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A central assumption in quantum key distribution (QKD) is that Eve has no knowledge about
which rounds will be used for parameter estimation or key distillation. Here we show that this
assumption is violated for iterative sifting, a sifting procedure that has been employed in many (but
not all) of the recently suggested QKD protocols in order to increase their efficiency.
We show that iterative sifting leads to two security issues: (1) some rounds are more likely to

be key rounds than others, (2) the public communication of past measurement choices changes this
bias round by round. We analyze these two previously unnoticed problems, present eavesdropping
strategies that exploit them, and find that the two problems are independent.
We discuss some sifting protocols in the literature that are immune to these problems. While some

of these would be inefficient replacements for iterative sifting, we find that the sifting subroutine
of an asymptotically secure protocol suggested by Lo, Chau and Ardehali [J. Cryptol., 18(2):133-
165, 2005], which we call LCA sifting, has an efficiency on par with that of iterative sifting. One
of our main results is to show that LCA sifting can be adapted to achieve secure sifting in the
finite-key regime. More precisely, we combine LCA sifting with a certain parameter estimation
protocol, and we prove the finite-key security of this combination. Hence we propose that LCA
sifting should replace iterative sifting in future QKD implementations. More generally, we present
two formal criteria for a sifting protocol that guarantee its finite-key security. Our criteria may
guide the design of future protocols and inspire a more rigorous QKD analysis, which has neglected
sifting-related attacks so far.

INTRODUCTION

Quantum key distribution (QKD) allows for uncondi-
tionally secure communication between two parties (Alice
and Bob). A recent breakthrough in the theory of QKD is
the treatment of finite-key scenarios, pioneered by Ren-
ner and collaborators (see [1], for example). This has
made QKD theory practically relevant, since the asymp-
totic regime associated with infinitely many exchanged
quantum signals is an insufficient description of actual ex-
periments. In practice, Alice and Bob have limited time,
which in turn limits the number of photons they can ex-
change. For example, in satellite-based QKD [2] where,
say, Bob is on the satellite and Alice is on the ground, the
time allotted for exchanging quantum signals corresponds
to the time for the satellite to pass overhead Alice’s labo-
ratory on the ground. Even if such considerations would
not play a role, the necessity of error correction forces the
consideration of finite-size QKD because error correcting
codes operate on blocks of fixed finite length.

Finite-key analysis attempts to rigorously establish
the security of finite-size keys extracted from finite raw
data. A systematic framework for such analysis was de-
veloped by Tomamichel et al. [3] involving the smooth
entropy formalism. This framework was later extended
to a decoy-state protocol by Lim et al. [4]. An alterna-
tive framework was developed by Hayashi and collabo-
rators [5, 6]. Other extensions of the finite-key frame-
work include the treatment of device-independency by
Tomamichel et al. [7], Curty et al. [8] and Lim et al. [9],
and continuous-variable protocols by Furrer et al. [10]

and Leverrier [11]. The framework used in the afore-
mentioned works, relying on some fairly technical re-
sults,1 represents the current state-of-the-art in the level
of mathematical rigor for QKD security proofs. These
theoretical advances have led to experimental implemen-
tations [12–14] with finite-key analysis.

For practical reasons, it is important to consider not
only a protocol’s security but also its efficiency. Ideally
a protocol should use as little quantum communication
as possible, for a given length of the final secret key. For
example, it was noted by Lo, Chau and Ardehali [15]
that—in the asymptotic regime—protocols with biased
basis-choice probabilities can dramatically decrease the
necessary amount of quantum communication per bit of
the raw key. This is because a bias increases the proba-
bility that Alice and Bob measure in the same basis. As
a consequence, when Alice and Bob perform the sifting
step of the protocol, where they discard the outcomes of
all measurements that have been made in different bases,
they lose less data (see Figure 2 and the discussion in
Section IV).

Some authors have adapted this bias in the basis choice
in finite-key protocols and combined it with another mea-
sure to further decrease the amount of data that is lost
through sifting. In the resulting sifting scheme, which we
call iterative sifting, Alice and Bob announce previous ba-
sis choices while the quantum communication is still in

1 These results include the uncertainty principle for smooth en-
tropies and the operational meanings of these entropies.
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process, and they terminate the quantum communication
as soon as they have collected sufficiently many measure-
ment outcomes in identical bases. This way, less quantum
communication takes place, while at the same time they
always make sure that they collect enough data. The im-
plicit assumption here is that the knowledge of previous
basis choices, but not of upcoming ones, does not help a
potential eavesdropper.

As we show in this article, this assumption is wrong.
Iterative sifting breaks the security proofs that have been
presented for these protocols. This sifting scheme was
part of theoretical protocols [3, 4, 8, 9] and has found ex-
perimental implementations [12]. Therefore, many (but
not all) of the recently suggested protocols in QKD have
serious security flaws.

Summary of the results

The issue with iterative sifting that we point out is as
follows. Typical QKD protocols involve randomly choos-
ing some rounds to be used for parameter estimation
(PE) (i.e. testing for the presence of an eavesdropper
Eve) and other rounds for key generation (KG). Natu-
rally, if Eve knows ahead of time whether a round will be
used for PE, i.e., if Eve knows which rounds will form the
sample for testing for an eavesdropper’s presence, then
she can adjust her attack appropriately and the protocol
is insecure. Hence a central assumption in the QKD se-
curity analysis is that Eve has no knowledge about the
sample. We show that this assumption is violated for
iterative sifting.

To be more precise, the iterative sifting scheme has
two problems which, to our knowledge, have been neither
addressed nor noted in the literature:

• Non-uniform sampling : The sampling probability,
due to which the key bits and the encoding basis
are chosen, is not uniform.2 In other words, there
is an a priori bias: Eve knows ahead of time that
some rounds are more likely to end up in the sample
than others.

• Basis information leak : Alice and Bob’s public
communication about their previous basis choices
(which, in iterative sifting, happens before the
quantum communication is over) allows Eve to up-
date her knowledge about which of the upcoming
(qu)bits end up in the sample. As a consequence,

2 In general, the sampling probability (which decides over which
of the bits are chosen as test bits) is distinguished from the prob-
ability distribution which decides in which basis the information
is encrypted. In the literature, however, iterative sifting is com-
bined with parameter estimation in a way such that bits mea-
sured in the X-basis are raw key bits, and bits measured in the
Z-basis are used for parameter estimation. We will discuss this
in more detail in the second half of Section I.

the quantum information that passes the channel
thereafter can be correlated to this knowledge of
Eve.

It is conceivable that these two problems become smaller
as the size of the exchanged data increases. This would
remain to be shown. More importantly, however, the
protocols in question are designed to be secure for finite
key lengths. In the light of these two problems, the anal-
ysis in the literature does currently not account for these
finite-size effects. This is not a purely theoretical objec-
tion but a practically very relevant issue, as we present
some eavesdropping attacks that exploit the problems.

As we discuss in Section IV, the basis information leak
can trivially be avoided by fixing the number of rounds in
advance, and only announcing the basis choices after all
quantum communication has taken place. We examine
some sifting protocols from the literature with this prop-
erty. In contrast to protocols that use iterative sifting,
they often use fresh uniform randomness for the choice
of the sample, and therefore are trivially sampling uni-
formly. This means that they are secure with respect
to our concerns. However, we find that there is room for
improvement over these protocols regarding efficiency as-
pects.

Concretely, we note that one aspect that makes itera-
tive sifting very efficient is the parameter estimation pro-
tocol that is used with it: after sifting, it simply uses the
Z-bits as the sample for parameter estimation and theX-
bits for raw key, which is why we call it the single-basis
parameter estimation SBPE. This is efficient because the
sample choice requires no aditional randomness and no
authenticated communication. While SBPE is insecure
when used in conjunction with iterative sifting, it turns
out to be secure when used with a sifting subroutine of
a protocol suggested by Lo, Chau and Ardehali, which
we call LCA sifting. The combination of LCA sifting
and SBPE is essentially as efficient as iterative sifting. It
has trivially no basis information leak and, as we prove,
samples uniformly (see 2). We therefore suggest this
combination in future QKD protocols.

More generally, we find clear and explicit mathemat-
ical criteria that are sufficient for a sifting protocol to
be secure in combination with SBPE. In contrast, cur-
rent literature on QKD does not state such assumptions
explicitly, but rather uses them implicitly.

In our formulation, they take the form of two equa-
tions,

PΘ(ϑ) = PΘ(ϑ′) ∀ϑ, ϑ′ ∈ {0, 1}lk and (1)
ρAlBlΘl = ρAlBl ⊗ ρΘl . (2)

Here, Equation (1) expresses the absence of non-uniform
sampling, i.e., that the probability PΘ(ϑ) for a parti-
tioning ϑ of the total rounds into sample rounds and
key-generation rounds is independent of ϑ. Equation (2)
expresses the absence of basis information leak, which
is formally expressed by stating that the classical com-
munication Θl associated with the sifting process is un-
correlated (i.e., in a tensor product state) with Alice’s
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and Bob’s quantum systems AlBl. (The precise details
of these two equations will be explained in Section V.)
We find that the two problems are in fact independent.
Hence, security from one of the two problems does not
imply security from the other. The two formal criteria
can be used to check whether a candidate protocol is
subject to the two problems or not.

Outline of the paper

We introduce the iterative sifting protocol in Section I,
where we also explain our conventions and notation. We
give a detailed description of the two problems with it-
erative sifting in Section II. We show how these prob-
lems can be exploited in Section III by presenting some
intercept-resend attack strategies.

In Section IV, we discuss some sifting protocols that
are immune to these problems. We study how ideas of
existing protocols can be combined to get new secure pro-
tocols that are more efficient. As a result, we suggest the
aforementioned combination of LCA sifting and SBPE,
and prove its security.

In Section V, we give a more general answer to the
question of how the two problems can be avoided by pre-
senting formal mathematical criteria that a sifting pro-
tocol needs to satisfy in order to avoid the problems. We
conclude with a summary in Section VI.

I. ITERATIVE SIFTING AND PARAMETER
ESTIMATION

A typical QKD protocol consists of the following sub-
routines [3]:

(i) Preparation, distribution, measurement and sift-
ing, which we collectively refer to as “sifting”,

(ii) Parameter estimation,

(iii) Error correction,

(iv) Privacy amplification.

What we discuss in this paper refers to the subroutines
(i) and (ii), whereas subroutines (iii) and (iv) are not
of our concern. We refer to subroutine (i) collectively
as “sifting”. Even though the word sifting usually only
refers to the process of discarding part of the data ac-
quired in the measurements, we refer to the preparation,
distribution, measurement and sifting together as “sift-
ing”, because they are intertwined in iterative sifting.

Our focus in this article is on a particular sifting
scheme that we call iterative sifting. It has been for-
mulated in slightly different ways in the literature, where
the differences lie mostly in the choice of the wording and
in whether it is realized as a prepare-and-measure pro-
tocol [3, 4, 8, 12] or as an entanglement-based protocol
[9]. These details are irrelevant for the problems that we

describe. Another difference is that some of the above-
mentioned references take into consideration that some-
times, a measurement may not take place (no-detection
event) or may have an inconclusive outcome. This is done
by adding a third symbol ∅ to the set of possible out-
comes, turning the otherwise dichotomic measurements
into trichotomic ones with symbols {0, 1, ∅}. We choose
not to do so, because the problems that we describe arise
independently of whether no-detection events or incon-
clusive measurements take place. Incorporating them
would not solve the problems that we address but rather
complicate things and distract from the main issues that
we want to point out.

The essence of the iterative sifting protocol is shown
in Protocol I. There, and in the rest of the paper, we use
the notation

[r] := {1, 2, . . . , r} for all r ∈ N+ . (3)

Our formulation of this protocol is close to the one de-
scribed in [3], with the main difference that we choose an
entanglement-based protocol instead of a prepare-and-
measure protocol. This will have the advantage that the
formal criteria in Section V are easier to formulate, but a
prepare-and-measure based protocol would otherwise be
equally valid to demonstrate our points.

