = b, = 1
and ris a disagreement if a, = b,. We sometimes say that r is an agreement if it is an X- or a Z-agreement.

For calculations with random variables like ©, A;, B; or M, the sample space of the relevant underlying
probability space is the set of all possible histories of the iterative sifting protocol. This set is hard to model, as it
contains not only all possible strings (a,):, (b;), (3;); and ( yr’ ), of the loop phase (which can be arbitrarily long)
but also arecord of the choice of the subsets # and v in the random discarding during the final phase. It s,
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however, not necessary for our calculations to have the underlying sample space explicitly written out. In order
to avoid unnecessarily complicating things, we therefore only deal with the relevant events, random variables
and their probability mass functions directly, assuming that the reader understands what probability space they
are meant to be defined on. In contrast, the LCA sifting protocol which we discuss in section 5, has a simpler set
of histories, and we will derive a probability space model for it in appendix C.

We often write expressions in terms of probability mass functions instead of in terms of probability weights
of events, e.g. we write

Po(¥) :=P[O = 9]. )

3. The problems

3.1. Non-uniform sampling

To show that iterative sifting leads to non-uniform sampling, we calculate the sampling probabilities for some
example parameters k, n € N, as functions of the probabilities p, and p,. By a sampling probability, we mean
the probability that some subset of k of the ] = n + k bits is used as a sample for the PE, i.e. the sampling
probabilities are Pg (¥) for 9 € {0, 1} 5(, where

{0, 1}} = {(19»51 € {0, 1}

!
>0 = k} o)
i=1

is the set of all I-bit strings with Hamming weight k. We say that sampling is uniform if Pg (1) is the same for all

¥ € {0, 1}}, and non-uniform otherwise. While non-uniform sampling already arises in the case of the smallest
possible parameters k = n = 1, the results are even more interesting in cases where k = n. Let us consider
iterative sifting (protocol 1) with n = 1, k = 2 and arbitrary p,_, p, € [0, 1]. Let © denote the random variable
of the string ¥ = (%;)7_, = 9,19, of sifted basis choices which is generated by the protocol. The possible values
of © are 110, 101 and 011. The probabilities of these strings are given as follows (see appendix A for a proof).

Proposition 1. For the iterative sifting protocol as in protocol I withn = 1and k = 2, it holds that
2

P,

Pg(110) = gzz, where g = —"—. (10)
p o+
For the other two possible values of ©, it holds that
1- g2
Po(011) = Po(101) = ; = (11)

Hence, different samples have different probabilities, in general. In order for the sampling probability P to be
uniform, in the case where n = 1 and k = 2, we need to have Pg (9) = 1/3 for ¢4 = 011, 101, 110. This holds if
andonlyif g, = gz*, where ¢* =1 / V3, whichin turnis equivalent to p, = pz* , where

o = (B+2V3)(1+ V3 — 1)
: NE)

This is bad news for iterative sifting: it means that iterative sifting leads to non-uniform sampling for all values of
p-except p, = p. Interestingly, the value of p* does not seem to be a probability that has been considered in the

~ 0.539. (12)

QKD literature. In particular, pz* corresponds to neither the symmetric case p, = 1/2 nor to a certain
asymmetric probability which has been suggested to be chosen in order to maximize the key rate [3].

The value g, can be interpreted as the probability that in a certain round of the loop phase, Alice and Bob have
a Z-agreement, given that they have an agreement in that round (this conditional is why the p? is renormalized
with the factor 1 / ( pZ2 + pxz)). Hence, g7 is the probability that Alice and Bob’s first two basis agreements are Z-
agreements. Therefore, Pg(110) = gz2 is what one would intuitively expect: to end up with © = 110, the first
two basis agreements need to be Z-agreements, and conversely, whenever the first two basis agreements are Z-
agreements, Alice and Bob end up with © = 110.

More generally, it turns out that for n = 1 and for k € N arbitrary, the iterative sifting protocol leads to

Po(1 ... 10) = g, (13)

1 — k
Po(0) = — %

for all other ¥ € {0, 1}}. (14)
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This is a uniform probability distribution ifand onlyif g, = g*, where
L
* _ , 15
5 (k+J (1
whichis trueiff p, = pz*,where
L &g —gh

= . 16
i Y (16)

Hence, we conclude that iterative sifting does not lead to uniformly random sampling, unless p, and p, are
chosen in a very particular way. This particular choice does not seem to correspond to anything that has been
considered in the literature so far.

3.2. Basis information leak

In iterative sifting, information about Alice’s and Bob’s basis choices reaches Eve in every round of the loop
phase. In step 5 of round r, Alice and Bob communicate their basis choice a,, b, of that round. They do so
because they want to condition their upcoming action on the strings a; ... a,and b; ... b,: if they have enough
basis agreements, they quit the loop phase; otherwise they keep looping.

What seems to have remained unnoticed in the literature is that Eve can also condition her actions on
a ... a,and by ... b,. This means thatif thereisaround r + 1, Eve can correlate the state of the qubit that Alice
sendsto Bobinround r + 1with g, ... a,and b; ... b,. Hence, the state of the qubit that Bob measures is
correlated with the classical register that keeps the information about the basis choice. Note that the basis
information leak tells Eve how close Alice and Bob are to meeting their quotas for each basis. Eve can tailor her
attack on future rounds based on this information. For example, if Alice and Bob have already met their Z-quota,
but not their X-quota, then Eve can measure in the X-basis, knowing that, if Alice and Bob happen to both
measure in the Z-basis, the round may be discarded anyway.

We want to emphasize that the basis information leak is not resolved by injecting additional randomness for
the choice of the sample. As we will discuss in section 5, such additional randomness can ensure that the
sampling is uniform, but it does not help against the basis information leak. Randomness injection for the
sample is effectively equivalent to performing a random permutation on the qubits [17]. This does not remove
the correlation between the classical basis information register and the qubits.

We will see more concretely how the basis information leak is a problem when we present an eavesdropping
attack in section 4.1 and when we treat the problem more formally in section 6.

4. Eavesdropping attacks

A detailed analysis of the effect of non-uniform sampling and basis information leak on the key rate is beyond the
scope of the present paper. It would involve developing a new security analysis for a whole protocol involving
iterative sifting. Instead of attempting to find a modified analysis for iterative sifting, we will discuss alternative
protocols in section 5.

However, to give an intuitive idea of the effect, we will calculate another figure of merit: the error rate for an
intercept-resend attack. We devise a strategy for Eve to attack the iterative sifting protocol during its loop phase
and calculate the expected value of the error rate

1
Ez%Z&@E a7)
i=1

that results from this attack. Here, @ denotes addition modulo 2 and S; and T;are the random variables of the
bits s;and t;, respectively, which are generated by the protocol. One would typically expect an error rate no lower
than 25% for an intercept-resend attack [ 18], which is why our results below are alarming.

4.1. Attack on non-uniform sampling
Let us first consider an attack on non-uniform sampling, i.e., on the fact that not every possible value of © is
equally likely. It will be a particular kind of intercept-resend attack, i.e. Eve intercepts all the qubits that Alice
sends to Bob during the loop phase, measures them in some basis and afterwards, prepares another qubit in the
eigenstate associated with her outcome and sends it to Bob. Then we will show that the attack strategy leads to an
error rate below 25%.

For the error rate calculation, we assume that the X- and Z-basis is the same for Alice, Bob and Eve, and that
they are mutually unbiased. This way, if Alice and Bob measure in the same basis, but Eve measures in the other
basis, then Eve introduces an error probability of 1 /2 on this qubit. Moreover, for simplicity, we make this

8
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Figure 1. The error rate for three different eavesdropping attacks iterative sifting: (1) attack on non-uniform sampling (long-dashed,
black curve), (2) attack on basis-information leak (short-dashed, blue curve), (3) attack on both problems (solid, red curve).

calculation for the easiest possible choice of parameters. Consider the iterative sifting iterative sifting protocol
(protocol 1) with the parameters k = n = 1. From equations (15) and (16), we get that the sampling
probabilities in this case are

2 2
Py P,
Po(01) = T’ Po(10) = W

X z X z

(18)

These sampling probabilities are uniform for the symmetric case p, = p,, but are non-uniform for all other
values. In the following, we assume p, > 1/2, which makes the sample © = 01 more likely than the sample

© = 10. We choose the following attack: in the first round of the loop phase, she attacks in the X-basis, and in all
the other rounds, she attacks in the Z-basis. We choose the attack this way because we know that the first non-
discarded basis agreement is more likely to be an X-agreement, whereas the second one is more likely to be a Z-
agreement’.

We calculate the expected error rate for this attack in appendix B.1. The black curve in figure 1 shows (E) asa
function of p, for this attack. Notice that (E) falls below 25% for1/2 < p_ < 1, and reaches a minimum of
(E) ~ 22.8% for p, ~ 0.73.

The concerned reader might worry that the 25% error rate associated with the intercept-resend attack was
derived under the assumption of equal weighting for the two bases X and Z, whereas it seems here that we choose
unequal weightings. However, for the protocol under consideration, the a priori probability distribution { p,, p,}
is not the relevant quantity. Rather, the fact that n = kin our example ensures that the X and Zbases enter in
with equal weighting.

4.2. Attack on basis information leak

We now give an eavesdropping strategy that exploits the basis information leak. It is an adaptive strategy, in
which Eve’sactioninround r + 1depends on the past communication of the strings a; ... a,and b; ... b,.
Again, we consider the simple case of n = k = 1. To make sure our attack is really exploiting the basis
information leak and not the non-uniform sampling, we set p. = p, = 1/2.Inthis case, from equation (18), the
sampling is uniform:

Po(01) = Po(10) = % (19)

Before we define Eve’s strategy, we want to give some intuition. Suppose that during the protocol, Eve learns
that Alice and Bob just had their first basis agreement. If this first agreement is a Z-agreement, say, what does this
mean for Eve? She knows that the protocol will now remain in the loop phase until they end up with an X-
agreement. Suppose that she now decides that she will measure all the remaining qubits in the X-basis. Then, if
the next basis agreement of Alice and Bob is an X-agreement, Eve knows the raw key bit perfectly, and her
measurement on that bit did not introduce an error. If the next basis agreement is a Z-agreement, she may

9 . . . . . 5 . . A

The attentive reader may point out that this attack could be improved by making Eve’s basis choice dependent on the communication
between Alice and Bob. This is correct, but we intentionally design the attack such that Eve ignores Alice and Bob’s communication. That
allows one to see the effect of non-uniform sampling alone and to compare it to attacks on basis information leak alone, see sections 4.2
and 4.3.
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Figure 2. Comparison of the expected sifting efficiencies. (a) In the protocol of Shor and Preskill [21], only about a quarter of the
measurement results end up in the raw key. Moreover, a relatively large amount of randomness needs to be injected for the sample
choice, which in turn increases the length of pre-shared secret key that Alice and Bob use for authenticated communication. (b) The
protocol by Lo etal [15] allows for abias, p. > p,. This way, the expected fraction of bits with basis disagreements shrinks from one
halfto 2p, p,. The proportions drawn in this figure correspond to p. = 0.8. However, it still requires randomness injection for the
choice of the sample. (c) If, instead, LCA sifting and SBPE are used, as we suggest, then no randomness injection is required for the
choice of the sample. Moreover, less bits are consumed for parameter estimation in the finite-key regime, resulting in a longer raw key.

introduce an error on that test bit. However, there will be a chance that Alice and Bob discard this test bit,
because they have a total of two (or more, in the end) Z-agreements, and the protocol forces them to discard all
Z-agreements except k = 1 of them. Hence, learning that the first basis agreement was a Z-agreement brings Eve
into an favorable position: she knows that attacking in the X-basis for the rest of the loop phase will necessarily
tell her the raw key bit, while she has quite some chance to remain undetected.