In the protocol, Alice iteratively prepares qubit pairs in
a maximally entangled state (Step 1) and sends one half
of the pair to Bob (Step 2).3 Then, Alice and Bob each
measure their qubit with respect to a basis ai, bi ∈ {0, 1},
respectively, where 0 stands for the X-basis and 1 stands
for the Z-basis (Steps 3 and 4). Thereby, Alice and Bob
make their basis choice independently, where for each of
them, 0 (X) is chosen with probability px, and 1 (Z) with
probability pz. These probabilities px and pz are param-
eters of the protocol. The important and problematic
parts of the protocol are Step 5 and the subsequent check
of the termination condition (TC): after each measure-
ment, Alice and Bob communicate their basis choice over
an authenticated classical channel. With this information
at hand, they then check whether the termination condi-
tion is satisfied: if for at least n of the qubit pairs they
had so far, they both measured in the X-basis, and for at
least k of them, they both measured in the Z-basis, the
termination condition is satisfied and they enter the final
phase of the protocol by continuing with Step 6. These
quota n and k are parameters of the protocol. If the con-
dition is not met, they repeat the Steps 1 to 5 (which we
call the loop phase of the protocol) until they meet this
condition. Because of this iteration, whose termination

3 Choosing a maximally entangled state as the state that Alice
prepares maximizes the probability that the correlation test in
the parameter estimation (after sifting) is passed, i.e. the maxi-
mally entangled state maximizes the robustness of the protocol.
However, for the security of the protocol, which is the concern of
the present article, the choice of the state that Alice prepares is
irrelevant.
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Iterative Sifting

Parameters: n, k ∈ N+ ; px, pz ∈ [0, 1] with px + pz = 1.

Output: For l = n+ k, the outputs are:

Alice: l-bit string (si)
l
i=1 ∈ {0, 1}l (sifted outcomes),

Bob: l-bit string (ti)
l
i=1 ∈ {0, 1}l (sifted outcomes),

public: l-bit string (ϑi)
l
i=1 ∈ {0, 1}l with

∑
i ϑi = k (ba-

sis choices, sifted), where 0 means X-basis and 1
means Z-basis.

Number of rounds: Random variable M , determined by
reaching the termination condition (TC) after Step 5.

The protocol

Loop phase: Steps 1 to 5 are iterated roundwise (round in-
dex r = 1, 2, . . .) until the TC after Step 5 is reached.
Starting with round r = 1, Alice and Bob do:

Step 1: (Preparation): Alice prepares a qubit pair in a
maximally entangled state.

Step 2: (Channel use): Alice uses the quantum channel to
send half of the qubit pair to Bob.

Step 3: (Random bit generation): Alice and Bob each (in-
dependently) generate a random classical bit ar
and br, respectively, where 0 is generated with
probability px and 1 with probability pz.

Step 4: (Measurement): Alice measures her share in the
X-basis (if ar = 0) or in the Z-basis (if ar =
1), and stores the outcome in a classical bit yr.
Likewise, Bob measures his share in the X-basis
(if br = 0) or in the Z′-basis (if br = 1), and stores
the outcome in a classical bit y′r.

Step 5: (Interim report): Alice and Bob communicate
their basis choice ar and br over a public authen-
ticated channel. Then they determine the sets

u(r) := {j ∈ [r] | aj = bj = 0} ,
v(r) := {j ∈ [r] | aj = bj = 1}

TC: If the condition (|u(r)| ≥ n and |v(r)| ≥ k) is
reached, Alice and Bob set m := r and proceed
with Step 6. Otherwise, they increment r by one
and repeat from Step 1.

Final phase: The following steps are performed only once:

Step 6: (Random discarding): Alice and Bob choose a
subset u ⊆ u(m) of size n at random, i.e. each
subset of size k is equally likely to be chosen.
Analogously, they choose a subset v ⊆ v(m) of
size k at random. Then they discard the bits ar,
br, yr and y′r for which r /∈ u ∪ v.

Step 7: (Order-preserving relabeling): Let ri be the i-th
element of u∪ v. Then Alice determines (si)

l
i=1 ∈

{0, 1}l, Bob determines (ti)
l
i=1 ∈ {0, 1}l and to-

gether they determine (ci)
l
i=1 ∈ {0, 1}l, where for

every i ∈ [l],

si = yri , ti = y′ri , ϑi = ari (= bri) .

Step 8: (Output): Alice [Bob] locally outputs (si)
l
i=1

[(ti)li=1], and they publicly output (ϑi)
l
i=1.

Protocol I. The iterative sifting protocol.

condition depends on the history4 of the protocol run up
to that point, we call it the iterative sifting protocol. Its
number of rounds is a random variable that we denote
byM . We denote possible values ofM by m (see the TC
and Step 6).

After the loop phase of the protocol, in which the whole
data is generated, Alice and Bob enter the final phase
of the protocol, in which this data is processed. This
processing consists of discarding data of rounds in which
Alice and Bob measured in different bases, as well as ran-
domly discarding a surplus of data for rounds where both
measured in the same basis, where a “surplus” refers to
having more than n (k) rounds in which both measured in
the X (Z) basis, respectively. This discarding of surplus
is done to simplify the analysis of the protocol, which is
easier if the number of bits where both measured in the
X (Z) basis is fixed to a number n (k). Since after the
loop phase, Alice and Bob can end up with more bits
measured in this same basis, they throw away surplus at
random. Finally, after throwing away the surplus, Alice
and Bob locally output the remaining bit strings (si)

l
i=1

and (ti)
l
i=1 of measurement outcomes and publicly out-

put the remaining bit string (ϑi)
l
i=1 of basis choices.

Iterative sifting is problematic, but to fully understand
why, one needs to see how the output of the iterative
sifting protocol is processed in the subsequent subroutine
(ii), the parameter estimation, where Alice and Bob check
for the presence of an eavesdropper. Protocols that use
iterative sifting use a particular protocol for parameter
estimation. To make clear what we are talking about, we
have written it out in Protocol II.

Alice and Bob start the protocol with the strings
(si)

l
i=1, (ti)

l
i=1 and (ϑi)

l
i=1 that they got from sifting.

Then, in a first step, they communicate the test bits.
The test bits are those bits si, ti that resulted from mea-
surements in the Z-basis, i.e. the bits si, ti with i such
that ϑi = 1. Then, they determine the fraction of the
test bits that are different for Alice and Bob, i.e. they
determine the test bit error rate. If it is higher than a
certain protocol parameter qtol ∈ [0, 1], they abort. Oth-
erwise, they locally output the raw keys, which are the
bits si, ti that result from measurements in the X-basis,
i.e. those si, ti with i for which ϑi = 0.

It is important to emphasize that if the output of it-
erative sifting serves as the input of the parameter es-
timation protocol as in Protocol II, then the bits that
result from measurements in the X-basis are used for the
raw key, and the bits that result from measurements in
the Z-basis are used for parameter estimation (i.e. they
form the sample for the parameter estimation). Hence,
the sample is determined by the basis choice; no addi-
tional randomness is injected to choose the sample. We

4 By the history of a protocol run, we mean the record of ev-
erything that happened during the run of the protocol. In the
case of iterative sifting, this means the random bits ar, br, the
measurement outcomes yr, y′r etc.
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Single-Basis Parameter Estimation (SBPE)

Protocol Parameters: n, k ∈ N+, px, pz ∈ [0, 1] with px +
pz = 1 and qtol ∈ [0, 1].

Input: For l = n+ k, the inputs are:

Alice: l-bit string (si)
l
i=1 ∈ {0, 1}l (measurement out-

comes, sifted),

Bob: l-bit string (ti)
l
i=1 ∈ {0, 1}l (measurement out-

comes, sifted),

public: l-bit string (ϑi)
l
i=1 ∈ {0, 1}l with

∑
i ϑi = k (ba-

sis choices, sifted), where 0 means X-basis and 1
means Z-basis.

Output: Either no output (if the protocol aborts in Step 2)
or:

Alice: n-bit string (xj)
n
j=1 ∈ {0, 1}n (raw key),

Bob: n-bit string (x′j)
n
j=1 ∈ {0, 1}n (raw key).

The protocol

Step 1: (Test bit communication): Alice and Bob communi-
cate their test bits, i.e. the bits si and ti with i for
which ϑi = 1, over a public authenticated channel.

Step 2: (Correlation test): Alice and Bob determine the test
bit error rate

λtest :=
1

k

l∑
i=1

ϑi(si ⊕ ti) ,

where ⊕ denotes addition modulo 2, and do the cor-
relation test : if λtest ≤ qtol, they continue the pro-
tocol and move on to Step 3. If λtest > qtol, they
abort.

Step 3: (Raw key output): Let ij be the j-th element of {i ∈
[l] | ϑi = 0}. Then Alice outputs the n-bit string
(xj)

n
j=1 and Bob outputs the n-bit string (x′j)

n
j=1,

where

xj = sij , x′j = tij .

Protocol II. The single-basis parameter estimation (SBPE)
protocol.

call this the single-basis parameter estimation (SBPE),
because the parameter estimation is done in only one ba-
sis.

This is not necessarily a problem by itself. However,
as we will show in Section IIA, in iterative sifting, some
rounds are more likely to end up in the sample than other
rounds. This leads to non-uniform sampling, which is a
problem since uniform sampling is one of the assumptions
that enter the analysis of the parameter estimation. This
seems to be unnoticed so far, as we found that protocols
in the literature that use iterative sifting as a subroutine
use SBPE as a subroutine for parameter estimation (or
something equivalent) [3, 4, 8, 9, 12]. In contrast, the
LCA sifting protocol that we discuss in Section IV does
sample uniformly, even if bits from X-measurements are

used for the raw key and Z-measurements are used for
paremeter estimation, without injecting additional ran-
domness.

We will discuss randomness injection for the sample
choice in more detail in Section IV.

The idea behind the parameter estimation is the fol-
lowing: if the correlation test passes, then the likelihood
that Eve knows much about the raw key is sufficiently
low. The exact statement of this is subtle, and involves
more details than are necessary for our purposes. We
refer to [3] for more details. Here, what is important is
that this estimate of Eve’s knowledge is done via estimat-
ing another probability that we call the tail probability
ptail(µ) which, for µ ∈ [0, 1], is given by

ptail(µ) = P [Λkey ≥ Λtest + µ | Λtest ≤ qtol] . (4)

Here, Λtest is the random variable of the test bit error rate
λtest determined in the parameter estimation protocol,

λtest :=
1

k

l∑
i=1

ϑi(si ⊕ ti) . (5)

The random variable Λkey is the random variable of a
quantity that is not actually measured: it is the random
variable of the error rate on the raw key bits if they had
been measured in the Z-basis. Since in the actual proto-
col, the raw key bits have been measured in the X-basis,
the random variable Λkey is the result of a Gedankenex-
periment rather than an actually measured quantity. We
will define Λkey formally in Section V.

The usual analysis, as in Reference [3], aims at proving
that

ptail(µ) ≤
exp

(
−2knl

k
k+1µ

2
)

ppass
, (6)

where

ppass = P [Λtest ≤ qtol] (7)

Inequality (6) is turned into an inequality about the
eavesdropper’s knowledge about the raw key using an
uncertainty relation for smooth entropies [3, 16].

Notation and terminology

In the following sections, we will have a closer look at
the probabilities of certain outputs of the iterative sifting
protocol in Protocol I. For example, in Section IIA we
will consider the probability that iterative sifting with pa-
rameters n = 1, k = 2 outputs the string ϑ = (ϑi)

3
i=1 =

(1, 1, 0). Since the output of the protocol is probabilistic,
the output string becomes a random variable. We de-
note random variables by capital letters and their values
by lower case letters. For example, the random variable
for the output string ϑ is denoted by Θ, and the prob-
ability of the output string to have a certain value ϑ is
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P [Θ = ϑ]. For strings in ϑ = (ϑi)
l
i=1 ∈ {0, 1}l, we write

(ϑi)
l
i=1 = ϑ1ϑ2 . . . ϑl instead of (ϑi)

l
i=1 = (ϑ1, ϑ2, . . . , ϑl),

i.e. we omit the brackets and commas. For example,
we write 110 ∈ {0, 1}3 instead of (1, 1, 0) ∈ {0, 1}3,
so the probability that we calculate in Section IIA is
P [Θ = 110]. Other random variables that we consider
include the random variable A1 (B1) of Alice’s (Bob’s)
first basis choice a1 (b1) or the random variable M of the
number m of total rounds performed in the loop phase
of the iterative sifting protocol.

To simplify the calculations, it is convenient to in-
troduce the following terminology. For a round r in
the loop phase of the iterative sifting protocol, r is an
X-agreement if ar = br = 0, r is a Z-agreement if
ar = br = 1 and r is a disagreement if ar 6= br. We
sometimes say that r is an agreement if it is an X- or a
Z-agreement.

For calculations with random variables like Θ, A1, B1

or M , the sample space of the relevant underlying prob-
ability space is the set of all possible histories of the it-
erative sifting protocol. This set is hard to model, as it
contains not only all possible strings (ar)r, (br)r, (yr)r
and (y′r)r of the loop phase (which can be arbitrarily
long) but also a record of the choice of the subsets u and
v in the random discarding during the final phase. It is,
however, not necessary for our calculations to have the
underlying sample space explicitly written out. In order
to avoid unnecessarily complicating things, we therefore
only deal with the relevant events, random variables and
their probability mass functions directly, assuming that
the reader understands what probability space they are
meant to be defined on. In contrast, the LCA sifting pro-
tocol which we discuss in Section IV, has a simpler set
of histories, and we will derive a probability space model
for it in Appendix C.

We often write expressions in terms of probability mass
functions instead of in terms of probability weights of
events, e.g. we write

PΘ(ϑ) := P [Θ = ϑ] . (8)

II. THE PROBLEMS

A. Non-uniform sampling

To show that iterative sifting leads to non-uniform
sampling, we calculate the sampling probabilities for
some example parameters k, n ∈ N+ as functions of the
probabilities px and pz. By a sampling probability, we
mean the probability that some subset of k of the l = n+k
bits is used as a sample for the parameter estimation,
i.e. the sampling probabilities are PΘ(ϑ) for ϑ ∈ {0, 1}lk,
where

{0, 1}lk :=

{
(ϑi)

l
i=1 ∈ {0, 1}l

∣∣∣∣∣
l∑
i=1

ϑi = k

}
(9)

is the set of all l-bit strings with Hamming weight k.
We say that sampling is uniform if PΘ(ϑ) is the same
for all ϑ ∈ {0, 1}lk, and non-uniform otherwise. While
non-uniform sampling already arises in the case of the
smallest possible parameters k = n = 1, the results are
even more interesting in cases where k 6= n. Let us con-
sider iterative sifting (Protocol I) with n = 1, k = 2 and
arbitrary px, pz ∈ [0, 1]. Let Θ denote the random vari-
able of the string ϑ = (ϑi)

3
i=1 = ϑ1ϑ2ϑ3 of sifted basis

choices which is generated by the protocol. The possible
values of Θ are 110, 101 and 011. The probabilities of
these strings are given as follows (see Appendix A for a
proof).
Proposition 1: For the iterative sifting protocol as in
Protocol I with n = 1 and k = 2, it holds that

PΘ(110) = g2
z , where gz =

p2
z

p2
z + p2

x

. (10)

For the other two possible values of Θ, it holds that

PΘ(011) = PΘ(101) =
1− g2

z

2
. (11)

Hence, different samples have different probabilities, in
general. In order for the sampling probability PΘ to be
uniform, in the case where n = 1 and k = 2, we need
to have PΘ(ϑ) = 1/3 for ϑ = 011, 101, 110. This holds if
and only if gz = g∗z , where g∗z = 1/

√
3, which in turn is

equivalent to pz = p∗z, where

p∗z =

(
3 + 2

√
3
) (

1 +
√√

3− 1
)

√
3

≈ 0.539 . (12)

This is bad news for iterative sifting: it means that itera-
tive sifting leads to non-uniform sampling for all values of
pz except pz = p∗z. Interestingly, the value of p∗z does not
seem to be a probability that has been considered in the
QKD literature. In particular, p∗z corresponds to neither
the symmetric case pz = 1/2 nor to a certain asymmet-
ric probability which has been suggested to be chosen in
order to maximize the key rate [3].

The value gz can be interpreted as the probability that
in a certain round of the loop phase, Alice and Bob have
a Z-agreement, given that they have an agreement in
that round (this conditional is why the p2

z is renormal-
ized with the factor 1/(p2

z + p2
x)). Hence, g2

z is the prob-
ability that Alice and Bob’s first two basis agreements
are Z-agreements. Therefore, PΘ(110) = g2

z is what one
would intuitively expect: to end up with Θ = 110, the
first two basis agreements need to be Z-agreements, and
conversely, whenever the first two basis agreements are
Z-agreements, Alice and Bob end up with Θ = 110.

More generally, it turns out that for n = 1 and for
k ∈ N+ arbitrary, the iterative sifting protocol leads to

PΘ(1 . . . 10) = gkz , (13)

PΘ(ϑ) =
1− gkz
k

for all other ϑ ∈ {0, 1}lk . (14)
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This is a uniform probability distribution if and only if
gz = g∗z , where

g∗z =

(
1

k + 1

)1/k

, (15)

which is true iff pz = p∗z, where

p∗z =
g∗z −

√
g∗z(1− g∗z)

2g∗z − 1
. (16)

Hence, we conclude that iterative sifting does not lead
to uniformly random sampling, unless px and pz are cho-
sen in a very particular way. This particular choice does
not seem to correspond to anything that has been con-
sidered in the literature so far.

B. Basis information leak

In iterative sifting, information about Alice’s and
Bob’s basis choices reaches Eve in every round of the
loop phase. In Step 5 of round r, Alice and Bob commu-
nicate their basis choice ar, br of that round. They do so
because they want to condition their upcoming action on
the strings a1 . . . ar and b1 . . . br: if they have enough ba-
sis agreements, they quit the loop phase; otherwise they
keep looping.

What seems to have remained unnoticed in the litera-
ture is that Eve can also condition her actions on a1 . . . ar
and b1 . . . br. This means that if there is a round r+1, Eve
can correlate the state of the qubit that Alice sends to
Bob in round r+1 with a1 . . . ar and b1 . . . br. Hence, the
state of the qubit that Bob measures is correlated with
the classical register that keeps the information about
the basis choice. Note that the basis information leak
tells Eve how close Alice and Bob are to meeting their
quotas for each basis. Eve can tailor her attack on future
rounds based on this information. For example, if Alice
and Bob have already met their Z-quota, but not their
X-quota, then Eve can measure in the X-basis, knowing
that, if Alice and Bob happen to both measure Z, the
round may be discarded anyway.

We want to emphasize that the basis information leak
is not resolved by injecting additional randomness for the
choice of the sample. As we will discuss in Section IV,
such additional randomness can ensure that the sampling
is uniform, but it does not help against the basis infor-
mation leak. Randomness injection for the sample is ef-
fectively equivalent to performing a random permutation
on the qubits [17]. This does not remove the correlation
between the classical basis information register and the
qubits.

We will see more concretely how the basis information
leak is a problem when we present an eavesdropping at-
tack in Section IIIA and when we treat the problem more
formally in Section V.

III. EAVESDROPPING ATTACKS

A detailed analysis of the effect of non-uniform sam-
pling and basis information leak on the key rate is beyond
the scope of the present paper. It would involve develop-
ing a new security analysis for a whole protocol involving
iterative sifting. Instead of attempting to find a modified
analysis for iterative sifting, we will discuss alternative
protocols in Section IV.

However, to give an intuitive idea of the effect, we will
calculate another figure of merit: the error rate for an
intercept-resend attack. We devise a strategy for Eve to
attack the iterative sifting protocol during its loop phase
and calculate the expected value of the error rate

E =
1

l

l∑
i=1

Si ⊕ Ti (17)

that results from this attack. Here, ⊕ denotes addition
modulo 2 and Si and Ti are the random variables of the
bits si and ti, respectively, which are generated by the
protocol. One would typically expect an error rate no
lower than 25% for an intercept-resend attack [18], which
is why our results below are alarming.

A. Attack on non-uniform sampling

Let us first consider an attack on non-uniform sam-
pling, i.e., on the fact that not every possible value of Θ
is equally likely. It will be a particular kind of intercept-
resend attack, i.e. Eve intercepts all the qubits that Alice
sends to Bob during the loop phase, measures them in
some basis and afterwards, prepares another qubit in the
eigenstate associated with her outcome and sends it to
Bob. Then we will show that the attack strategy leads
to an error rate below 25%.

For the error rate calculation, we assume that the X-
and Z-basis is the same for Alice, Bob and Eve, and
that they are mutually unbiased. This way, if Alice and
Bob measure in the same basis, but Eve measures in the
other basis, then Eve introduces an error probability of
1/2 on this qubit. Moreover, for simplicity, we make
this calculation for the easiest possible choice of param-
eters. Consider the iterative sifting iterative sifting pro-
tocol (Protocol I) with the parameters k = n = 1. From
Equations (15) and (16), we get that the sampling prob-
abilities in this case are

PΘ(01) =
p2
x

p2
x + p2

z

, PΘ(10) =
p2
z

p2
x + p2

z

. (18)

These sampling probabilities are uniform for the sym-
metric case px = pz, but are non-uniform for all other
values. In the following, we assume px > 1/2, which
makes the sample Θ = 01 more likely than the sample
Θ = 10. We choose the following attack: in the first
round of the loop phase, she attacks in the X-basis, and
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px

〈E〉

FIG. 1. The error rate for three different eavesdropping at-
tacks iterative sifting: (1) attack on non-uniform sampling
(long-dashed, black curve), (2) attack on basis-information
leak (short-dashed, blue curve), (3) attack on both problems
(solid, red curve).

in all the other rounds, she attacks in the Z-basis. We
choose the attack this way because we know that the first
non-discarded basis agreement is more likely to be an X-
agreement, whereas the second one is more likely to be a
Z-agreement.5

We calculate the expected error rate for this attack in
Appendix B 1. The black curve in Figure 1 shows 〈E〉
as a function of px for this attack. Notice that 〈E〉 falls
below 25% for 1/2 < px < 1, and reaches a minimum of
〈E〉 ≈ 22.8% for px ≈ 0.73.

The concerned reader might worry that the 25% er-
ror rate associated with the intercept-resend attack was
derived under the assumption of equal weighting for the
two bases X and Z, whereas it seems here that we choose
unequal weightings. However, for the protocol under con-
sideration, the a priori probability distribution {px, pz}
is not the relevant quantity. Rather, the fact that n = k
in our example ensures that the X and Z bases enter in
with equal weighting.

B. Attack on basis information leak

We now give an eavesdropping strategy that exploits
the basis information leak. It is an adaptive strategy, in
which Eve’s action in round r+1 depend on the past com-
munication of the strings a1 . . . ar and b1 . . . br. Again, we

5 The attentive reader may point out that this attack could be
improved by making Eve’s basis choice dependent on the com-
munication between Alice and Bob. This is correct, but we inten-
tionally design the attack such that Eve ignores Alice and Bob’s
communication. That allows one to see the effect of non-uniform
sampling alone and to compare it to attacks on basis information
leak alone, see Sections III B and III C.

consider the simple case of n = k = 1. To make sure our
attack is really exploiting the basis information leak and
not the non-uniform sampling, we set px = pz = 1/2. In
this case, from Eq. (18), the sampling is uniform:

PΘ(01) = PΘ(10) =
1

2
. (19)

Before we define Eve’s strategy, we want to give some
intuition. Suppose that during the protocol, Eve learns
that Alice and Bob just had their first basis agreement.
If this first agreement is a Z-agreement, say, what does
this mean for Eve? She knows that the protocol will now
remain in the loop phase until they end up with an X-
agreement. Suppose that she now decides that she will
measure all the remaining qubits in the X-basis. Then,
if the next basis agreement of Alice and Bob is an X-
agreement, Eve knows the raw key bit perfectly, and her
measurement on that bit did not introduce an error. If
the next basis agreement is a Z-agreement, she may in-
troduce an error on that test bit. However, there will
be a chance that Alice and Bob discard this test bit,
because they have a total of two (or more, in the end)
Z-agreements, and the protocol forces them to discard
all Z-agreements except k = 1 of them. Hence, learning
that the first basis agreement was a Z-agreement brings
Eve into an favorable position: she knows that attacking
in the X-basis for the rest of the loop phase will neces-
sarily tell her the raw key bit, while she has quite some
chance to remain undetected.