This intuition inspires the following intercept-resend attack. Before the first round of the loop phase, Eve
flips a fair coin. Let F be the random variable of the coin flip outcome and let 0 and 1 be its possible values. If
F = 0, then in the first round, Eve attacks in the X-basis, and if F = 1, she attacks in the Z-basis. In the
subsequent rounds, she keeps attacking in that basis until Alice and Bob first reached a basis agreement. If it is an
X-agreement (equivalent to © = 01), Eve attacks in the Z-basis in all remaining rounds, and ifitis a Z-
agreement (equivalent to © = 10), she attacks in the X-basis in all remaining rounds'’.

We calculate the expected error rate for this attack in the appendix B.2. We find that

(E) = % ~ 16.3%. (20)

Hence, the basis information leak allows Eve to go far below the typical expected error rate of 25% for intercept-
resend attacks [19]. The blue curve in figure 1 shows, more generally, (E) as a function of p,, for this attack.

4.3. Independence of the two problems

Are non-uniform sampling and basis information leak really two different problems, or is one a consequence of
the other? We will argue now that the two problems are in fact independent. To this end, we describe a protocol
that suffers from non-uniform sampling but not from basis information leak, and another protocol that suffers
from basis information leak but not from non-uniform sampling.

10 . .. . . . . .
We let Eve flip a coin in order to make the attack symmetric between X and Z. This allows for a more meaningful comparison with the
attack on non-uniform sampling, as this attack here does not exploit non-uniform sampling even if p. = 1/2, see section4.1and 4.3.

10
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We have already seen an instance of a protocol that suffers from basis information leak but not from non-
uniform sampling: in section 4.2, we looked at the iterative sifting protocol with n = k = land p, = p, = 1/2,
in which case the sampling is uniform. Hence, there was no exploitation of non-uniform sampling, but the
attack strategy exploited basis information leak.

What about the other way round? Can non-uniform sampling occur without basis information leak? A
closer look at the attack on non-uniform sampling presented in section 4.1 hints that this is possible: the attack
strategy works, even though it completely ignores the communication between Alice and Bob, so it did not make
any use of the basis information leak due to this communication.

A more dramatic example shows clearly that non-uniform sampling can occur without basis information
leak. To this end, we forget about iterative sifting for a moment and look at a different protocol. Consider a
sifting-protocol in which Alice and Bob agree in advance that they will measure the first n = 100 qubits in the X-
basis, and that they will measure the second k = 100 qubits in the Z-basis, without any communication during
the protocol. Of course, there is no hope for this protocol to be useful for QKD, but it serves well to demonstrate
our point. Itleads to a very dramatic form of non-uniform sampling, because P (0 ... 01 ... 1) = land
Pg (1)) = Oforall other ¢ € {0, 1} 5( If Eve attacks the first 100 rounds in X and the second 100 rounds in Z,
then she knows the raw key perfectly, without introducing any error. At the same time, there is no
communication between Alice and Bob during the protocol, so no information about the basis choice is leaked
during the protocol. Instead, Eve (who is always assumed to know the protocol) already had this information
before the first round.

Hence, we conclude that the problems of non-uniform sampling and basis information leak are
independent. They just happen to occur simultaneously for iterative sifting, but they can occur separately in
general. We will see the independence of the two problems more formally in section 6.

4.4. Attack on both problems
Since the two problems are independent, it is interesting to devise an attack that exploits both of them. Let us
again consider k = n = landsuppose p. > 1/2 to ensure that we have non-uniform sampling. Suppose Eve
begins in the same way as in the attack on non-uniform sampling, measuring in the X-basis. However, as in the
attack on the basis-information leak, she makes her attack adaptive by following the rule that she switches to the
Z-basis when Alice and Bob announce that they had an X-agreement. If Alice and Bob announce a Z-agreement,
Eve keeps attacking in the X-basis.

We give an expression for the error rate induced by this attack in appendix B.3. The red curve in figure 1
shows a plot of this error rate as a function of p,.. As one can see, the error rate attains its minimum of
(E) =~ 15.8% for p, ~ 0.57. Hence, this combined attack on both problems performs much better than the one
on non-uniform sampling alone (with a minimal error rate of ~22.8%) and even better than the attack on the
basis information leak alone (with a minimal error rate of ~16.3%).

5. Solutions to the problems

How can these problems be avoided? Roughly speaking, we can say that protocols with iterative sifting are
characterized by three properties that make it efficient: (1) asymmetric basis choice probabilities and quota,
p. > p,and n > k, (2) SBPE (protocol 2), (3) communication in step 5 of the loop phase. As we have seen, it is
the communication which causes the basis information leak.

An obvious fix to this problem is to take this communication out of the loop phase and to postpone it to the
final phase, when all the quantum communication is over. Then there is no classical communication during the
loop phase, and hence, there cannot be a TC that depends on classical communication. Instead, the number of
rounds in the loop phase is set to a fixed number m € N,. This number m then becomes a parameter of the
protocol.

Fixing the number of rounds introduces a new issue: there is no guarantee that the quotas for X- and Z-
agreements will be met after 7 rounds. In order to perform the PE, however, the quotas n and k must be met.
Otherwise, Inequality (6) is not applicable, because the number of X- and Z-agreements in the loop phase are
random numbers that can be below #n and k, respectively. Thus, unless one wants to introduce a new tail
probability analysis as well, there is a strictly positive probability that Alice and Bob have to abort the sifting
protocol because they have too many basis disagreements. If the sifting scheme is modified in this way, it no
longer involves any communication about the basis choices during its loop phase. Thus, it is trivially true that
there is no basis information leak.

Many protocols in the QKD literature have such a fixed number m of rounds (which is often denoted by N
instead) and an according abort event. It seems that before iterative sifting was introduced, the sifting procedure
was either not clearly written out in the protocols, or it had such a fixed round number. For example, in the original
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BB84 paper [20], the sifting scheme is not written out in enough detail to say whether this is the case, but the
protocol for which Shor and Preskill showed asymptotic security uses a fixed number of rounds [21]. In addition,
they use symmetric basis choice probabilities and quota, i.e. p, = p, = 1/2 and k = n. Alice sends 4n 4 ¢ qubits
to Bob (where 6 is a positive but small overhead) without any intermediate classical communication. Afterwards,
they compare their bases and check whether they have at least n X-agreements and at least n Z-agreements. If not,
they abort, otherwise they choose 1 X-agreements and n Z-agreements and discard the rest.

With the remaining 2# bits, they continue with PE. However, instead of performing SBPE, they choose n bits
atrandom (i.e. with fresh randomness) for PE and use the rest for the raw key. Hence, this protocol shares none
of the three properties with iterative sifting that we listed above.

This scheme trivially has no basis information leak. In addition, it trivially samples uniformly, as the whole
sample is chosen with fresh randomness that is injected for that purpose. Thus, it is secure with respect to the
concerns raised in this article. However, it is unnecessarily inefficient: speaking in expectation values, half of the
bits are discarded because they were determined in different bases, and another quarter of the bits is used for PE,
leaving only a quarter of the original bits for the raw key, see figure 2(a).

A similar protocol has recently been suggested by Tomamichel and Leverrier with a complete proof of its
security, modeling all its subroutines [22]. They also use symmetric basis choice probabilities p, = p,and
randomness injection for the sample choice. However, they do not use half of the sifted bits for PE but less. Their
protocol also samples uniformly, because additional randomness is injected for the choice of the sample.

To increase the efficiency, LCA suggested to use asymmetric basis choice probabilities and quota, i.e. p, > 0
and k = n. As shown in figure 2(b), this decreases the number of expected disagreements from a value of m/2 to
avalue of 2p, p m. This is great for efficiency: for larger block lengths, relatively smaller samples are required to
gain the same confidence that Alice’s and Bob’s bits are correlated''. In the limit where m — oo, the probability
P can be chosen to be arbitrarily close to one, and the fraction of data lost due to basis disagreements converges
to zero. We call this protocol LCA sifting. It shares property (1) with iterative sifting.

As for the protocol of Shor—Preskill, LCA did not consider SBPE. Their PE also requires some randomness
injection for the choice of the sample: the Z-agreements form one half of the sample, and the other halfis chosen
atrandom from the X-agreements. Then, not just one but two error rates are determined, namely on the X-part
and the Z-part of the sample separately. Only if both error rates are below a fixed error tolerance, they continue
the protocol using the rest as the raw key (for details, see their article [15]). The LCA protocol trivially has no
basis information leak. In addition, it turns out that it also samples uniformly. This is in fact non-trivial, and to
our knowledge, it was not proved in the literature. We fill this gap: the uniform sampling property of the LCA
protocol turns out to be a corollary of proposition 2 below. Thus, the LCA protocol could be used as a secure
replacement for iterative sifting.

On the one hand, we suggest using the sifting part of LCA protocol. To be clear about the details of the sifting
scheme, we have written it out in our notation in protocol 3. On the other hand, we find that the PE part of the
LCA protocol is unnecessarily complicated and inefficient: it needs randomness injection for part of the sample
choice, and it requires the estimation of two instead of one error rate. What if, instead, LCA sifting is followed by
SBPE, i.e., only the error rate on the Z-agreements is determined? The critical question is whether this would still
lead to uniform sampling. As the following propositin shows, this is indeed the case.

Proposition 2. The combination of LCA sifting (protocol 3) and SBPE (protocol 2) samples uniformly. In other
words, the LCA sifting protocol satisfies

Po(¥) = Po(¥) V¥, € {0, 1}} (21)

In constrast to protocols that use randomness injection for the sample choice, the uniform sampling property is
non-trivial to prove for LCA sifting with SBPE. We prove proposition 2 in appendix C (see the corollary of
proposition 8). This shows that the combination of LCA sifting and SBPE is secure and can therefore be used to
replace iterative sifting' . For protocols that use these subroutines, the abort probability p,, . of the sifting step
isimportant because it affects the key rate of the QKD protocol. We calculate p, . inappendix C as well
(proposition 8).

This is good news for efficiency, as no randomness injection is required for the choice of the sample. Since
this random sample choice would need to be communicated between Alice and Bob in an authenticated way,
this also uses up less secret key from the initial key pool (see [23] for a discussion of the key cost of classical

" This can be seen from inequality (6), for example.

12 This also establishes uniform sampling for the whole LCA protocol (with the PE protocol with randomness injection instead of SBPE).
This is because the PE protocol of LCA can now be seen as a two-stage random sampling without replacement, where in both stages, the
sampling probabilities are uniform. This leads to overall uniform sampling.
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postprocessing). One can see in figure 2 that in the finite-key regime, this also leads to alarger raw key. Together
with proposition 3, which we will discuss in section 6, this also establishes security of the protocol in the finite-
key regime. In contrast, the original work of LCA [15] only establishes asymptotic security.

Suggestion. Use LCA sifting (protocol 3) and SBPE (protocol 2).
Let us briefly remark about the efficiency LCA sifting in comparison to that of iterative sifting. They differ in
that LCA sifting has no communication during the loop phase, see property (3) above. The question is whether

this necessarily means that the efficiency is strongly reduced in comparison with iterative sifting.

Protocol 3. The Lo-Chau—Ardehali (LCA) sifting protocol.

LCA sifting

Protocol parameters: 1, k, m € Ny withm > n + k € Nyand p,, p, € [0, 1]with p, +p = 1.
Output: For [ = n + k, the outputsare:
Alice: [-bit string (si)ﬁ»zl € {0, 1} (measurement outcomes, sifted) or s = _L (if the protocol aborts),
Bob: I-bit string (t; )5-:1 € {0, 1}! (measurement outcomes, sifted) or t = L (if the protocol aborts),
public: [-bit string (19,)1-:1 € {0, 1} with 3=, 9; = k (basis choices, sifted), where 0 means X-basis and 1 means Z-basis, or ¢ = L (if the
protocol aborts).
Number of rounds: Fixed number m (protocol parameter)

The protocol
Loop phase: Steps 1—4 are repeated m times (round index r = 1,...,m). Starting with round r = 1, Alice and Bob do the following:

Step 1:  (Preparation): Alice prepares a qubit pair in a maximally entangled state.
Step2: (Channel use): Alice uses the quantum channel to send one share of the qubit pair to Bob.

Step3: (Random bit generation): Alice and Bob each (independently) generate a random classical bit a, and b,, respectively, where 0
is generated with probability p, and 1 is generated with probability p,.

Step4: (Measurement): Alice measures her share in the X-basis (if 4, = 0) or in the Z-basis (ifa, = 1), and stores the outcome ina
classical bit y,. Likewise, Bob measures his share in the X-basis (if b, = 0) or in the Z-basis (if b, = 1), and stores the outcome
in a classical bit yr’.

Final phase: The following steps are performed in a single run:
Step5:  (Quota Check): Alice and Bob determine the sets

u(m)={r € [m]la, = b, = 0},
v(m)={r € [m]la, = b, = 1}.

They check whether the quota condition (u (m) > nand v(m) > k)holds. Ifitholds, they proceed with Step 6. Otherwise,
they abort.

Step 6: (Random Discarding): Alice and Bob choose a subset u C u (m) of size k at random, i.e. each subset of size k is equally likely
to be chosen. Analogously, they choose asubset v C v () of size k at random. Then they discard the bits a,, b,, . and yr’ for
whichr & u U v.

Step7: (Order-preserving relabeling): Let r; be the ith element of u | v. Then Alice determines (s; )5:1 € {0, 1}, Bob determines
(t,-)L] € {0, 1}"and together they determine (1J; )5:1 € {0, 1}, where forevery i € [I],

Si= Y L= yr/,’ Y= ar,‘(:hr,)~

Step8: (Output): Alice locally outputs (s;)}_,, Boblocally outputs (t;)!_, and they publicly output (%;)\_,.

We define the efficiency 7 of a sifting protocol as

=9 (22)
where R is the random variable of the number of rounds that are kept after sifting and M is the random variable
of the total number of rounds performed in the loop phase of the protocol. We explain this in more detail in
appendix D. A plot of the expected efficiency for iterative sifting and for LCA sifting is shown in figure 3 for the
special case of symmetric probabilities p, = p,and identical quotan = k (this special case is computationally
much easier to calculate; for other choices, the computation becomes very hard). We find that iterative sifting is
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Figure 3. Efficiency comparison of the two sifting protocols. The plots show lower bounds on the expected efficiencies for symmetric

probabilities p. = p, = 1/2 and for identical quotas # = k. The solid red curve shows alower bound on the expected value of the

efficiency for the iterative sifting protocol as a function of # = k. For the LCA sifting protocol, an optimization over the additional
parameter m has been made for each value of n = k.

more efficient, as expected, but the difference between the two efficiencies becomes insignificant for practically
relevant quota sizes n and k.

6. Formal criteria for good sifting

In section 3, we have seen that iterative sifting leads to problems. In section 5, we showed that these problems can
be avoided by using LCA sifting (protocol 3) and SBPE (protocol 2). In this section, we give a more complete
answer to the question of how these problems can be avoided by presenting two simple formal criteria that are
sufficient for a sifting protocol to lead to a correct PE. More precisely, we describe two formal properties of the
state produced by a sifting protocol which guarantee that if the protocol is followed by SBPE (protocol 2), then
inequality (6) holds. As indicated in the introduction, the two properties take the form of equalities, see
equations (1) and (2). We prove the sufficiency of these two criteria by deriving (6) from them in proposition 3
below.

In order to state the two criteria and the random variable Ay, in (6) formally, we need to define a certain
kind of quantum state p g associated with a sifting protocol. To explain what this state is, we explain what the
state p 4o is like for LCA sifting. It is a state that is best described in a variation of the protocol. Suppose that
Alice and Bob run the protocol, but they skip the measurement in every round. Instead, they keep each qubit
system in their lab without modifying its state. With current technology, this is practically impossible, but since
P apio is a purely mathematical construct, we do not worry about the technical feasibility. Notice that Alice and
Bob still make basis choices, compare them and discard rounds—they just do not actually perform the
measurements. Let us compare the output of this modified protocol with the output of the original protocol:

Original protocol Modified protocol
Alice: Ibits s = (s;)'_, I-qubit state p
Bob: Ibits t = (t;)}_, [-qubit state p
Public: Ibits ¥ = (%), Ibits 9 = (9)\_,

Hence, if we model the classical bit string o) as the state of a classical register ©', we can say that the output of the
modified protocol is a quantum—quantum-classical state p ;. More generally, the state p 0 associated with
asifting protocol is its output state in the case where all the measurements are skipped.

This state still carries all the probabilistic information of the original protocol. To see this, let X = {X,, X{}
and Z = {Z, 7Z,} be the POVMs describing Alice’s X- and Z-measurement, let X' = {X, X{} and
7 = {Zy, 7} be the POVMs describing Bob’s X- and Z-measurement, and let Ml = {M,, M} } be the
projective measurement on © with respect to which the state of the register © is diagonal. Define the operators

Oy = Xo, O =X, 0y = Zo, 03 = Zy,
0=Xp 0 =X, 0) = Z, 05 = Zi. (23)
Then, the probability distribution over the output of the protocol is
Psra(s, t, ¥) = tr(L(s, t, ¥) papey) (24)
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where p g is the same state as p ypigy, but with the registers reordered in the obvious way, and where

1
T(Gs, 1, 9) = @ (Oapyys, ® Oy, @ My). (25)

i=1
With the state p g associated with asifting protocol at hand, it is easy to define the random variable Ay,
associated with the protocol. The relevant probability space is the discrete probability space (2220, Pzz0),
where € 7,/¢ is the sample space
Qzz0 = {0, 1} x {0, 1}/ x {0, 1}§ (26)
and where P z/g is the probability mass function
Pyre: Qz76 — [0, 1]

1 1 1
(z, Z/’ ) — tr((@Zzi) ® (®le,') & (®M19i)pAlBlelJ. 27)
i=1 i=1

i=1
The probability mass function P zz/¢ corresponds to a Gedankenexperiment in which Alice and Bob measure all
qubits in the Z-basis.
Now we are able to formally say what the random variable Ay, of asifting protocolis. Let p g be the state
associated with the sifting protocol, let (€270, P zz/¢) be the probability space as in equations (26) and (27).
Then Ay is the random variable

Akey: QZZ/(—) — [0, 1]

N
(2 2, 9) =~ 520 = )z @ 2), (28)
ni

which is the key bit error rate. Analogously, we have the test bit error rate
Aeest : Qzz0 — [0, 1]

1
@ 2, 9) %Zﬂi o 7). (29)
i=1

This allows us to formally define the tail probability p, ;. We define it via the same formula as in (4), which we
repeat here for the reader’s convenience:

ptaﬂ (:U/) = P[Akey = Atest + H/lAtest < qtol]- (4)

The difference is that now, we have formally defined all the components of the equality. The following
proposition states the tail probability bound in a formal way.

Proposition 3 (Tail probability estimate). Let p ,c be a density-operator of a system A'B'©! where A and B are
qubit systems and © is a classical system, let { Zy, 7} and { Zg, 7y} be POVMs on the quantum systems A and B,
respectively, let { My, M} be the read-out measurement of the classical system ©, let Akey, Avest be random variables
on the discrete probability space (Qzz'0, P z7/0) as defined in equations (26)—(29) and let p,,, be as in equation (4).
Let p g and pg denote the according reduced states of p ypio and Po denote the according marginal of P z7¢. If the
two conditions

Po(9) = Po(¥) V9, 9" € {0,1}; and (1)
P aBlel = Papl ® Pel 2
hold, then
kn k 2
exp| —2—+—u
P () < (2Fes ), ©)
pass
where
Ppass = P[Agest < gyl )

We prove proposition 3 in appendix E. The formulation of proposition 3 allows us to see the formal
requirements on a sifting protocol to lead to a correct PE when followed by SBPE: condition (1) is exactly the
statement that the sampling probability does not depend on the sample, i.e. the protocol leads to uniform
sampling. There is one thing that we want to point out here: while it is sufficient for the sampling probabilities to
be the inverse of the number of possible samples, i.e.
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1 Iyt
Po(¥) = —— = v € {0, 1}, 30
o (1) o] (k) € {0, 1}y (30)

condition (1) is strictly weaker. In the case where there is a non-zero probability that the protocol aborts during
the sifting phase (as it is the case for LCA sifting), the sampling probabilities do not add up to 1 but rather to
1 — Dpore> Where py . is the probability that the protocol aborts during the sifting phase.

Condition (2) is the formal statement of what it means for a protocol that the basis choice register is
uncorrelated with Alice’s and Bob’s qubits before measuring. Proposition 3 states that if these two conditions are
satisfied, then the correlation test of the SBPE protocol leads to the right conclusion. Hence, these are the two
conditions that a sifting protocol needs to satisfy in order to be a good sifting protocol.