This intuition inspires the following intercept-resend
attack. Before the first round of the loop phase, Eve flips
a fair coin. Let F be the random variable of the coin
flip outcome and let 0 and 1 be its possible values. If
F = 0, then in the first round, Eve attacks in the X
basis, and if F = 1, she attacks in the Z-basis. In the
subsequent rounds, she keeps attacking in that basis until
Alice and Bob first reached a basis agreement. If it is an
X-agreement (equivalent to Θ = 01), Eve attacks in the
Z-basis in all remaining rounds, and if it is a Z-agreement
(equivalent to Θ = 10), she attacks in the X-basis in all
remaining rounds.6

We calculate the expected error rate for this attack in
the Appendix B 2. We find that

〈E〉 =
2− ln 2

8
≈ 16.3% . (20)

Hence, the basis information leak allows Eve to go far
below the typical expected error rate of 25% for intercept-
resend attacks [19]. The blue curve in Figure 1 shows,
more generally, 〈E〉 as a function of px, for this attack.

6 We let Eve flip a coin in order to make the attack symmetric
between X and Z. This allows for a more meaningful comparison
with the attack on non-uniform sampling, as this attack here
does not exploit non-uniform sampling even if px 6= 1/2, see
Sections IIIA and III C.
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C. Independence of the two problems

Are non-uniform sampling and basis information leak
really two different problems, or is one a consequence of
the other? We will argue now that the two problems are
in fact independent. To this end, we describe a proto-
col that suffers from non-uniform sampling but not from
basis information leak, and another protocol that suffers
from basis information leak but not from non-uniform
sampling.

We have already seen an instance of a protocol that
suffers from basis information leak but not from non-
uniform sampling: in Section III B, we looked at the it-
erative sifting protocol with n = k = 1 and px = pz = 1,
in which case the sampling is uniform. Hence, there was
no exploitation of non-uniform sampling, but the attack
strategy exploited basis information leak.

What about the other way round? Can non-uniform
sampling occur without basis information leak? A closer
look at the attack on non-uniform sampling presented in
Section IIIA hints that this is possible: the attack strat-
egy works, even though it completely ignores the com-
munication between Alice and Bob, so it did not make
any use of the basis information leak due to this commu-
nication.

A more dramatic example shows clearly that non-
uniform sampling can occur without basis information
leak. To this end, we forget about iterative sifting for
a moment and look at a different protocol. Consider
a sifting-protocol in which Alice and Bob agree in ad-
vance that they will measure the first n = 100 qubits
in the X-basis, and that they will measure the second
k = 100 qubits in the Z-basis, without any communica-
tion during the protocol. Of course, there is no hope for
this protocol to be useful for QKD, but it serves well to
demonstrate our point. It leads to a very dramatic form
of non-uniform sampling, because PΘ(0 . . . 01 . . . 1) = 1
and PΘ(ϑ) = 0 for all other ϑ ∈ {0, 1}lk. If Eve attacks
the first 100 rounds in X and the second 100 rounds in
Z, then she knows the raw key perfectly, without intro-
ducing any error. At the same time, there is no com-
munication between Alice and Bob during the protocol,
so no information about the basis choice is leaked dur-
ing the protocol. Instead, Eve (who is always assumed to
know the protocol) already had this information before
the first round.

Hence, we conclude that the problems of non-uniform
sampling and basis information leak are independent.
They just happen to occur simultaneously for iterative
sifting, but they can occur separately in general. We will
see the independence of the two problems more formally
in Section V.

D. Attack on both problems

Since the two problems are independent, it is interest-
ing to devise an attack that exploits both of them. Let us

again consider k = n = 1 and suppose px > 1/2 to ensure
that we have non-uniform sampling. Suppose Eve begins
in the same way as in the attack on non-uniform sam-
pling, measuring in the X-basis. However, as in the at-
tack on the basis-information leak, she makes her attack
adaptive by following the rule that she switches to the
Z-basis when Alice and Bob announce that they had an
X-agreement. If Alice and Bob announce a Z-agreement,
Eve keeps attacking in the X-basis.

We give an expression for the error rate induced by this
attack in Appendix B 3. The red curve in Figure 1 shows
a plot of this error rate as a function of px. As one can
see, the error rate attains its minimum of 〈E〉 ≈ 15.8%
for px ≈ 0.57. Hence, this combined attack on both prob-
lems performs much better than the one on non-uniform
sampling alone (with a minimal error rate of ∼ 22.8%)
and even better than the attack on the basis information
leak alone (with a minimal error rate of ∼ 16.3%).

IV. SOLUTIONS TO THE PROBLEMS

How can these problems be avoided? Roughly speak-
ing, we can say that protocols with iterative sifting are
characterized by three properties that make it efficient:
(1) asymmetric basis choice probabilities and quota, px >
pz and n > k, (2) single-basis parameter estimation (Pro-
tocol II), (3) communication in Step 5 of the loop phase.
As we have seen, it is the communication which causes
the basis information leak.

An obvious fix to this problem is to take this com-
munication out of the loop phase and to postpone it to
the final phase, when all the quantum communication is
over. Then there is no classical communication during
the loop phase, and hence, there cannot be a termina-
tion condition that depends on classical communication.
Instead, the number of rounds in the loop phase is set to
a fixed number m ∈ N+. This number m then becomes
a parameter of the protocol.

Fixing the number of rounds introduces a new issue:
there is no guarantee that the quotas forX- and Z- agree-
ments will be met after m rounds. In order to perform
the parameter estimation, however, the quotas n and k
must be met. Otherwise, Inequality (6) is not applicable,
because the number of X- and Z-agreements in the loop
phase are random numbers that can be below n and k,
respectively. Thus, unless one wants to introduce a new
tail probability analysis as well, there is a strictly pos-
itive probability that Alice and Bob have to abort the
sifting protocol because they have too many basis dis-
agreements. If the sifting scheme is modified in this way,
it no longer involves any communication about the basis
choices during its loop phase. Thus, it is trivially true
that there is no basis information leak.

Many protocols in the QKD literature have such a fixed
number m of rounds (which is often denoted by N in-
stead) and an according abort event. It seems that before
iterative sifting was introduced, the sifting procedure was
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either not clearly written out in the protocols, or it had
such a fixed round number. For example, in the original
BB84 paper [20], the sifting scheme is not written out
in enough detail to say whether this is the case, but the
protocol for which Shor and Preskill showed asymptotic
security uses a fixed number of rounds [21]. In addition,
they use symmetric basis choice probabilities and quota,
i.e. px = pz = 1/2 and k = n. Alice sends 4n+δ qubits to
Bob (where δ is a positive but small overhead) without
any intermediate classical communication. Afterwards,
they compare their bases and check whether they have
at least n X-agreements and at least n Z-agreements. If
not, they abort, otherwise they choose n X-agreements
and n Z-agreements and discard the rest.

With the remainin 2n bits, they continue with param-
eter estimation. However, instead of performing SBPE,
they choose n bits at random (i.e. with fresh random-
ness) for parameter estimation and use the rest for the
raw key. Hence, this protocol shares none of the three
properties with iterative sifting that we listed above.

This scheme trivially has no basis information leak.
In addition, it trivially samples uniformly, as the whole
sample is chosen with fresh randomness that is injected
for that purpose. Thus, it is secure with respect to the
concerns raised in this article. However, it is unneces-
sarily inefficient: speaking in expectation values, half of
the bits are discarded because they were determined in
different bases, and another quarter of the bits is used
for parameter estimation, leaving only a quarter of the
original bits for the raw key, see Figure 2 a).

A similar protocol has recently been suggested by
Tomamichel and Leverrier with a complete proof of its
security, modelling all its subroutines [22]. They also use
symmetric basis choice probabilities px = pz and ran-
domness injection for the sample choice. However, they
do not use half of the sifted bits for parameter estimation
but less. Their protocol also samples uniformly, because
additional randomness is injected for the choice of the
sample.

To increase the efficiency, Lo, Chau and Ardehali
(LCA) suggested to use asymmetric basis choice prob-
abilities and quota, i.e. px > 0 and k 6= n. As shown in
Figure 2 b), this decreases the number of expected dis-
agreements from a value of m/2 to a value of 2pxpzm.
This is great for efficiency: for larger block lengths, rel-
atively smaller samples are required to gain the same
confidence that Alice’s and Bob’s bits are correlated.7
In the limit where m → ∞, the probability px can be
chosen to be arbitrarily close to one, and the fraction of
data lost due to basis disagreements converges to zero.
We call this protocol LCA sifting. It shares property (1)
with iterative sifting.

As for the protocol of Shor-Preskill, Lo Chau and Arde-
hali did not consider SBPE. Their parameter estimation

7 This can be seen from inequality (6), for example.
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no randomness injection
for the sample required:
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FIG. 2. Comparison of the expected sifting efficiencies. a) In
the protocol of Shor and Preskill [21], only about a quarter of
the measurement results end up in the raw key. Moreover, a
relatively large amount of randomness needs to be injected for
the sample choice, which in turn increases the length of pre-
shared secret key that Alice and Bob use for authenticated
communication. b) The protocol by Lo, Chau and Ardehali
[15] allows for a bias, px > pz. This way, the expected frac-
tion of bits with basis disagreements shrinks from one half
to 2pxpz. The proportions drawn in this figure correspond
to px = 0.8. However, it still requires randomness injection
for the choice of the sample. c) If, instead, LCA sifting and
SBPE are used, as we suggest, then no randomness injection
is required for the choice of the sample. Moreover, less bits are
consumed for parameter estimation in the finite-key regime,
resulting in a longer raw key.

also requires some randomness injection for the choice
of the sample: the Z-agreements form one half of the
sample, and the other half is chosen at random from the
X-agreements. Then, not just one but two error rates
are determined, namely on the X-part and the Z-part of
the sample separately. Only if both error rates are below
a fixed error tolerance, they continue the protocol using
the rest as the raw key (for details, see their article [15]).
The LCA protocol trivially has no basis information leak.
In addition, it turns out that it also samples uniformly.
This is in fact non-trivial, and to our knowledge, it was
not proved in the literature. We fill this gap: the uniform
sampling property of the LCA protocol turns out to be a
corollary of 2 below. Thus, the LCA protocol could be
used as a secure replacement for iterative sifting.
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LCA Sifting

Protocol Parameters: n, k,m ∈ N+ with m ≥ n+ k ∈ N+

and px, pz ∈ [0, 1] with px + pz = 1.

Output: For l = n+ k, the outputs are:

Alice: l-bit string (si)
l
i=1 ∈ {0, 1}l (measurement out-

comes, sifted) or s =⊥ (if the protocol aborts),

Bob: l-bit string (ti)
l
i=1 ∈ {0, 1}l (measurement out-

comes, sifted) or t =⊥ (if the protocol aborts),

public: l-bit string (ϑi)
l
i=1 ∈ {0, 1}l with

∑
i ϑi = k (ba-

sis choices, sifted), where 0 means X-basis and 1
means Z-basis, or ϑ =⊥ (if the protocol aborts).

Number of rounds: Fixed number m (protocol parameter)

The protocol

Loop phase: Steps 1 to 4 are repeatedm times (round index
r = 1, . . . ,m). Starting with round r = 1, Alice and
Bob do the following:

Step 1: (Preparation): Alice prepares a qubit pair in a
maximally entangled state.

Step 2: (Channel use): Alice uses the quantum channel to
send one share of the qubit pair to Bob.

Step 3: (Random bit generation): Alice and Bob each (in-
dependently) generate a random classical bit ar
and br, respectively, where 0 is generated with
probability px and 1 is generated with probability
pz.

Step 4: (Measurement): Alice measures her share in the
X-basis (if ar = 0) or in the Z-basis (if ar =
1), and stores the outcome in a classical bit yr.
Likewise, Bob measures his share in the X-basis
(if br = 0) or in the Z′-basis (if br = 1), and stores
the outcome in a classical bit y′r.

Final phase: The following steps are performed in a single
run:

Step 5’: (Quota Check): Alice and Bob determine the sets

u(m) = {r ∈ [m] | ar = br = 0} ,
v(m) = {r ∈ [m] | ar = br = 1}

They check whether the quota condition (u(m) ≥
n and v(m) ≥ k) holds. If it holds, they proceed
with Step 6. Otherwise, they abort.

Step 6: (Random Discarding): Alice and Bob choose a
subset u ⊆ u(m) of size k at random, i.e. each
subset of size k is equally likely to be chosen.
Analogously, they choose a subset v ⊆ v(m) of
size k at random. Then they discard the bits ar,
br, yr and y′r for which r /∈ u ∪ v.

Step 7: (Order-preserving relabeling): Let ri be the i-th
element of u∪ v. Then Alice determines (si)

l
i=1 ∈

{0, 1}l, Bob determines (ti)
l
i=1 ∈ {0, 1}l and to-

gether they determine (ϑi)
l
i=1 ∈ {0, 1}l, where for

every i ∈ [l],

si = yri , ti = y′ri , ϑi = ari (= bri) .

Step 8: (Output): Alice locally outputs (si)
l
i=1, Bob lo-

cally outputs (ti)
l
i=1 and they publicly output

(ϑi)
l
i=1.

Protocol III. The Lo-Chau-Ardehali (LCA) sifting protocol.

On the one hand, we suggest using the sifting part of
LCA protocol. To be clear about the details of the sifting
scheme, we have written it out in our notation in Proto-
col III. On the other hand, we find that the parameter
estimation part of the LCA protocol is unnecessarily com-
plicated and inefficient: it needs randomness injection for
part of the sample choice, and it requires the estimation
of two instead of one error rate. What if, instead, LCA
sifting is followed by SBPE, i.e., only the error rate on
the Z-agreements is determined? The critical question
is whether this would still lead to uniform sampling. As
the following propositin shows, this is indeed the case.
Proposition 2: The combination of LCA sifting (Pro-
tocol III) and SBPE (Protocol II) samples uniformly. In
other words, the LCA sifting protocol satisfies

PΘ(ϑ) = PΘ(ϑ′) ∀ϑ, ϑ′ ∈ {0, 1}lk . (21)

In constrast to protocols that use randomness injection
for the sample choice, the uniform sampling property is
non-trivial to prove for LCA sifting with SBPE. We prove
2 in Appendix C (see the corollary of 8). This shows that
the combination of LCA sifting and SBPE is secure and
can therefore be used to replace iterative sifting.8 For
protocols that use these subroutines, the abort probabil-
ity pabort of the sifting step is important because it affects
the key rate of the QKD protocol. We calculate pabort in
Appendix C as well ( 8).

This is good news for efficiency, as no randomness in-
jection is required for the choice of the sample. Since
this random sample choice would need to be communi-
cated between Alice and Bob in an authenticated way,
this also uses up less secret key from the initial key pool
(see [23] for a discussion of the key cost of classical post-
processing). One can see in Figure 2 that in the finite-key
regime, this also leads to a larger raw key. Together with
3, which we will discuss in Section V, this also estab-
lishes security of the protocol in the finite-key regime. In
contrast, the original work of LCA [15] only establishes
asymptotic security.
Suggestion: Use LCA sifting (Protocol III) and SBPE
(Protocol II).

Let us briefly remark about the efficiency LCA sifting
in comparison to that of iterative sifting. They differ in
that LCA sifting has no communication during the loop
phase, see property (3) above. The question is whether
this necessarily means that the efficiency is strongly re-
duced in comparison with iterative sifting.

8 This also establishes uniform sampling for the whole LCA pro-
tocol (with the parameter estimation protocol with randomness
injection instead of SBPE). This is because the parameter esti-
mation protocol of LCA can now be seen as a two-stage random
sampling without replacement, where in both stages, the sam-
pling probabilities are uniform. This leads to overall uniform
sampling.
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FIG. 3. Efficiency comparison of the two sifting protocols.
The plots show lower bounds on the expected efficiencies for
symmetric probabilities px = pz = 1/2 and for identical quo-
tas n = k. The solid red curve shows a lower bound on the
expected value of the efficiency for the iterative sifting proto-
col as a function of n = k. For the LCA sifting protocol, an
optimization over the additional parameter m has been made
for each value of n = k.

We define the efficiency η of a sifting protocol as

η =
R

M
, (22)

where R is the random variable of the number of rounds
that are kept after sifting andM is the random variable of
the total number of rounds performed in the loop phase
of the protocol. We explain this in more detail in Ap-
pendix D. A plot of the expected efficiency for iterative
sifting and for LCA sifting is shown in Figure 3 for the
special case of symmetric probabilities px = pz and iden-
tical quota n = k (this special case is computationally
much easier to calculate; for other choices, the computa-
tion becomes very hard). We find that iterative sifting
is more efficient, as expected, but the difference between
the two efficiencies becomes insignificant for practically
relevant quota sizes n and k.

V. FORMAL CRITERIA FOR GOOD SIFTING

In Section II, we have seen that iterative sifting leads
to problems. In Section IV, we showed that these prob-
lems can be avoided by using LCA sifting (Protocol III)
and SBPE (Protocol II). In this section, we give a more
complete answer to the question of how these problems
can be avoided by presenting two simple formal criteria
that are sufficient for a sifting protocol to lead to a cor-
rect parameter estimation. More precisely, we describe
two formal properties of the state produced by a sifting
protocol which guarantee that if the protocol is followed
by SBPE (Protocol II), then Inequality (6) holds. As in-
dicated in the introduction, the two properties take the
form of equalities, see Equations (1) and (2). We prove
the sufficiency of these two criteria by deriving (6) from
them in 3 below.

In order to state the two criteria and the random vari-
able Λkey in (6) formally, we need to define a certain kind

of quantum state ρAlBlΘl associated with a sifting pro-
tocol. To explain what this state is, we explain what the
state ρAlBlΘl is like for LCA sifting. It is a state that
is best described in a variation of the protocol. Suppose
that Alice and Bob run the protocol, but they skip the
measurement in every round. Instead, they keep each
qubit system in their lab without modifying its state.
With current technology, this is practically impossible,
but since ρAlBlΘl is a purely mathematical construct, we
do not worry about the technical feasibility. Notice that
Alice and Bob still make basis choices, compare them
and discard rounds—they just do not actually perform
the measurements. Let us compare the output of this
modified protocol with the output of the original proto-
col:

original protocol modified protocol
Alice: l bits s = (si)

l
i=1 l-qubit state ρAl

Bob: l bits t = (ti)
l
i=1 l-qubit state ρBl

public: l bits ϑ = (ϑi)
l
i=1 l bits ϑ = (ϑi)

l
i=1

Hence, if we model the classical bit string ϑ as the state
of a classical register Θl, we can say that the output
of the modified protocol is a quantum-quantum-classical
(QQC) state ρAlBlΘl . More generally, the state ρAlBlΘl
associated with a sifting protocol is its output state in
the case where all the measurements are skipped.

This state still carries all the probabilistic information
of the original protocol. To see this, let X = {X0,X1} and
Z = {Z0,Z1} be the POVMs describing Alice’s X- and
Z-measurement, let X′ = {X′0,X′1} and Z′ = {Z′0,Z′1} be
the POVMs describing Bob’s X- and Z-measurement,
and let M = {M0,M1} be the projective measurement
on Θ with respect to which the state of the register Θ is
diagonal. Define the operators

O0 = X0 , O1 = X1 , O2 = Z0 , O3 = Z1 ,

O′0 = X′0 , O′1 = X′1 , O′2 = Z′0 , O′3 = Z′1 .
(23)

Then, the probability distribution over the output of the
protocol is

PSTΘ(s, t, ϑ) = tr(Π(s, t, ϑ)ρ(ABΘ)l) , (24)

where ρ(ABΘ)l is the same state as ρAlBlΘl , but with the
registers reordered in the obvious way, and where

Π(s, t, ϑ) =

l⊗
i=1

(
O2ϑi+si ⊗O′2ϑi+ti ⊗Mϑi

)
. (25)

With the state ρAlBlΘl associated with a sifting protocol
at hand, it is easy to define the random variable Λkey
associated with the protocol. The relevant probability
space is the discrete probability space (ΩZZ′Θ, PZZ′Θ),
where ΩZZ′Θ is the sample space

ΩZZ′Θ = {0, 1}l × {0, 1}l × {0, 1}lk (26)
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and where PZZ′Θ is the probability mass function

PZZ′Θ : ΩZZ′Θ → [0, 1]

(z, z′, ϑ) 7→ tr

((⊗l
i=1 Zzi

)
⊗
(⊗l

i=1 Z′z′i
)

⊗
(⊗l

i=1 Mϑi

)
ρAlBlΘl

)
.

(27)

The probability mass function PZZ′Θ corresponds to a
Gedankenexperiment in which Alice and Bob measure all
qubits in the Z-basis.

Now we are able to formally say what the random vari-
able Λkey of a sifting protocol is. Let ρAlBlΘl be the state
associated with the sifting protocol, let (ΩZZ′Θ, PZZ′Θ)
be the probability space as in Equations (26) and (27).
Then Λkey is the random variable

Λkey : ΩZZ′Θ → [0, 1]

(z, z′, ϑ) 7→ 1

n

N∑
i=1

(1− ϑi)(z ⊕ z′) ,
(28)

which is the key bit error rate. Analogously, we have the
test bit error rate

Λtest : ΩZZ′Θ → [0, 1]

(z, z′, ϑ) 7→ 1

k

l∑
i=1

ϑi(z ⊕ z′) .
(29)

This allows us to formally define the tail probability ptail.
We define it via the same formula as in (4), which we
repeat here for the reader’s convenience:

ptail(µ) = P [Λkey ≥ Λtest + µ | Λtest ≤ qtol] . (4)

The difference is that now, we have formally defined all
the components of the equality. The following proposi-
tion states the tail probability bound in a formal way.
Proposition 3 (Tail probability estimate): Let ρAlBlΘl
be a density-operator of a system AlBlΘl where A and
B are qubit systems and Θ is a classical system, let
{Z0,Z1} and {Z′0,Z′1} be POVMs on the quantum sys-
tems A and B, respectively, let {M0,M1} be the read-out
measurement of the classical system Θ, let Λkey, Λtest
be random variables on the discrete probability space
(ΩZZ′Θ, PZZ′Θ) as defined in Equations (26) to (29) and
let ptail be as in Equation (4). Let ρAlBl and ρΘl denote
the according reduced states of ρAlBlΘl and PΘ denote
the according marginal of PZZ′Θ. If the two conditions

PΘ(ϑ) = PΘ(ϑ′) ∀ϑ, ϑ′ ∈ {0, 1}lk and (1)
ρAlBlΘl = ρAlBl ⊗ ρΘl (2)

hold, then

ptail(µ) ≤
exp

(
−2knl

k
k+1µ

2
)

ppass
, (6)

where

ppass = P [Λtest ≤ qtol] . (7)

We prove 3 in Appendix E. The formulation of 3
allows us to see the formal requirements on a sifting pro-
tocol to lead to a correct parameter estimation when
followed by SBPE: Condition (1) is exactly the state-
ment that the sampling probability does not depend on
the sample, i.e. the protocol leads to uniform sampling.
There is one thing that we want to point out here: while
it is sufficient for the sampling probabilities to be the
inverse of the number of possible samples, i.e.

PΘ(ϑ) =
1∣∣{0, 1}lk∣∣ =

(
l

k

)−1

∀ϑ ∈ {0, 1}lk , (30)

condition (1) is strictly weaker. In the case where there
is a non-zero probability that the protocol aborts during
the sifting phase (as it is the case for LCA sifting), the
sampling probabilities do not add up to 1 but rather to
1−pabort, where pabort is the probability that the protocol
aborts during the sifting phase.