We point out that the digression to a classical probability space, equations (26)—(29) and (4), is a mere change
of notation. However, the fact that it is possible to express proposition 3 in terms of a classical probability space
shows that this part of a QKD security analysis is purely classical.

7. Conclusion

In recent years QKD has emerged as a commercial technology, with the prospect of global QKD networks on the
horizon [19]. All QKD implementations have finite size, and yet only recently has finite-key analysis approached
mathematical rigor [3—6, 8—11]. In this work, we showed that further modifications of the protocols and/or their
analysis are needed to make finite-key analysis rigorous.

We pointed out that sifting—a stage of QKD that is often overlooked with respect to security analysis—is
actually crucial for security. A carelessly designed sifting subroutine can jeopardize the security of an otherwise
reliable protocol. We found that iterative sifting, a sifting protocol that has both been proposed theoretically
[3,4,8,9] and been implemented experimentally [12], violates two assumptions in the typical security analysis.
We showed how the violation of these assumptions can be exploited by an eavesdropper, leading to intercept-
resend attacks with unexpectedly low error rates (see figure 1).

We presented an alternative scheme, LCA sifting and SBPE, and proved that it solves the two problems. We
derived an expression for its abort probability and therefore provided everything that is needed for its future use
asasubroutine. We argued that this scheme is more economical and efficient than some other other previously
proposed protocols, as it does not require an additional random seed for the sample and at the same time allows
for asymmetric basis choice probabilities. As we explained, the latter allows for a significantly higher sifting
efficiency [15].

We gave the precise mathematical form of the two assumptions that are needed for secure sifting in
equations (1) and (2). In doing so, we have provided a guide for the construction of future protocols: when
designing a sifting protocol, one just needs to check these two conditions in order to make sure that the usual
analysis of the PE based on inequality (6) is correct and the protocol is secure. This may require a mathematical
model for the state p 4o or for the probabilities of the output strings (¥J; )52 b (51-)521 and (¢; )5:1 generated by the
sifting protocol. Such models are rarely provided in the literature. In the case of iterative sifting, the absence of
such amodel to check the desired properties has led to a wrong security analysis.

This points to a deeper problem in QKD security analysis: there is often a gap between the physical protocols
that are written down as instructions for Alice and Bob and the mathematics of the security proof. Thisis nota
purely pedantic issue, but rather a very practical one which can be exploited by eavesdroppers. In the future, we
advocate that each step in the physical QKD protocol be explicitly mathematically modeled. In particular, we
emphasize that sifting protocols must be proved to (rather than assumed to) satisfy the desired assumptions of
the analysis. We believe our work will ultimately inspire more complete security proofs of finite-size QKD.
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Appendix

Conventions
We make some notational conventions for the appendix (in addition to the ones we made in section 2). For the
iterative sifting protocol as in protocol 1, we denote by N, the random variable of the number of X-agreements,
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and analogously, N, and N, are the random variables of the number of Z-agreements and disagreements in the
loop phase, respectively. We write events as logical statements of the random variables, e.g. © = 110 A N, > 2
is the event in which the protocol runs with more than two X-agreements and produces the output ¢ = 110,
and its probability is given by P[© = 110 A N, > 2].In cases where all involved random variables have fixed
values, we occasionally write expressions in terms of probability mass functions instead of in terms of probability
weights of events (as we have done it in the main article), e.g. we write

P(—)NXNZN,;I('&) My, Mgy Ng) 1= P[© =9, N, = ny, N; = n;, Ny = nyl. (3D
In cases with inequalities, it is however shorter to use the event notation, e.g.
P[A; = Bi] = Pyp,(0, 1) 4 Py (1, 0). (32)

We will use whatever notation we find more appropriate in each case.

Appendix A. Sampling probability calculation for iterative sifting

In this appendix, we prove proposition 1, i.e. we calculate the sampling probabilities Pg (1) for iterative sifting
withn = 1and k=2and find Pg(110) = gz2 and Pg(101) = Pg(011) = (1 — gzz)/Z,where

g =0 /(0 + D).
Proof of proposition 1. We first write out the sequence of equalities that lead to the claim. We explain each

equality below. The sequence of equalities looks as follows:

oo 0 0

P@(llo) = Z Z ZP@NXNZNd(lloﬁ Ny, Nz, nd): (Al)
ny=1n,=2n,3=0
:Z ZPQNXNZNA(IIO: 1, Nz, nd): (AZ)
n,=2n;=0
00 o0 n, + n
=> >0 (pf)k(szpz)d( 4 ) (A3)
n,=2ny3=0 nq
£

= gzz, where g, = (A4)

PP

Equation (A1) is just stating that Pg is the marginal of Poy,n, n,- The ranges of the sums can be explained as
follows. The iterative sifting protocol always runs until there have been at least n X-agreements and at least k Z-
agreements. Therefore

Pon,n.N; (0, 1y, 11z, 1g) = 0 if e < moor n, < k. (A5)

Inour case,n = 1 and k = 2, hence the limits of the sums.
Equation (A2) follows from

P@NXNsz(ll()) Nyy Nz, I’ld) =0 for Ny 2 2. (A6)

One can see (A6) as follows: if N, > 2, then necessarily N, =2, because N, > n A N, > k isimpossible in
iterative sifting (the loop phase of the protocol is terminated as soon as both quota are met). This means that
during the random discarding, no Z-agreement gets discarded. Moreover, if N, > 2, then the last round of the
loop phase must be a Z-agreement. Since this Z-agreement is not discarded, we have that © must necessarily end
inalif Ny > 2,50 © = 110 isimpossible in that case.

To see why equation (A3) holds, note that the event

O =110 AN, =1AN,=n, AN;=ny (A7)
consists of all runs of the protocol in which one X-agreement, 1, Z-agreements and n, disagreements occurred,

and where the X-agreement was the last round of the loop phase. This is because in every such run, one
necessarily ends up with © = 110, and if © = 110, then the last round of the loop phase must be an X-

agreement. There are (nz ;:; nd) such runs, and each of them has the probability pj ( pZ2 )" (2p,p,)™, and

therefore

Ponoon, (110, 1, 1, 1) = (" o )pj ()" 2p,p,)™. (A8)

ng
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This explains equation (A3). Finally, equation (A4) is just an evaluation of the expression in the line above. This
shows Pg(110) = gzz.
It remains to be shown that P (101) = Pg(011) = (1 — gj)/z. In analogy to the above, it holds that

[o. Sl olNe ¢

Po(101) = Z Z ZPGNXNZNd(IOI: My, M7y N4), (A9)
ny=1n,=2n,3=0
00 00
= Z Zp@NxNsz(IOL My 2, nd)- (Alo)
ny=2n,3=0

Equation (A9) is, in analogy to equation (A1), stating that Pg is the marginal of Pon, n,n;» and the same
argumentation for the limits of the sums applies. Equation (A10) is explained by a similar reasoning as for
equation (A2): it follows from

Pon.n,n, (101, 1y, 115, ng) = 0 for n, > 3. (A11)

For equation (A11), note thatif N, > 3,then N, = 1because N, > n A N, > kisimpossible in iterative sifting.
Thus, no X-agreement gets discarded. Moreover, if N, > 3, then the last round of the loop phase must be an X-
agreement. Since this X-agreement is not discarded, © necessarilyendsinaOif N, > 3,50 © = 101is
impossible in this case.
Analogously, it holds that
o0 o0 o0

Po(011) = > > > Ponnn, (011, 1y, 15, 1), (A12)
ny=1n,=2n,3=0
o0 o0
> Ponnn, (011, 1y, 2, ng). (A13)

ny=2n3=0

The next step is to realize that for every n, > 2 andforeveryny; € {0, 1, 2, ...}, itholds that
Pon.n,n, (101, 1y, 2, ng) = Pon,n,n, (011, ny, 2, ng). (A14)
This is because the event
(© =101, Ny = ny, N, = 2, Ny = ny) (A15)
and the event
(© =011, N, = n,, N, = 2, Ny = ny) (A16)
consist of equally many histories of the protocol, and each of these histories has the same probability.

Equations (A10), (A13) and (A14) imply Pg(101) = Pg(011). Since Pg(011) + Po(101) 4+ Pg(110) = land
P(110) = g7, itholds that Py (011) = Pg(101) = (1 — g*)/2 as claimed. 0

Appendix B. Error rate calculations for the attacks on iterative sifting

B.1. Attack that exploits non-uniform sampling

Here, we calculate the expected error rate for the attack on iterative sifting which exploits non-uniform
sampling, as explained in section 4.1. We first recall the relevant conventions that we made in the main
article. The iterative sifting protocol is described in protocol 1. Eve performs an intercept-resend attack
during the loop phase of the protocol. In the first round, she attacks in the X-basis, and in all the other rounds
of theloop phase, she attacks in the Z-basis. We defined the error rate in equation (17) in the main article,
namely

1
E= %Zsi & T,. (B1)
i=1

Moreover, recall that we assume that the X- and Z-basis is the same for Alice, Bob and Eve, and that they are
mutually unbiased. This way, if Alice and Bob measure in the same basis, but Eve measures in the other basis,
then Eve introduces an error probability of 1/2 on this qubit.

The calculation of (E) for this attack goes as follows. We first make a split:

(E) = S"P[© = J](E|© = ¥) (B2)
v
— P[O© = 01](E|© = 01) + P[O© = 10](E|©® = 10). (B3)
A A

X z
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We have that

.
Ay= > (P[® =01 AN, =n, ANA =By =0](E|© = 01 A Ny =n, AA =B, =0)

ne=1
+P[O =01 AN, =n, AA = B(E|© =01 AN, = n, AA = B)
+ PO =01 AN, =ng ANA =B, =1](E]© =01 AN, = ny A A = B, = 1)). (B4)

0

The third summand on the right-hand side of equation (B4) vanishes because © = 01 is impossible if Alice and
Bob have a z-agreement in the first round of the loop phase. The event

©O=01AN=n, ANA =B =0 (B5)

consists of all histories of the protocol in which Alice and Bob have an x-agreement in the first round and n, X-
agreements in total. Infinitely many such histories are possible because an arbitrary number of disagreements is
possible. We express the probability of the event (B5) as the marginal of the probability of the event
©=01AN,=n, NA =B =0AN; = ng. (B6)
ny +ng +1
N4

The event (B6) consists of ( histories of the protocol, and each history has the probability

(P2 p? (2pp,)". Therefore

o0
PO =01AN;=n, NA =B =01= > P[O=01AN;=n NA =B =0AN;=ngl, (B?)

ng=0
> ne +ng — 1
=> (P,f)""pzz(Zpoz)”d( d ) (B8)
nd:O nd
Moreover, we have that
(El@zOl/\Nxznx/\AI:&:O):i(l—i). (B9)
1y

The validity of (B9) can be seen as follows. On the second bit of Sand T, there is no error because it comes from a
round in which all parties have measured in the Z-basis. Hence, the left had side of (B9) is the probability of
getting an error on the first bit of Sand T, divided by the total number of bits, 2. Hence, we need to determine the
error probability of the first bit. If N, = 1, then the first bit comes from the first round of the loop phase, in
which Alice, Bob and Eve have measured in the X-basis and hence, there is no error. However, for N, = n,, the
first bit of Sand T'is chosen at random from one of the n, X-agreements. In only one of these #, rounds, Eve has
measured in the X-basis, and in n, — 1rounds, she measured in the Z-basis. Hence, the probability that Eve
measured in the wrong basis on the first bit of Sand T'is (n, — 1)/#,, and therefore the error probability of the
firstbitis1/2 - (n, — 1)/n,. Thus

<E|9201ANx:nxAA1:Blzo>:l.l( My ) (B10)
2 2\n, -1
1 1
=—|1-—1 B11
-3 1)
Similarly, we get
PO=01 AN, =n  AA =B]=3 (pj)”xpj(prpz)"d(”x o 1) (B12)
ng=0 My
and

Taking equations (B8), (BY), (B12), (B13) together we get that
1 & & e +ng — 1 1 ny +ng — 1
Ac=—32>" (Pf)"xpf(ZPxPz)”"[( x T )(1 - —) + ( x T . (B14)
4 ne=1n;=0 14
In a similar way, we get

A, = i Z ij(pzz)nz(szpz)nd[(nz + ng — 1) n (nz + ng — 1)(1 + L)) (B15)

n,=1ng=0 ngq ng
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Equations (B3), (B14), (B15) taken together resultin

B 3 (2pxpz>"‘*[i (pj)nxpj((nx +ong — 1)(1 _ L) + (nx tong — 1))

ng=0 ny=1 ng Ny My
+ pr(pj)"z((”””d_ 1)+(”Z+”d_ 1)(1+i)) . (B16)
n,=1 n; ng n,

Figure 1 in the main article shows a plot of (E) as in (B16) as a function of p,. As one can see, (E) achieves a
minimum of (E) ~ 22.8% for p_ ~ 0.73.

B.2. Attack that exploits basis-information leak
Now we calculate the expected error rate of iterative sifting for the attack which exploits basis-information leak
as described in section 4.2. As before, let ( E) be the expected value of the error rate as defined in equation (17).
Again, we assume that the X- and Z-basis are the same for Alice, Bob and Eve and that they are mutually
unbiased. Recall the strategy of Eve’s intercept-resend attack: before the first round of the loop phase, Eve flips a
fair coin. Let Fbe the random variable of the coin flip outcome and let 0 and 1 be its possible values. If F = 0,
then in the first round, Eve attacks in the X basis, and if F = 1, she attacks in the Z-basis. In the subsequent
rounds, she keeps attacking in that basis until Alice and Bob first reached a basis agreement. If it is an X-
agreement (equivalentto © = 01), Eve attacks in the Z-basis in all remaining rounds, and if it is a Z-agreement
(equivalent to © = 10), she attacks in the X-basis in all remaining rounds.

The calculation of (E) goes as follows:

(E) = Pr(0)(EIF = 0) + Pr(1)(E|F = 1), (B17)
=(E|F = 0), (B18)
= Po(O) (EIF =0 A © = 01) + Po(10) (EIF =0 A © = 10).  (B19)

1/2 1/2 1/4

Equality (B17) is just a decomposition of ( E) into conditional expectations. Equality (B18) follows from the fact
that the problem is symmetric under the exchange of X and Z, i.e. under the exchange of 0 and 1. The only
quantity that is not trivial to calculate in equation (B19) is the expected value of the error rate, given that Eve first
measures in X and that the first basis agreement is an X-agreement. It is calculated as follows:

o0
(EIF=0A© =01) = > (EIF=0A 0O =01 A Ny = n,) Pyjer (1,01, 0), (B20)
e
=l Py (0D
> 1
=> (EF=0A0O =01 AN, =n,) Py.o(ny, 01) , (B21)
ne=1 nx—l 00 2yng 2 ng [(Mxt1d M
4y an:(](px) *p; (prpz) d( ng ) 2
e — 1 & ne +n
=2 (B)=p @ppye| ™ (B22)
2n T n
ny=1 X ng=0 d
~ L1 -m, (B23)
4
where In denotes the logarithm to base e. Therefore
11 11
E)=—-(1—1In2) + ——, B24
(E) =~ ( )ty (B24)
2—1In2
=== B25)
5 (
~ 16.3%. (B26)

B.3. Attack that exploits both problems
Here we present the error rate induced by the intercept-resend attack presented in section 4.4, which exploits
both non-uniform sampling and basis information leak. Let us recall the attack strategy. In the first round of the
loop phase of the iterative sifting protocol, she attacks in the X-basis. She keeps doing that in subsequent rounds
until Alice and Bob announce a basis-agreement. If they announce an X-agreement, Eve attacks in the Z-basis in
all the following rounds. Otherwise, she keeps attacking in the X-basis.

The calculation of the error rate is similar to the calculations done in appendices B.1 and B.2. We only show
the result here:
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oo (o) . l
<E> _ Z zpjpjm (szpz)nd(n + I’Id)_

n,=1ng=0 nq 4
& Ny + 1g Y1, — 1

+ > pr”*pj(szpz)"d( * ")—x : (B27)
y=113=0 nq 4ny

Aplotof (B27)is shown in figure 1 as a function of p,. As one can see, the expected error rate has a minimum of
(E) ~ 15.8% for p, ~ 0.57. Hence, this combined attack on both problems performs much better than the one
on non-uniform sampling alone (with a minimal expected error rate of ~222.8%, see section 4.1) and even better
than the attack on the basis information leak alone (with a minimal expected error rate of ~16.3%, see

section 4.2).

Appendix C. Sampling and abort probability calculation for LCA sifting

In this appendix, we derive the general form of the probabillity distribution Pg (19) for LCA sifting (protocol 3) as
afunction of the parameters 1, k, m, p_and p,. This achieves two goals: firstly, it turns out that the sampling
probability Pg (19) is independent of the sample ¥ € {0, 1} %, which shows that the protocol samples uniformly.
Secondly, we calculate the abort probability p . = Pg(L). This abort probability influences the key rate of
potential QKD protocols that use this protocol as a subroutine, which makes p, . an important performance
parameter of the protocol.

We start by describing in appendix C.1 how we think that proofs of sampling probabilities should be
formalized and how the general strategy of our prooflooks like. In appendices C.2—C.4, we show the proofs and
finally derive Po.

C.1. On probabilistic models of the protocol
LCA sifting gives rise to a set {2 of histories of the protocol. This set can be modeled as the set 2 = Qpyy'sTuve
ofall tuples

w=(ab,yy, st urd), (C1)

where each entry varies over all its possible values. There are finitely many such histories, and each of them asa
probability associated with it. This can be expressed more formally in the language of discrete probability
theory'”’ by saying that € forms the sample space of a discrete probability space (2, P), on which a probability
mass function Pis defined such that P (w) is the probability of a history w. Note that by choosing 2 = (5. 6,
we also include impossible combinations of a, b, ..., 9. For example, a history was in (C1) with u = vis not
possible, because u stands for the X-agreements chosen for the raw key and v stands for the Z-agreements chosen
for the sample, and the two cannot coincide. This is not a problem for our model, because in this case, we simply
have P(w) = 0.

In this probability theory language, the strings a, b, ..., " are values that random variables A, B, ..., © can
take. Random variables are maps from the sample space €2 to a set which is called the range or codomain of the
random variable. For example, the random variable A is a map

A:Q— A
w— A(w), (C2)

where A is the codomain of A. We denote the codomains of random variables with calligraphic letters (except
for the random variable ©, whose codomain we denote by co(0)). According to the protocol, we have

A= {0, 1} = {(ai)il la; € {0, 1}Vi € [m]}. (C3)
In the case where we model
Q=Quprvstove=AXBxYXx YV xSxTxUxV x co(O), (C4)
the random variables are simply the (set-theoretic) projections on the respective components, e.g.

A:Q=Ax Bx...xco(®) — A,
(a, b,...,1%) — a. (C5)

13 By discrete probability theory, we mean probability theory with a discrete sample space €2, i.e. where €2 is finite or countably infinite.
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Then, the probability P,(a) that A = ais given by

Py A — 0, 1]
a — Z P(w)
wEA Y (a)
= Z PAB”'(—)(Q, h)--~),l9)1 (C6)
(byy,...,0)

where we have written P = Pyp . Thisis because in the case where {2 = (5. o, P issimply the joint
probability distribution of the random variables A, B, ..., ©.

Setting (2, P) = (5.0, Pap...0) is sufficient to describe the probabilities of the random variables A, B,
..., © and functions thereof. For our purposes, however, this description is overloaded. We do not need to
incorporate all the random variables A, B, ..., © in{2and P. One reason is that some of the random variables are
completely determined by some of the other random variables. For example, the string s of Alice’s sifted
measurement outcomes is completely determined by Alice’s measurement outcomes a and the subsets 1 and v.
In the probability theory language, this is expressed as the fact that the random variable Sis a function of the
random variables A, Uand V,

S=SA, U, V), (C7)
or more precisely

S:AXUXYV — S

(a, u,v) +—S(a, u,v) (C8)
and its probability distribution is given by
Ps(s) = >, Pwv(a, u,v), (C9)
@S ()
= > P(w). (C10)

WE(SeAX UX V)~ 1(s)

There are more such dependencies in our list of random variables:

T=T(B,U,YV), (C1D)
0 = o, V). (C12)

Hence, setting
(82, P) = (Qpyy'vv> Pasyy'vv) (C13)

and using the dependencies (C7), (C11) and (C12) leads to an equally powerful description, but with a smaller
probability space.