Condition (2) is the formal statement of what it means
for a protocol that the basis choice register is uncorre-
lated with Alice’s and Bob’s qubits before measuring. 3
states that if these two conditions are satisfied, then the
correlation test of the SBPE protocol leads to the right
conclusion. Hence, these are the two conditions that a
sifting protocol needs to satisfy in order to be a good
sifting protocol.

We point out that the digression to a classical prob-
ability space, Equations (26) to (29) and (4), is a mere
change of notation. However, the fact that it is possi-
ble to express 3 in terms of a classical probability space
shows that this part of a QKD security analysis is purely
classical.

VI. CONCLUSION

In recent years QKD has emerged as a commercial
technology, with the prospect of global QKD networks
on the horizon [19]. All QKD implementations have fi-
nite size, and yet only recently has finite-key analysis ap-
proached mathematical rigor [3–6, 8–11]. In this work,
we showed that further modifications of the protocols
and/or their analysis are needed to make finite-key anal-
ysis rigorous.

We pointed out that sifting—a stage of QKD that is
often overlooked with respect to security analysis—is ac-
tually crucial for security. A carelessly designed sifting
subroutine can jeopardize the security of an otherwise
reliable protocol. We found that iterative sifting, a sift-
ing protocol that has both been proposed theoretically
[3, 4, 8, 9] and been implemented experimentally [12],
violates two assumptions in the typical security analysis.
We showed how the violation of these assumptions can be
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exploited by an eavesdropper, leading to intercept-resend
attacks with unexpectedly low error rates (see Fig. 1).

We presented an alternative scheme, LCA sifting and
SBPE, and proved that it solves the two problems. We
derived an expression for its abort probability and there-
fore provided everything that is needed for its future use
as a subroutine. We argued that this scheme is more eco-
nomical and efficient than some other other previously
proposed protocols, as it does not require an additional
random seed for the sample and at the same time al-
lows for asymmetric basis choice probabilities. As we ex-
plained, the latter allows for a significantly higher sifting
efficiency [15].

We gave the precise mathematical form of the two as-
sumptions that are needed for secure sifting in Eqs. (1)
and (2). In doing so, we have provided a guide for the
construction of future protocols: when designing a sift-
ing protocol, one just needs to check these two conditions
in order to make sure that the usual analysis of the pa-
rameter estimation based on Inequality (6) is correct and
the protocol is secure. This may require a mathematical
model for the state ρAlBlΘl or for the probabilities of the
output strings (ϑi)

l
i=1, (si)

l
i=1 and (ti)

l
i=1 generated by

the sifting protocol. Such models are rarely provided in
the literature. In the case of iterative sifting, the absence

of such a model to check the desired properties has led
to a wrong security analysis.

This points to a deeper problem in QKD security anal-
ysis: there is often a gap between the physical protocols
that are written down as instructions for Alice and Bob
and the mathematics of the security proof. This is not
a purely pedantic issue, but rather a very practical one
which can be exploited by eavesdroppers. In the future,
we advocate that each step in the physical QKD proto-
col be explicitly mathematically modeled. In particular,
we emphasize that sifting protocols must be proved to
(rather than assumed to) satisfy the desired assumptions
of the analysis. We believe our work will ultimately in-
spire more complete security proofs of finite-size QKD.
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APPENDIX

Conventions

We make some notational conventions for the appendix (in addition to the ones we made in Equation (7)). For
the iterative sifting protocol as in Protocol I, we denote by Nx the random variable of the number of X-agreements,
and analogously, Nz and Nd are the random variables of the number of Z-agreements and disagreements in the loop
phase, respectively. We write events as logical statements of the random variables, e.g. Θ = 110∧Nx ≥ 2 is the event
in which the protocol runs with more than two X-agreements and produces the output ϑ = 110, and its probability
is given by P [Θ = 110 ∧ Nx ≥ 2]. In cases where all involved random variables have fixed values, we occasionally
write expressions in terms of probability mass functions instead of in terms of probability weights of events (as we
have done it in the main article), e.g. we write

PΘNxNzNd(ϑ, nx, nz, nd) := P [Θ = ϑ,Nx = nx, Nz = nz, Nd = nd] . (31)

In cases with inequalities, it is however shorter to use the event notation, e.g.

P [A1 6= B1] = PA1B1
(0, 1) + PA1B1

(1, 0) . (32)

We will use whatever notation we find more appropriate in each case.

Appendix A: Sampling probability calculation for iterative sifting

In this appendix, we prove 1, i.e. we calculate the sampling probabilities PΘ(ϑ) for iterative sifting with n = 1 and
k = 2 and find PΘ(110) = g2

z and PΘ(101) = PΘ(011) = (1− g2
z)/2, where gz = p2

z/(p
2
z + p2

x).

Proof of 1. We first write out the sequence of equalities that lead to the claim. We explain each equality below. The
sequence of equalities looks as follows:

PΘ(110) =

∞∑
nx=1

∞∑
nz=2

∞∑
nd=0

PΘNxNzNd(110, nx, nz, nd) (A1)

=

∞∑
nz=2

∞∑
nd=0

PΘNxNzNd(110, 1, nz, nd) (A2)

=

∞∑
nz=2

∞∑
nd=0

p2
x(p2

z)
k(2pxpz)

d

(
nz + nd
nd

)
(A3)

= g2
z , where gz =

p2
z

p2
z + p2

x

. (A4)

Equation (A1) is just stating that PΘ is the marginal of PΘNxNzNd . The ranges of the sums can be explained as follows.
The iterative sifting protocol always runs until there have been at least n x-agreements and at least k z-agreements.
Therefore,

PΘNxNzNd(θ, nx, nz, nd) = 0 if nx < n or nz < k . (A5)

In our case, n = 1 and k = 2, hence the limits of the sums.
Equation (A2) follows from

PΘNxNzNd(110, nx, nz, nd) = 0 for nx ≥ 2 . (A6)

One can see (A6) as follows: if Nx ≥ 2, then necessarily Nz = 2, because Nx > n ∧Nz > k is impossible in iterative
sifting (the loop phase of the protocol is terminated as soon as both quota are met). This means that during the
random discarding, no Z-agreement gets discarded. Moreover, if Nx ≥ 2, then the last round of the loop phase must
be a Z-agreement. Since this Z-agreement is not discarded, we have that Θ must necessarily end in a 1 if Nx ≥ 2, so
Θ = 110 is impossible in that case.

To see why Equation (A3) holds, note that the event

Θ = 110 ∧Nx = 1 ∧Nz = nz ∧Nd = nd (A7)
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consists of all runs of the protocol in which one X-agreement, nz Z-agreements and nd disagreements occurred, and
where the X-agreement was the last round of the loop phase. This is because in every such run, one necessarily ends
up with Θ = 110, and if Θ = 110, then the last round of the loop phase must be an X-agreement. There are

(
nz+nd
nd

)
such runs, and each of them has the probability p2

x(p2
z)
nz (2pxpz)

nd , and therefore

PΘNxNzNd(110, 1, nz, nd) =

(
nz + nd
nd

)
p2
x(p2

z)
nz (2pxpz)

nd . (A8)

This explains Equation (A3). Finally, equation (A4) is just an evaluation of the expression in the line above. This
shows PΘ(110) = g2

z .
It remains to be shown that PΘ(101) = PΘ(011) = (1− g2

z)/2. In analogy to the above, it holds that

PΘ(101) =

∞∑
nx=1

∞∑
nz=2

∞∑
nd=0

PΘNxNzNd(101, nx, nz, nd) (A9)

=

∞∑
nx=2

∞∑
nd=0

PΘNxNzNd(101, nx, 2, nd) . (A10)

Equation (A9) is, in analogy to Equation (A1), stating that PΘ is the marginal of PΘNxNzNd , and the same argumen-
tation for the limits of the sums applies. Equation (A10) is explained by a similar reasoning as for Equation (A2): it
follows from

PΘNxNzNd(101, nx, nz, nd) = 0 for nz ≥ 3 . (A11)

For Equation (A11), note that if Nz ≥ 3, then Nx = 1 because Nx > n∧Nz > k is impossible in iterative sifting. Thus,
no x-agreement gets discarded. Moreover, if Nz ≥ 3, then the last round of the loop phase must be an x-agreement.
Since this x-agreement is not discarded, Θ necessarily ends in a 0 if Nz ≥ 3, so Θ = 101 is impossible in this case.

Analogously, it holds that

PΘ(011) =

∞∑
nx=1

∞∑
nz=2

∞∑
nd=0

PΘNxNzNd(011, nx, nz, nd) (A12)

=

∞∑
nx=2

∞∑
nd=0

PΘNxNzNd(011, nx, 2, nd) . (A13)

The next step is to realize that for every nx ≥ 2 and for every nd ∈ {0, 1, 2, . . .}, it holds that

PΘNxNzNd(101, nx, 2, nd) = PΘNxNzNd(011, nx, 2, nd) . (A14)

This is because the event

(Θ = 101, Nx = nx, Nz = 2, Nd = nd) (A15)

and the event

(Θ = 011, Nx = nx, Nz = 2, Nd = nd) (A16)

consist of equally many histories of the protocol, and each of these histories has the same probability. Equations (A10),
(A13) and (A14) imply PΘ(101) = PΘ(011). Since PΘ(011) + PΘ(101) + PΘ(110) = 1 and P (110) = g2

z , it holds that
PΘ(011) = PΘ(101) = (1− g2

z)/2 as claimed.
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Appendix B: Error rate calculations for the attacks on iterative sifting

1. Attack that exploits non-uniform sampling

Here, we calculate the expected error rate for the attack on iterative sifting which exploits non-uniform sampling,
as explained in Section IIIA. We first recall the relevant conventions that we made in the main article. The iterative
sifting protocol is described in Protocol I. Eve performs an intercept-resend attack during the loop phase of the
protocol. In the first round, she attacks in the X-basis, and in all the other rounds of the loop phase, she attacks in
the Z-basis. We defined the error rate in Equation (17) in the main article, namely

E =
1

l

l∑
i=1

Si ⊕ Ti . (B1)

Moreover, recall that we assume that the X- and Z-basis is the same for Alice, Bob and Eve, and that they are
mutually unbiased. This way, if Alice and Bob measure in the same basis, but Eve measures in the other basis, then
Eve introduces an error probability of 1/2 on this qubit.

The calculation of 〈E〉 for this attack goes as follows. We first make a split:

〈E〉 =
∑
ϑ

P [Θ = ϑ] 〈E|Θ = ϑ〉 (B2)

= P [Θ = 01] 〈E|Θ = 01〉︸ ︷︷ ︸
∆x

+P [Θ = 10] 〈E|Θ = 10〉︸ ︷︷ ︸
∆z

. (B3)

We have that

∆x =

∞∑
nx=1

(
P [Θ = 01 ∧Nx = nx ∧A1 = B1 = 0] 〈E|Θ = 01 ∧Nx = nx ∧A1 = B1 = 0〉

+ P [Θ = 01 ∧Nx = nx ∧A1 6= B1] 〈E|Θ = 01 ∧Nx = nx ∧A1 6= B1〉 (B4)

+ P [Θ = 01 ∧Nx = nx ∧A1 = B1 = 1]︸ ︷︷ ︸
0

〈E|Θ = 01 ∧Nx = nx ∧A1 = B1 = 1〉
)

The third summand on the right hand side of Equation (B4) vanishes because Θ = 01 is impossible if Alice and Bob
have a z-agreement in the first round of the loop phase. The event

Θ = 01 ∧Nx = nx ∧A1 = B1 = 0 (B5)

consists of all histories of the protocol in which Alice and Bob have an x-agreement in the first round and nx x-
agreements in total. Infinitely many such histories are possible because an arbitrary number of disagreements is
possible. We express the probability of the event (B5) as the marginal of the probability of the event

Θ = 01 ∧Nx = nx ∧A1 = B1 = 0 ∧Nd = nd . (B6)

The event (B6) consists of
(
nx+nd+1

nd

)
histories of the protocol, and each history has the probability (p2

x)nxp2
z(2pxpz)

nd .
Therefore,

P [Θ = 01 ∧Nx = nx ∧A1 = B1 = 0] =

∞∑
nd=0

P [Θ = 01 ∧Nx = nx ∧A1 = B1 = 0 ∧Nd = nd] (B7)