For our purposes, the space (C13) is still overloaded. We are only interested in the distribution Pg of ©.
According to (C12), the relevant probability space is (Qyy, Pyy), and © isarandom variable

O:Quy =UXxV — co(O),

(u, v) — J(u, v). (C14)
Then, Pg is given by
Py :co(®) — [0, 1]
9 = S Puy(u, ). (C15)
(,v)€O71 (@)

Itis difficult to write down the probability mass function Py directly. Instead, we will derive the probability
mass function P,y on the sample space {4y, and arrive at the probability distribution Py via
marginalization of Psgyy:
PUV(“’ V) = Z PABUV(aa b) u, V)- (C16)
(a,b)e AXB
Hence, the relevant probability space for our proof of uniform sampling of LCA sifting is the probability
space (upuv, Papuv)-

C.2. Formalization of ({%3yv, Papuv)

According to what we said in the last subsection, the probability space that is relevant for our proof of uniform
sampling of LCA sifting is the space (%pyv, Papuv), which describes the probabilities of the basis choice strings
aand b of Alice and Bob, as well as the choices u and v of the rounds that are used for the raw key and for PE,
respectively. We are going to formalize this space in this subsection.
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We start by determining the sample space
Qapuy = A X B x U x V. (C17)

In the loop phase of the protocol, Alice and Bob generate basis choice strings
a=(a;)’L, € {0, 1}™, b = (b){", € {0, 1} ™. This happens in every run, no matter whether Alice and Bob
abort the protocol in the final phase. Hence

A=B={0,1}m (C18)

In the final phase of the protocol, Alice and Bob do a quota check, in which they determine the rounds in which
both measured in the X-basis (X-agreement) the rounds in which both measured in the Z-basis (Z-agreements).
In the case where they had less than 1 X-agreements or less than k Z-agreements, they abort. In this case, Alice
and Bob do not choose subsets # and v of their X- and Z-agreements, respectively. We model this by saying that
in this case, u = v = |, where L isjustasymbol indicating that Alice and Bob abort. In the case where the
quota check of the protocol is successful, Alice and Bob choose random subsets # C u (m) of size nand

v C v (m) of size k. We represent these subets by bit strings u € {0, 1}, v € {0, 1} {, where

iui = n},

i=1

{O’ 1}:7: {(ul)zm—l € {O) 1}m

{0, 1} 7' = {(vi e {0, 1}m Xm:vi = k}. (C19)
i=1

They are to be interpreted as follows: for u € {0, 1} and i € [m], u; = 1 means that iis contained in the subset
u C u(m),and u; = 0 means that i is not contained, and likewise for v € {0, 1}7'. The requirement that the
subsets 1 and v have size n and k translates into the conditions that the string components sum up to n and k,
respectively. Taking the two possibilities (the protocol aborts or the quota check is successful) together, we have
that

U=1{0, 137 U {L} (C20)
V={0, 117 U {1}, (€21

and hence
Qv = A X BxUXxV={0,1}"x {0, 1} x ({0, 1};7 U {LD x ({0, 1}¥ U {LD. (C22)

This is the sample space of the probability space (upyv, Papuv) that we are looking for.
Next, we determine the probability mass function P, py. We can write

Paguv (a, b, u, v) = Pap(a, b) Pyviap(u, vla, b), (C23)
where Pyyap (¢, v|a, b) is the probability that U = uand V= v, conditioned on A = aand B = b. The probability

distribution Pyp(a, b)is easily determined. Each bit a;, b;, i € [m]is generated independently at random and
takes the value 0 with probability p, and the value 1 with probability p,. Hence

Ya, b) € A x B:  Pys(a, b) = H p)lc_aipzaip)lg_bipzbi’ (C24)
i=1

ZP)T_I“'PLaIPf_lblplbl’ (C25)

_ 2m—|a|—|b|p|ﬂ|+|h|’ (C26)

where forastringa € {0, 1}, we write
m
la] = Zai. (C27)
i=1

The conditional probability distribution Pyy,p is a bit more tricky to write down. What is crucial for this
conditional probability is whether the strings a and b have at least n X-agreements and at least k Z-agreements.
We want to give this condition a formula as follows. Imagine Alice and Bob want to count their X- and Z-
agreements. To do so, they can first determine the string a A b, given by

alAb:= (aibi),’»’;l. (C28)
Theithentry a;b;of a A bis 1 ifthe corresponding bits a;and b; are both 1, i.e. if they had a Z-agreement, and 0

otherwise. Hence, to count their Z-agreements, they can sum up the componentsof a A b:

number of Z-agreements = Zaibi = la A b|. (C29)
i=1
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Therefore, the condition that Alice and Bob had at least k Z-agreements can be expressed as

la A b| > k. (C30)
Likewise, the condition that they had at least n X-agreements can be written as

l@anb|>n, (C31)

where forastringa € {0, 1}™, we write
a=(1—a)’, €{0, 1}" (C32)
Taken together, the quota check condition reads
[aAb|>n and |aADb| >k (C33)
In the case where condition (C33) is not satisfied, Alice and Bob abort, and therefore it must be that
(u, v) = (L, 1). We can write this as
Y(a, b) € {0, 1}™ x {0, 1}™ such that (|a A b| < kor |a A b| < n):
PUV|AB (ua ‘Vl[l, b) = X(Ll =v= J—)) (C34)

where Y is the indicator function, which evaluates to 1 if its argument is true and which evaluates to 0 if its
argument is false.

For (a, b) € {0, 1}™ x {0, 1} " such that condition (C33) is satisfied, the conditional probability Pyysp is
alittle more difficult to write down. In that case, both # = | and v = | areimpossible. Moreover, only those
u € {0, 1}’ are possible which are subsets of Alice and Bob’s X-agreements, i.e. which satisfy

ui=1=a;=5b;=0 Vie[m]. (C35)
Note that

Y(a, b, u) € {0, 1}™ x {0, 1}™ x {0, 1} "
(wj=1=a;=bj=0 < |anbAu|l=n. (C36)

Hence, the condition that u is a subset of the X-agreements simply reads
[aAnbAul=n, (C37)
and likewise, the condition that v is a subset of the Z-agreements reads
la NbAv| =k (C38)
Hence, in the case where (C33) holds, only those (u, v) € {0, 1}} x {0, 1} { are possible for which
[@AbAul=n and |laAbAv| =k (C39)
We can combine the two conditions in a single formula:

Y(a, b, u, v) € {0, 1}™ x {0, 1} x {0, 1} x {0, 1} } (C40)

(laAnbAul=nand|laAbAv|=k <= |aNbAul+]larbArv| =], (C41)

where ] := n + k.Ifthis conditiog is satisfied, then the pair u is a subset of the X-agreements. Since the number
of X-agreements is given by |a@ A b |, we have that

1A b'). (C42)

number of subsets of X-agreements of size n = (
n
Since Alice and Bob are discarding surplus fully at random, each such subset is equally likely, and thus, has a
probability of 1 / (| anb |). Arguing similarly for vand noting that the choices of # and v are independent when
n
the quota condition is passed leads to
Y(a, b) € {0, 1}™ x {0, 1}™ such that [a A b| >k and |a A b| > n:

la A b

|
Pyvias (u, vla, b)zx(uiJ_,v¢J_,|ﬁ/\E/\u|—|—|a/\b/\v|:l)(la/\bl) ( '
n

-1
) . (C43)

These two cases fully determine the conditional probability, i.e. (C34) and (C43) determine Pyy 45 forall
(a, b) € {0, 1}™ x {0, 1} ™, namely:
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PUV|AB(”> Vl&l, b)
xwu=v=1) iflaAnbl<kor|laAnb|<n
xw=L,v=1,]anbAul

anbIY! pIY ! iflanbl>kand|aAb|>n (Ca4)
+|aAbM|:l)(|aA |) (la/\ |) > > n.
k
We can write this as
Puviap(u, vla, b) = x(la A b| < k or |a A bl <myx(w=v=_1) (C45)
+x(JaAbl>kand|[@aAb|>nxu= Lv= L lanbAul+]laAbAv|=1I
1@ A bl 1(|a A b|)1
X
n k
=x(laAnb|<kor|laNb|<mxw=v=_1)
- 71\~ 1 -1
Fx@w= Lve= L1aAbAul+ |a/\b/\v|:l)(|a/\b|) (Ia/lzbl) , (C46)
n
where the last equality follows form
u=L,v= L lanbAul+]laANbAv|=1= laAb|>kand|aAb|>n. (C47)
Taking (C23), (C26) and (C46) together, we get
Pasuy (a, by, u, v) = p" 1 (v (Ja A bl < kor @ A B < mx(u=v = 1)
— —1\—1 -1
Fx@= Ly= LJaAbAul+lanbAv| 1)('“ Ab') ('“2”') ] (C48)
n
This concludes our formalization of (Qupuv, Paguv)-
Definition 4. We define the discrete probability space (%upyv, Papuv) by equations (C22) and (C48).
C.3. Marginalization to (2yy, Pyy)
Definition 5. We define the probability space (Qyv, Pyyv) by
Quv =UxV=(0, 1} J {LDH x ({0, 1} U {LD, (C49)
Pyy(u, v):= > Papuv(a, b, u, v). (C50)

a,be AxB

Proposition 6. It holds that

n—1lm—n, m  min(m—nyk—1) m m— n, e
PUV(”)V):X(I’[:V:J-) Z Z + Z Z n 2 * pr ) sz o
z

ny=0n,=0 Ny=n n,=0

m—km—n, _ 1
+X(u¢J_,V¢J_,|u/\v|:O)ZZ(m l)(m k nx)

ne=nn,=k Ny — 1

-1 -1
_ _ n n
« sznfnzp;n-m nzpzm nx+nz( X) (kz) .
n

(C51)
Proof. To show equation (C51), we need to show three things:
n—1lm—ny m min{m—n,k—1} _
Pyy (L, 1) = [Z Z + Z Z ]( m )(m nx)zmnxnzp:l+nxﬂzp;1nx+nz’ @)
n,y=0n,=0 ny=n n,=0 My N,
Y(u, v) € {0, 1} x {0, 1} 7
m—km—n.
(m—1)\m—-—k—n ny\(n
P u,v) = uNvl=0 x QM= hx—1; M+, —1; m7”z+nz( X)( Z)’
ov (u, v) = x(| | )nxz—nnzz—k(nx B n)( n — k ) P, p, a2 Nk
(i1)
V(u, v) € ({L} x {0, 1}}) U ({0, 1} x {L}): Pyv(u, v) = 0. (ii)
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We start with showing (i). We have that

Pyv(L,L)=> Pupuv(ab, L, 1), (C52)

(a,b)eAxB
= Z pjm_lal_lblplalﬂblx(la Ab| <korl|aAb|<n), (C53)

(a,b)e AxB
. p;mflalflhlplalﬂbl’ (C54)

(a,b) € Lport

where

Libort = {(a, b) € {0, 1}™ x {0, 1}™ | |a A b] < k or |a A b| < n}. (C55)

We can partition [} as follows:
Fabort = I_I r (nxa nz); (C56)

(11x,112) € Laport

where the ‘square cup’ U stands for disjoint union (the union of disjoint sets) and where

Livort = {(ny, n;) € {0,...,m} x {0,...,m}|ny + n, <m, (ny <nmorn, <k}, (C57)
D(ny, n,) = {(a, b) € {0, 1} x {0, 1}™ | |a A b| =1y, |a A b| =n,}. (C58)

Hence
Pov(L, Ly= S prr il plalit (C59)

(1,112) € Lport(a, b) €T (11,11,)

The set I'(ny, n,) consists ofall (a, b) € {0, 1} x {0, 1} ™ with exactly n, X-agreements and exactly n, Z-
agreements. For these strings
Y(a, b) € T'(ny, n,): pjm’”"'b'pl“'*'b' = 2 (pp,)" (C60)
— p;nJrnxfanmenﬁ»nx’ (C61)

so equation (C59) simplifies to

Puv(L, D)= > (T (g, mp)| prmrepl= e, (C62)
(1312) € Liport
The number |I'(n,, #,)| of elements of I' (n,, n,) is given by
T (e, )] = (’”)(’” - ”X)zm"x"z. (C63)
My n,

This can be seen as follows: (:ln ) is the number of possible distributions of the 1, X-agreements over the m
X

rounds, and ( " x) is the number of possible distributions of the 1, Z-agreements over the remaining
X

m — n, rounds. For the rounds where the strings have basis agreement, they are fully determined, but for i in the
remaining m — n, — n, rounds, we can have that either ;= 0 and b; = 1 for a basis disagreement or ;= 1 and
b;=0. Thus, there are two possibilities for every disagreement, which explains the factor 2"~ "<~ ":. Combining
equations (C62) and (C63) yields

Pyy (L, 1) = Z (m)(m - nx)zmnxﬂzp;n+nxﬂzp;nnz+nx) (C64)

(t155112) € Lapore \ 16 1,
n—1lm—ny m min(m—nyg,k—1)
m m — fy —f— +he—n, — Nyt
o R T S [ e
ny=0n,=0 Nny=n n,=0 My n;

where the last equation follows from splitting up I, into the two respective sets. This shows (i).
We proceed with showing (ii). We get from equation (C48) that

V(u, v) € {0, 1} x {0, 1}§ (Co6)
Pyy(u, v) = > pﬁmflalflblpylﬂb'x(u = L,v= L, |lanbAul
(a,b)€{0,1}"x{0,1}™
— 1\ —1 -1
+|a/\bAv|:l)(|a/\b|) ('“2b|) (C67)
n
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. pjmlﬂllwplalﬂbl('a bl )I(W A Dl )l, (C68)
(@,b)E® (u,v) n k

where

O, v) ={(@a, b) € {0,1}" x {0, 1}™|@aAbAul+laNbAv=I}. (C69)
In analogy to the way we split up Lo above, we now split up @ (u, v):
D, v)= || P, v, ny ny), (C70)
(115312) € Ipass
where

Ipass = {(ny, ;) € {0,...,m} x {0,...,m}|ny + n, < m, ny > n, n, > kj, (C71)
D(u, v, ny, ;) ={(a, b) € {0, 1} x {0, 1}™||a Ab A ul+|laAbAv|
=Llanb| = n laNb|l = n,}. (C72)
This gives us
Y(u, v) € {0, 1} x {0, 1} 7" Pyv(u, v)
- S prmelal=b plalibl (|‘7 A E|)1(|a A b')_l. (C73)
(1,12 € Ipass(@, ) € (u,v, 1,1, n k

Again, in analogy to our calculation of Pyy (u, v), the sets ® (u, v, n,, n,) are sets on which the summand in
equation (C73) is constant. More precisely, for every (a, b, u, v) € {0, 1} X {0, 1}"™ X ILsitholds that

— =1\~ 1 —1
Y(a, b) € B(u, v, nyy 1,): pjmlallblplulJrlbl(la A bl) (Ia A b|)

n k
=py" P2 (pep, )" (’;)(’;{) (C74)
_ p;n+nx—nzpzm—nz+nz (’:C )(1/]1;) (C75)

This leads us to determining the size of ® (1, v, n,, 1n,). In words, this set contains all pairs
(a, b) € {0, 1}™ x {0, 1} ™ with n, X-agreements and n, Z-agreements such that n X-agreements are located
where 1; = 1 and k Z-agreements are located where v; = 1. The size of this set is

|®(u, v, ny, n)| = x(lu Av| = 0)( m = )(m ; Ii_k ”x)zm"x”a (C76)

X

This can be seen as follows. If |u A v| = 0, there cannotbeany (a, b) € {0, 1} x {0, 1} " such that
[@a Ab Aul+ |aAbAv| =1 andhence the set must be empty in that case. This explains the factor
x (lu A v| = 0).For those (u, v) € {0, 1}/ x {0, 1}}" forwhich|u A v| = 0, the strings
(a, b) € ®(u, v, ny, n,)aredetermined on n + k = [ positions by # and v. On the remaining m — Irounds are
partitioned into n, — n rounds of X-agreements, n, — k Z-agreementsand m — n, — n, disagreements. There
_ — k-
are (:1 - i) (m r n") such partitions. Finally, on each position of the m — 1, — n, disagreements, we
X n, —
have the two possibilities (a;, b;) = (0, 1) and (a;, b;) = (1, 0), which contributes the factor 2"~ "<~ "z, Taking
equations (C75) and (C76) together, we get

Y(u, v) € {0, 1} x {0, 1}
Pov(u,v)= >, x(lunv|= 0)(;ﬂ ! )(m —k- nx)zm_"x_"zp;”ﬂxnzpf”Z+"z(nx)(nz),

(”x’nz)elpass x — 1 Nz — k n k

(C77)

mkm s m — 1 \(m—k—n ny\(n
o =0 EE ()7 g () o

ek \ My — 1 n, —k x z n )\ k

This shows (ii).
The remaining case (iii) is easily shown. It follows directly from (C48), because
V(u, v) € ({L} x {0, 1}) U ({0, 1} x {L): x(u=v=1)

=x(u=l,v= L, lanbArul+lanbArvl=1=0. (C79)
This shows (iii) and therefore completes the proof. O
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C.4. Formalization of © and derivation of Py
We have derived the probability space (€2yy, Pyy) as demanded in appendix C.1. Now we are left to define the
random variable

©: Quy — co(O)

(W, v) — {h(u, v) if (u, v) € {(u, v) € {0, 1} x {0, 1} {'||u A v|=0}, (C80)
L otherwise.
and to derive an expression for
Pg :co(©) — [0, 1]
9 — Z PUv(u, V). (CSI)
(u,v)€O 1 (@)

The range co(O) of O is given by

(@) = {0, 1}4 U {1}, (C82)

where an element of {0, 1} } is a sifted basis choice string as in LCA sifting and where we set @ = L in the case
where Alice and Bob abort the protocol.

To derive the random variable O, assume that Alice and Bob arrived at strings (u, v) € U x V.Howdo
these two strings determine the sifted basis choice string 92 Let us first assume the case where
(u, v) € {0, 1}}7 x {0, 1} ¥ suchthat|u A v| = 0.Therelevant set of indices in this case is the set of round
indices rforwhichu, = lorv, = 1:

a(u, v) = {re {0, 1}"u, =1orv, = 1}. (C83)
Notethat|a(u, v)] =n + k = L.Fori € [I], wedefine
a;(u, v) == the ith element of o (u, v). (C84)

With this notation at hand, we can determine 1} from u and v as follows: for i € [I], we have that J; = 0 if
Up, ) = land ¥; = 1ifv,,(,,) = 1. (Notethatfor i € [I], it always holds either u,,(,,) = 1 or v,,(,y) = 1,but
never both, so this is well-defined.) We can write this in terms of a helper function / as
he{(u, v) € {0, 1} x {0, 1}{l|u A v| =0} — {0, 1}}
(u, v) = (hi(u, )iy, (C85)

where

0 if u,. =1,
hiGu, vy =4, . o0 (C86)
1 if Vai(uv) = 1.

This determines © forall (u, v) € {0, 1} x {0, 1} {suchthat|u A v| = 0. However, since these are the only

pairs (u, v) for which a sifted basis choice string ¢ € {0, 1} i is generated, we just let © send all other pairs (1,v)
to L:

O©:UXYV — co(O)

. v) '_){h(u, v) if (u, v) € {(u, v) € {0, 1} x {0, 1}]||u A v] =0},

. (C87)
1 otherwise.

This way, pairs (1, v) are mapped to L which cannot occur in the protocol (e.g. (L, b) with b € {0, 1} i). This is
unproblematic, because for these pairs, Pyy (1, v) = 0, so according to equation (C81), they do not contribute
to Po.

Definition 7. We define the sifted basis choice string random variable © on €y by equation (C87). Its
associated probability mass function Pg is given by (C81).

We are ready to state the result.

Proposition 8. For LCA sifting (protocol 3), we have that

n—1lm—n, m  min(m—nyg,k—1) m m— n, e e
Poon =Po(L) =232+ > X o pE e pr b - (C88)

ny=0n,=0 Ny=n n,=0 My 2

28



10P Publishing

NewJ. Phys. 18 (2016) 053001 C Pfister et al

m—km—n
.. _ m (m—n—k
Vﬂe{o,l}k.Pe(ﬁ)—(n+k)Z Z( )

ne=nn,=k My — 1

L -1 -1
« m k My zm,nx,nzpm+nxfnzpmfnx+nz (f’lx) (”z) . (C89)
n, —k * ‘ n k

Before we prove proposition 8, let us point out its importance. Equation (C88) is the probability that the sifting
protocol aborts because Alice and Bob did not reach the quota on the X- and Z-agreements, and is therefore a
performance parameter of the protocol. Equation (C89) is the sampling probability for each ¢ € {0, 1} . Since
(C89)isindependent of ¥ € {0, 1} %, we get uniform sampling as a corollary of proposition 8.

Corollary. The combination of LCA sifting (protocol 3) and SBPE (protocol 2) samples uniformly. In other words, the
LCA sifting protocol satisfies

Po(¥) = Po(¥) V0,9 € {0, 1}k (C90)
This proves proposition 2. It leads us to proposing the protocol as a secure alternative to the insecure iterative
sifting protocol.

Now we proceed to the proof of proposition 8.