=

∞∑
nd=0

(p2
x)nxp2

z(2pxpz)
nd

(
nx + nd − 1

nd

)
(B8)

Moreover, we have that

〈E|Θ = 01 ∧Nx = nx ∧A1 = B1 = 0〉 =
1

4

(
1− 1

nx

)
. (B9)
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The validity of (B9) can be seen as follows. On the second bit of S and T , there is no error because it comes from a
round in which all parties have measured in the Z-basis. Hence, the left had side of (B9) is the probability of getting
an error on the first bit of S and T , divided by the total number of bits, 2. Hence, we need to determine the error
probability of the first bit. If Nx = 1, then the first bit comes from the first round of the loop phase, in which Alice,
Bob and Eve have measured in the X-basis and hence, there is no error. However, for Nx = nx, the first bit of S and
T is chosen at random from one of the nx x-agreements. In only one of these nx rounds, Eve has measured in the
X-basis, and in nx − 1 rounds, she measured in the Z-basis. Hence, the probability that Eve measured in the wrong
basis on the first bit of S and T is (nx− 1)/nx, and therefore the error probability of the first bit is 1/2 · (nx− 1)/nx.
Thus,

〈E|Θ = 01 ∧Nx = nx ∧A1 = B1 = 0〉 =
1

2
· 1

2

(
nx

nx − 1

)
(B10)

=
1

4

(
1− 1

nx

)
. (B11)

Similarly, we get

P [Θ = 01 ∧Nx = nx ∧A1 6= B1] =

∞∑
nd=0

(p2
x)nxp2

z(2pxpz)
nd

(
nx + nd − 1

nx

)
(B12)

and

〈E|Θ = 01 ∧Nx = nx ∧A1 6= B1〉 =
1

4
. (B13)

Taking Equations (B8), (B9), (B12) and (B13) together, we get that

∆x =
1

4

∞∑
nx=1

∞∑
nd=0

(p2
x)nxp2

z(2pxpz)
nd

((
nx + nd − 1

nd

)(
1− 1

nx

)
+

(
nx + nd − 1

nx

))
. (B14)

In a similar way, we get

∆z =
1

4

∞∑
nz=1

∞∑
nd=0

p2
x(p2

z)
nz (2pxpz)

nd

((
nz + nd − 1

nd

)
+

(
nz + nd − 1

nd

)(
1 +

1

nx

))
. (B15)

Equations (B3), (B14) and (B15) taken together result in

〈E〉 =

∞∑
nd=0

(2pxpz)
nd

( ∞∑
nx=1

(p2
x)nxp2

x

((
nx + nd − 1

nd

)(
1− 1

nx

)
+

(
nx + nd − 1

nx

))

+

∞∑
nz=1

p2
x(p2

z)
nz

((
nz + nd − 1

nz

)
+

(
nz + nd − 1

nd

)(
1 +

1

nz

)))
. (B16)

Figure 1 in the main article shows a plot of 〈E〉 as in (B16) as a function of px. As one can see, 〈E〉 achieves a
minimum of 〈E〉 ≈ 22.8% for px ≈ 0.73.

2. Attack that exploits basis-information leak

Now we calculate the expected error rate of iterative sifting for the attack which exploits basis-information leak
as described in Section III B. As before, let 〈E〉 be the expected value of the error rate as defined in Equation (17).
Again, we assume that the X- and Z-basis are the same for Alice, Bob and Eve and that they are mutually unbiased.
Recall the strategy of Eve’s intercept-resend attack: Before the first round of the loop phase, Eve flips a fair coin.
Let F be the random variable of the coin flip outcome and let 0 and 1 be its possible values. If F = 0, then in the
first round, Eve attacks in the X basis, and if F = 1, she attacks in the Z-basis. In the subsequent rounds, she keeps
attacking in that basis until Alice and Bob first reached a basis agreement. If it is an X-agreement (equivalent to
Θ = 01), Eve attacks in the Z-basis in all remaining rounds, and if it is a Z-agreement (equivalent to Θ = 10), she
attacks in the X-basis in all remaining rounds.
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The calculation of 〈E〉 goes as follows:

〈E〉 = PF (0) 〈E|F = 0〉+ PF (1) 〈E|F = 1〉 (B17)
= 〈E|F = 0〉 (B18)
= PΘ(01)︸ ︷︷ ︸

1/2

〈E|F = 0 ∧Θ = 01〉+ PΘ(10)︸ ︷︷ ︸
1/2

〈E|F = 0 ∧Θ = 10〉︸ ︷︷ ︸
1/4

. (B19)

Equality (B17) is just a decomposition of 〈E〉 into conditional expectations. Equality (B18) follows from the fact that
the problem is symmetric under the exchange of X and Z, i.e. under the exchange of 0 and 1. The only quantity
that is not trivial to calculate in Equation (B19) is the expected value of the error rate, given that Eve first measures
in X and that the first basis agreement is an X-agreement. It is calculated as follows:

〈E|F = 0 ∧Θ = 01〉 =

∞∑
nx=1

〈E|F = 0 ∧Θ = 01 ∧Nx = nx〉PNx|ΘF (nx|01, 0)︸ ︷︷ ︸
PNx|Θ(nx|01)

(B20)

=

∞∑
nx=1

〈E|F = 0 ∧Θ = 01 ∧Nx = nx〉︸ ︷︷ ︸
nx−1
4nx

PNxΘ(nx, 01)︸ ︷︷ ︸∑∞
nd=0(p2

x)nxp2
z(2pxpz)nd(nx+nd

nd
)

1

PΘ(01)︸ ︷︷ ︸
2

(B21)

=

∞∑
nx=1

nx − 1

2nx

∞∑
nd=0

(p2
x)nxp2

z(2pxpz)
nd

(
nx + nd
nd

)
(B22)

=
1

4
(1− ln 2) , (B23)

where ln denotes the logarithm to base e. Therefore,

〈E〉 =
1

2

1

4
(1− ln 2) +

1

2

1

4
(B24)

=
2− ln 2

8
(B25)

≈ 16.3% . (B26)

3. Attack that exploits both problems

Here we present the error rate induced by the intercept-resend attack presented in Section IIID, which exploits
both non-uniform sampling and basis information leak. Let us recall the attack strategy. In the first round of the
loop phase of the iterative sifting protocol, she attacks in the X-basis. She keeps doing that in subsequent rounds
until Alice and Bob announce a basis-agreement. If they announce an X-agreement, Eve attacks in the Z-basis in all
the following rounds. Otherwise, she keeps attacking in the X-basis.

The calculation of the error rate is similar to the calculations done in Appendices B 1 and B2. We only show the
result here:

〈E〉 =

∞∑
nz=1

∞∑
nd=0

p2
xp

2nz
z (2pxpz)

nd

(
nz + nd
nd

)
1

4
+

∞∑
nx=1

∞∑
nd=0

p2nx
x p2

z(2pxpz)
nd

(
nx + nd
nd

)
nx − 1

4nx
. (B27)

A plot of (B27) is shown in Figure 1 as a function of px. As one can see, the expected error rate has a minimum of
〈E〉 ≈ 15.8% for px ≈ 0.57. Hence, this combined attack on both problems performs much better than the one on
non-uniform sampling alone (with a minimal expected error rate of ≈ 22.8%, see Section IIIA) and even better than
the attack on the basis information leak alone (with a minimal expected error rate of ≈ 16.3%, see Section III B).



21

Appendix C: Sampling and abort probability calculation for LCA sifting

In this appendix, we derive the general form of the probabillity distribution PΘ(ϑ) for LCA sifting (Protocol III)
as a function of the parameters n, k, m, px and pz. This achieves two goals: Firstly, it turns out that the sampling
probability PΘ(ϑ) is independent of the sample ϑ ∈ {0, 1}lk, which shows that the protocol samples uniformly. Secondly,
we calculate the abort probability pabort = PΘ(⊥). This abort probability influences the key rate of potential QKD
protocols that use this protocol as a subroutine, which makes pabort an important performance parameter of the
protocol.

We start by describing in Appendix C 1 how we think that proofs of sampling probabilities should be formalized
and how the general strategy of our proof looks like. In Appendices C 2 to C 4, we show the proofs and finally derive
PΘ.

1. On probabilistic models of the protocol

LCA sifting gives rise to a set Ω of histories of the protocol. This set can be modelled as the set Ω = ΩABY Y ′STUVΘ

of all tuples

ω = (a, b, y, y′, s, t, u, v, ϑ) , (C1)

where each entry varies over all its possible values. There are finitely many such histories, and each of them as a
probability associated with it. This can be expressed more formally in the language of discrete probability theory9

by saying that Ω forms the sample space of a discrete probability space (Ω, P ), on which a probability mass function
p is defined such that P (ω) is the probability of a history ω. Note that by choosing Ω = ΩAB...Θ, we also include
impossible combinations of a, b, . . . , ϑ. For example, a history ω as in (C1) with u = v is not possible, because u
stands for the X-agreements chosen for the raw key and v stands for the Z-agreements chosen for the sample, and
the two cannot coincide. This is not a problem for our model, because in this case, we simply have P (ω) = 0.

In this probability theory language, the strings a, b, . . . , ϑ are values that random variables A, B, . . . , Θ can take.
Random variables are maps from the sample space Ω to a set which is called the range or codomain of the random
variable. For example, the random variable A is a map

A : Ω → A
ω 7→ A(ω)

(C2)

where A is the codomain of A. We denote the codomains of random variables with calligraphic letters (except for the
random variable Θ, whose codomain we denote by co(Θ)). According to the protocol, we have

A = {0, 1}m = {(ai)mi=1 | ai ∈ {0, 1} ∀ i ∈ [m]} . (C3)

In the case where we model

Ω = ΩABY Y ′STUVΘ = A× B × Y × Y ′ × S × T × U × V × co(Θ) , (C4)

the random variables are simply the (set-theoretic) projections on the respective components, e.g.

A : Ω = A× B × . . .× co(Θ) → A ,
(a, b, . . . , ϑ) 7→ a .

(C5)

Then, the probability PA(a) that A = a is given by

PA : A → [0, 1]

a 7→
∑

ω∈A−1(a)

P (ω)

=
∑

(b,y,...,ϑ)

PAB...Θ(a, b, . . . , ϑ) ,

(C6)

9 By discrete probability theory, we mean probability theory with
a discrete sample space Ω, i.e. where Ω is finite or countably

infinite.
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where we have written P = PAB...Θ. This is because in the case where Ω = ΩAB...Θ, P is simply the joint probability
distribution of the random variables A, B, . . . , Θ.

Setting (Ω, P ) = (ΩAB...Θ, PAB...Θ) is sufficient to describe the probabilities of the random variables A, B, . . . , Θ
and functions thereof. For our purposes, however, this description is overloaded. We do not need to incorporate all
the random variables A, B, . . . , Θ in Ω and P . One reason is that some of the random variables are completely
determined by some of the other random variables. For example, the string s of Alice’s sifted measurement outcomes
is completely determined by Alice’s measurement outcomes a and the subsets u and v. In the probability theory
language, this is expressed as the fact that the random variable S is a function of the random variables A, U and V ,

S ≡ S(A,U, V ) , (C7)

or more precisely,

S : A× U × V → S
(a, u, v) 7→ s(a, u, v)

(C8)

and its probability distribution is given by

PS(s) =
∑

(a,u,v)∈S−1(s)

PAUV (a, u, v) (C9)

=
∑

ω∈(S◦A×U×V )−1(s)

P (ω) . (C10)

There are more such dependencies in our list of random variables:

T ≡ T (B,U, V ) , (C11)
Θ ≡ Θ(U, V ) . (C12)

Hence, setting

(Ω, P ) = (ΩABY Y ′UV , PABY Y ′UV ) (C13)

and using the dependencies (C7), (C11) and (C12) leads to an equally powerful description, but with a smaller
probability space.