Proof of proposition 8. We first show equation (C88). By definition, it holds that

Po(L)y= > Puv(u,v), (C91)
()01 (1)
where
O~ (L) =L} x {0, 1}H U0, 137 U{LH U{L D} U {mv) e {0, 1}7 x {0, 1}{|lu A v| = 0}.
(C92)
We know from proposition 6 that
V(u, v) € (L} x {0, 1}}) U ({0, 1} U {LD:  Puv(u, v) =0. (C93)
Since
Y(a, b, u, v) € {0, 1}™ x {0, 1}™ x {0, 1}} x {0, 1}}*:
luAv|=0=|aAbAul+laNbAv|=0, (C94)
we also have
Y(u, v) € {(W,v') € {0, 1} x {0, 1}7||u' A/ | =0} Pyy(u, v) = 0. (C95)
Thus
Po(L) = Pyy (L, 1), (C96)
_ filmi ) i mln(mix,k—l)]( m )(m - nx)zm,,xnzpfwnzp?mnz, (C97)
ne=0m,=0  nme=n n,=0 Ty Nz

where the last equality follows form proposition 6. This shows equation (C88).
We proceed with showing equation (C89). We have that

Vi€ {0, 1}k Po(@) = Y Puv(u,v), (C98)
(u,v)EO~1 (W)
= > Puuv), (C99)
(wv)eh ' @)
where
|u A v|=0,
Y9 =<, v) € {0, 1} x {0, 1} | Ui = 0= tg,ur) = L, p. (C100)

19,‘ =1= Vai(uy) = 1
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Since|u A v| = 0forall (i, v) € h~!(), we know from proposition 6 that
Y(u, v) € (u, v) € k1 (9):

m—km—n, _ 1 —1 1
Pyy(u, v) = Z Z ( m— 1 )(m k nx)zmnxnzp:Jrnxnzp?nernz(”x) (nz) ) (C101)

ny=nn,=k My — 1 n; — k n k
Thus
Vo e {0, 1}k
1 (SRS m—1 m—k— My mtng—n, m—netn, | Px B ng !
Po) = @) 3 3 T ( ) ( ) . (Cl0)
ny=nn,=k \Mx — 1 n, —k n k

Forevery 9 € {0, 1} fc, the set 11 (9) is the set of all pairs (u, v) € {0, 1} x {0, 1} 7' such that the following
two properties are satisfied:

s lunv| =0,

+ fortheset a(u, v)asinequation (C84),itholds forevery i € [m]that u,,,,,) = 1if¥; = 0Oand v,, () = 1
ifd; = 1.

Now note that the only thing that matters is the question which | = n + k elements of [m] form the subset
a;(u, v) C [m]: for every subset « C [m] of size , there is exactly one pair (1, v) which satisfies the above two
properties such that o = «;(u, v). Hence, counting the elements of h~! (1) is the same as counting the /-element
subsets of [11], and therefore

[t ()| = ( " ) (C103)
n+k

This reduces equation (C102) to

m—km—ny _ _ 1 -1 -1
Vi € {0, 1}k Po () :( i';k) >3 (m " k](m ) "")2"1”*”ZP}T*"""ZPZ’”"**"Z("") (") ,
n

mnn—k\ Ny — 1 n, —k n k

(C104)

which is what we wanted to show. O

Appendix D. Efficiency calculation

Here we compare the efficiencies of iterative sifting and LCA sifting. Recall from equation (22) that we define the
efficiency 7 of a sifting protocol as

Uy (D1
where R is the random variable of the number of rounds that are kept after sifting and M is the random variable
of the total number of rounds performed in the loop phase of the protocol. The efficiency r depends on the
particular history of the protocol: different runs of the protocol may have different efficiencies. Therefore, nisa
random variable. In the following, R;and M; denote the random variables R and M for the iterative sifting
protocol, and Ry and M denote the corresponding random variables for the LCA protocol. Whereas in the case
of iterative sifting, the number R;is fixed and the number M is a random variable, the opposite is true for the
LCA sifting protocol, where My = m is fixed but but R; is a random variable. (Note that the LCA sifting protocol
may abort, in which case R; = 0).

To compare the efficiencies of the two protocols, we calculate the expected value of 77 in each case. We first do
this for the case of iterative sifting. Recall that A,, B, is the random variable of Alice’s and Bob’s basis choice in
round r, respectively, and that N is the number of basis disagreements. Then we have:

() = <&>, (D2)

M,
1
—(n+k)<M>, (D3)
—m+ kS 1Py om), (D4)
m:n+km
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m—n—k

1
=n+k Z > Py, (m, na), (D5)
m=n+kM ng=0
1 m—n—k
=(n+k Z > (Paynya,p, (M, 14, 0, 0) + Pagnya,z, (M, na, 1, 1)), (D6)

m= n+km ng=0

=m+k) Z Z ((pxz)n(pj)mnnd(szpz)nd(mn_ 1)(1’1’1 — Ng — l)
d

m=n+kM ng n—1
+ (pj)mfkfnd (pj)k(szpz)nd(mn— 1)(m —k ﬂdl_ 1)} (D7)
4 _
1 m—n—k —1 o 1
b > LY (szpzw( )((pj)”(pf)’"””d(m e )
m=n+kM ng=0 ng n—1
-1
+ ()" (] )k( o )) (D8)
For the case of the LCA sifting protocol, we have:
R
() = 2 (D9)
i3
1
:Z<RL>’ (D10)
=L+ OPIN > n AN > K, (D11)
m
m—n—k
zi(n—f—k)ZP[kan/\Nz>k/\Nd:d], (D12)
ng=0
m—n—km—ng—n
:”;k SSS PN AN =m ANy = ngl, (D13)
ng=0 n,=k
kmns km—ng—n _
71 + Z Z (p )m n,— n,g(p )nz(szpz)nd( )(m T’ld)' (D14)
m ng=0 n,=k ng n,

The calculation of the expected efficiencies (D8) and (D14) requires a lot of computational power. We wrote
programs that compute numerical lower bounds on (7;) and (), ) for the case where the probabilities are
symmetric (p, = p, = 1/2) and where the quotas coincide (n = k). A plot of these lower bounds is shown in
figure 3. In order to plot the lower bound on (7, ), a choice for m had to be made for each value of n = k. Our
program choses an 1 which is likely to maximize the expected efficiency for the given value of n = k. Note that
1/2, being the expected fraction of basis agreements, is an upper bound on the expected efficiencies. Hence,
figure 3 indicates that the difference in the expected efficiencies becomes insignificant for practically relevant
values of the block length n + k. This means that replacing iterative sifting by LCA sifting is unlikely to have a
significant effect on the key rate of a QKD protocol.

Appendix E. Proof of the sufficiency of the formal criteria

In this appendix, we prove that the two formal criteria for good sifting, (1) and (2), are sufficient for good sifting
in the sense that the relevant statistical inequality, (6), follows from these two conditions. In other words, we
prove proposition 3.

Proof of proposition 3. According to Bayes’ theorem, we have that
Prait = P[Akey 2 Nest + Ul Atest < Giol)> (ED)
- P[Atest < Gyl Ay = Atest + plP [Akey Agest + 1]
B P[Atest < g4]
gP [Akey = Avest + N]'
Ppass

, (E2)

(E3)
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We define the total error rate A as the random variable

Aot Qzz0¢ — [0, 1]

I
(z, 2, 9) — %Zz e 7. (E4)
i=1
Forall (z, z/, ¥) € Qzz0,itholds that
Akey(Z) Z, 19) 2 Atest(27 Z, 19) + /vL) (E5)
1< 1<
=20 -0 ®z) 2 )0 S z) + (E6)

i=1 i=1

1< 1< 1< 1<
= -1 -)Edz)+ EZ(I — )z Dz)) > EZﬁi(zi ® z)) + EZ(I — )z @ z)) + p,
n i=1

i=1 i=1 i=1

(E7)
1 1)< . ,
= (— + E) (=) ®z) > %Z(Zi © z) + (E8)
n i=1 i=1
k(1 1)< k1 k
= —(— + —) A -WNE®z) === (zi ®z) + —p (E9)
I\n k)3 ki )
= Ay (529 > A2 ) + S (E10)
We express the error rates Ayey, Aest and Ay in terms of the error numbers Sy, Yier and Xioy,
Ykey = Mhkeys  Dtest = kst St = ot (E11)
This gives us
Akey = Atot + %/J/ Aand Ekey P ”(% + Z_Tnljf) (E12)
Therefore
P[Akey = Atest + p1l = p[zkey > n(zl“" + l ; "u)] (E13)
and hence
St I —n
P[Ekey > ”(T + l u)]
Pl < , (E14)
ppass
Otot l—n
mep[ztot = Oiot) P| Lkey = 1 ] + ] ]l Eiot = Otor
= , (E15)
ppass
ZUHP[EtOt = Utot]sz[zkey =] | Lot = Otor]
= . , (E16)

ppass

where the sum over j ranges over all possible values of Yj., thatare larger or equal to the according value, i.e.

= [n(a;ot n l—l nu)—| [n(a;ot I Z_T” )] +1,...n (E17)

where [-] denotes the ceiling function
h(UtDt) I, n, ]) = P[Ekey :j | Yot = Ototl> (E18)
_ P[Zkey =Jj A Lot = Otot]

, (E19)
P[Xiot = Otor]
_ P[Qjatot] (E20)
P[Qalol] ’
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!
Z(Z’Z,’ﬂ)eﬂmmpzz’(—) (Z) z, (19)

B Z(z,Z’,ﬁ)egzUmP 7270z, 2, V) ’ (E21)
where
Qiny = {2, 2/, 9) € Qzz0|key (2, 2/, D) = j A Zioi(z, 25 9) = 010t} (E22)
Ve = 12 25 9) € VrlSan(z 25 0) = Gl (E23)
Itholds forall (z, 2, ¥) € Q¢ that
Pz76(z 2, 9) = P27/ (2, 2)Po () (E24)
=P,y (2 2 25

where P, and Pg are the according marginal distributions of P z,'g. Equation (E24) follows from (2), and
equation (E25) follows from equation (1). This implies

, 1A
2enen,, Lz @ 2P (E26)

! / >
Z(z,z’,ﬁ)egmp 7' (& Z)p

/
Z(Z,Z',zg)egmtpzz’(z, z)

h(otot) Z) Tl,]) =

= Z P /) R (E27)
(z,z/,19)€£20m zz'\% z
N
Z(z,z’)eFmotPZZ/(Z’ ‘ )( j0 )( n— ]? )
= > (E28)

/ l
2eher, Pzr @ 2 )( n )
_ (a;ot )( I n—_at;t )( 711 )1’ (E29)

1
FUmt = {(Z) Z,) € {O) 1}1 X {0) 1}l | Zzi @ Zi/ = Jtot}- (E30)

i=1

where

Equation (E29) means that h (oio1, [, 7, j) is a hypergeometric distribution. We are interested in the tail of this
distribution,

H(Utot) l) n, d) = Zh(gtot) l) n)j)> (E31)
j=d
because according to equations (E16) and (E17),

Z%P[Ztot = Ot H (01, |, 11, d)
Ptail < p , (E32)
pass

d= [n(% + l; ”u)]. (E33)

There are several well-known bounds on the tail of a hypergeometric distribution [24]. For our case, Serfling’s
bound is a suitable one [25]. The appropriate special case of Serfling’s bound for this case reads

where

I—mn I—mn )
H 0)11 )d < _2 2 5 E34
(Owo> I, 1, d) eXP( ] l—n—l—lu (E34)
kn k
= —2— 2. E35
exp( ) k-l-lu) (E35)

(Instead of Serfling’s bound, one may use Hoeffding’s bound [26]. That bound is weaker than Serfling’s bound in
this case, but it has the advantage that it has been formulated directly in terms of hypergeometric distributions
[27,28], so these references are easier to understand in our context.) Inequalities (E32) and (E35) together imply

ZJ‘ ‘P[Etot = oot H (0101, I, 1, d)
Pait S — , : (E36)
pass
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< , (E37)

which completes the proof. O
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