For our purposes, the space (C13) is still overloaded. We are only interested in the distribution PΘ of Θ. According
to (C12), the relevant probability space is (ΩUV , PUV ), and Θ is a random variable

Θ : ΩUV = U × V → co(Θ) ,

(u, v) 7→ ϑ(u, v) .
(C14)

Then, PΘ is given by

PΘ : co(Θ) → [0, 1]

ϑ 7→
∑

(u,v)∈Θ−1(ϑ)

PUV (u, v) (C15)

It is difficult to write down the probability mass function PUV directly. Instead, we will derive the probbility mass
function PABUV on the sample space ΩABUV , and arrive at the probability distribution PUV via marginalization of
PABUV :

PUV (u, v) =
∑

(a,b)∈A×B

PABUV (a, b, u, v) . (C16)

Hence, the relevant probability space for our proof of uniform sampling of LCA sifting is the probability space
(ΩABUV , PABUV ).
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2. Formalization of (ΩABUV , PABUV )

According to what we said in the last subsection, the probability space that is relevant for our proof of uniform
sampling of LCA sifting is the space (ΩABUV , PABUV ), which describes the probabilities of the basis choice strings a
and b of Alice and Bob, as well as the choices u and v of the rounds that are used for the raw key and for parameter
estimation, respectively. We are going to formalize this space in this subsection.

We start by determining the sample space

ΩABUV = A× B × U × V . (C17)

In the loop phase of the protocol, Alice and Bob generate basis choice strings a = (ai)
m
i=1 ∈ {0, 1}m, b = (bi)

m
i=1 ∈

{0, 1}m. This happens in every run, no matter whether Alice and Bob abort the protocol in the final phase. Hence,

A = B = {0, 1}m . (C18)

In the final phase of the protocol, Alice and Bob do a quota check, in which they determine the rounds in which both
measured in the X-basis (X-agreement) the rounds in which both measured in the Z-basis (Z-agreements). In the
case where they had less than n X-agreements or less than k Z-agreements, they abort. In this case, Alice and Bob
do not choose subsets u and v of their X- and Z-agreements, respectively. We model this by saying that in this case,
u = v =⊥, where ⊥ is just a symbol indicating that Alice and Bob abort. In the case where the quota check of the
protocol is successful, Alice and Bob choose random subsets u ⊆ u(m) of size n and v ⊆ v(m) of size k. We represent
these subets by bit strings u ∈ {0, 1}mn , v ∈ {0, 1}lk, where

{0, 1}mn =

{
(ui)

m
i=1 ∈ {0, 1}m

∣∣∣∣∣
m∑
i=1

ui = n

}
, {0, 1}mk =

{
(vi)

m
i=1 ∈ {0, 1}m

∣∣∣∣∣
m∑
i=1

vi = k

}
. (C19)

They are to be interpreted as follows: For u ∈ {0, 1}mn and i ∈ [m], ui = 1 means that i is contained in the subset
u ⊆ u(m), and ui = 0 means that i is not contained, and likewise for v ∈ {0, 1}mk . The requirement that the subsets
u and v have size n and k translates into the conditions that the string components sum up to n and k, respectively.
Taking the two possibilities (the protocol aborts or the quota check is successful) together, we have that

U = {0, 1}mn ∪ {⊥} , (C20)
V = {0, 1}mk ∪ {⊥} . , (C21)

and hence

ΩABUV = A× B × U × V = {0, 1}m × {0, 1}m ×
(
{0, 1}mn ∪ {⊥}

)
×
(
{0, 1}mk ∪ {⊥}

)
. (C22)

This is the sample space of the probability space (ΩABUV , PABUV ) that we are looking for.
Next, we determine the probability mass function PABUV . We can write

PABUV (a, b, u, v) = PAB(a, b)PUV |AB(u, v|a, b) (C23)

where PUV |AB(u, v|a, b) is the probability that U = u and V = v, conditioned on A = a and B = b. The probability
distribution PAB(a, b) is easily determined. Each bit ai, bi, i ∈ [m] is generated independently at random and takes
the value 0 with probability px and the value 1 with probability pz. Hence,

∀(a, b) ∈ A× B : PAB(a, b) =

m∏
i=1

p1−ai
x paiz p

1−bi
x pbiz (C24)

= pm−|a|x p|a|z pm−|b|x p|b|z (C25)

= p2m−|a|−|b|
x p|a|+|b|z , (C26)

where for a string a ∈ {0, 1}m, we write

|a| :=
m∑
i=1

ai . (C27)



24

The conditional probability distribution PUV |AB is a bit more tricky to write down. What is crucial for this conditional
probability is whether the strings a and b have at least n X-agreements and at least Z-agreements. We want to give
this condition a formula as follows. Imagine Alice and Bob want to count their X- and Z-agreements. To do so, they
can first determine the string a ∧ b, given by

a ∧ b := (aibi)
m
i=1 . (C28)

The i-th entry aibi of a ∧ b is 1 if the corresponding bits ai and bi are both 1, i.e. if they had a Z-agreement, and 0
otherwise. Hence, to count their Z-agreements, they can sum up the components of a ∧ b:

number of Z-agreements =

m∑
i=1

aibi = |a ∧ b| . (C29)

Therefore, the condition that Alice and Bob had at least k Z-agreements can be expressed as

|a ∧ b| ≥ k . (C30)

Likewise, the condition that they had at least n X-agreements can be written as∣∣a ∧ b∣∣ ≥ n , (C31)

where for a string a ∈ {0, 1}m, we write

a = (1− ai)mi=1 ∈ {0, 1}m . (C32)

Taken together, the quota check condition reads∣∣a ∧ b∣∣ ≥ n and |a ∧ b| ≥ k . (C33)

In the case where condition (C33) is not satisfied, Alice and Bob abort, and therefore it must be that (u, v) = (⊥,⊥).
We can write this as

∀(a, b) ∈ {0, 1}m × {0, 1}m such that (|a ∧ b| < k or
∣∣a ∧ b∣∣ < n) : PUV |AB(u, v|a, b) = χ(u = v =⊥) , (C34)

where χ is the indicator function, which evaluates to 1 if its argument is true and which evaluates to 0 if its argument
is false.

For (a, b) ∈ {0, 1}m × {0, 1}m such that condition (C33) is satisfied, the conditional probability PUV |AB is a little
more difficult to write down. In that case, both u =⊥ and v =⊥ are impossible. Moreover, only those u ∈ {0, 1}mn
are possible which are subsets of Alice and Bob’s X-agreements, i.e. which satisfy

ui = 1 =⇒ ai = bi = 0 ∀ i ∈ [m] . (C35)

Note that

∀(a, b, u) ∈ {0, 1}m × {0, 1}m × {0, 1}mn : (ui = 1 =⇒ ai = bi = 0) ⇐⇒
∣∣a ∧ b ∧ u∣∣ = n . (C36)

Hence, the condition that u is a subset of the X-agreements simply reads∣∣a ∧ b ∧ u∣∣ = n , (C37)

and likewise, the condition that v is a subset of the Z-agreements reads

|a ∧ b ∧ v| = k . (C38)

Hence, in the case where (C33) holds, only those (u, v) ∈ {0, 1}mn × {0, 1}mk are possible for which∣∣a ∧ b ∧ u∣∣ = n and |a ∧ b ∧ v| = k . (C39)

We can combine the two conditions in a single formula:

∀(a, b, u, v) ∈ {0, 1}m × {0, 1}m × {0, 1}mn × {0, 1}mk : (C40)

(
∣∣a ∧ b ∧ u∣∣ = n and |a ∧ b ∧ v| = k) ⇐⇒

∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l , (C41)
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where l := n+ k. If this condition is satisfied, then the pair u is a subset of the X-agreements. Since the number of
X-agreements is given by

∣∣a ∧ b∣∣, we have that

number of subsets of X-agreements of size n =

(∣∣a ∧ b∣∣
n

)
. (C42)

Since Alice and Bob are discarding surplus fully at random, each such subset is equally likely, and thus, has a
probability of 1/

(|a∧b|
n

)
. Arguing similarly for v and noting that the choices of u and v are independent when the

quota condition is passed leads to

∀(a, b) ∈ {0, 1}m × {0, 1}m such that |a ∧ b| ≥ k and
∣∣a ∧ b∣∣ ≥ n :

PUV |AB(u, v|a, b) = χ(u 6=⊥, v 6=⊥,
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l)

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1

.
(C43)

These two cases fully determine the conditional probability, i.e. (C34) and (C43) determine PUV |AB for all (a, b) ∈
{0, 1}m × {0, 1}m, namely:

PUV |AB(u, v|a, b) =

{
χ(u = v =⊥) if |a ∧ b| < k or

∣∣a ∧ b∣∣ < n

χ(u 6=⊥, v 6=⊥,
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l)

(|a∧b|
n

)−1(|a∧b|
k

)−1
if |a ∧ b| ≥ k and

∣∣a ∧ b∣∣ ≥ n
(C44)

We can write this as

PUV |AB(u, v|a, b) = χ(|a ∧ b| < k or
∣∣a ∧ b∣∣ < n)χ(u = v =⊥) (C45)

+ χ(|a ∧ b| ≥ k and
∣∣a ∧ b∣∣ ≥ n)χ(u 6=⊥, v 6=⊥,

∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l)

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1

= χ(|a ∧ b| < k or
∣∣a ∧ b∣∣ < n)χ(u = v =⊥)

+ χ(u 6=⊥, v 6=⊥,
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l)

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1

, (C46)

where the last equality follows form

u 6=⊥, v 6=⊥,
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l =⇒ |a ∧ b| ≥ k and

∣∣a ∧ b∣∣ ≥ n . (C47)

Taking (C23), (C26) and (C46) together, we get

PABUV (a, b, u, v) = p2m−|a|−|b|
x p|a|+|b|z

(
χ(|a ∧ b| < k or

∣∣a ∧ b∣∣ < n)χ(u = v =⊥)

+ χ(u 6=⊥, v 6=⊥,
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l)

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1
)
.

(C48)

This concludes our formalization of (ΩABUV , PABUV ).
Definition 4: We define the discrete probability space (ΩABUV , PABUV ) by equations (C22) and (C48).

3. Marginalization to (ΩUV , PUV )

Definition 5: We define the probability space (ΩUV , PUV ) by

ΩUV := U × V =
(
{0, 1}mn ∪ {⊥}

)
×
(
{0, 1}mk ∪ {⊥}

)
(C49)

PUV (u, v) :=
∑

a,b∈A×B

PABUV (a, b, u, v) . (C50)
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Proposition 6: It holds that

PUV (u, v) = χ(u = v =⊥)

 n−1∑
nx=0

m−nx∑
nz=0

+

m∑
nx=n

min(m−nx,k−1)∑
nz=0

(m
nx

)(
m− nx
nz

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z

+ χ(u 6=⊥, v 6=⊥, |u ∧ v| = 0)

m−k∑
nx=n

m−nx∑
nz=k

(
m− l
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z

(
nx
n

)−1(
nz
k

)−1

.

(C51)

Proof. To show equation (C51), we need to show three things:

PUV (⊥,⊥) =

 n−1∑
nx=0

m−nx∑
nz=0

+

m∑
nx=n

min{m−nx,k−1}∑
nz=0

(m
nx

)(
m− nx
nz

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z , (i)

∀(u, v) ∈ {0, 1}mn × {0, 1}mk :

PUV (u, v) = χ(|u ∧ v| = 0)

m−k∑
nx=n

m−nx∑
nz=k

(
m− l
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nz+nz
z

(
nx
n

)(
nz
k

)
,

(ii)

∀(u, v) ∈
(
{⊥} × {0, 1}mk

)
∪
(
{0, 1}mn × {⊥}

)
: PUV (u, v) = 0 . (iii)

We start with showing (i). We have that

PUV (⊥,⊥) =
∑

(a,b)∈A×B

PABUV (a, b,⊥,⊥) (C52)

=
∑

(a,b)∈A×B

p2m−|a|−|b|
x p|a|+|b|z χ(|a ∧ b| < k or

∣∣a ∧ b∣∣ < n) (C53)

=
∑

(a,b)∈Γabort

p2m−|a|−|b|
x p|a|+|b|z , (C54)

where

Γabort =
{

(a, b) ∈ {0, 1}m × {0, 1}m
∣∣ |a ∧ b| < k or

∣∣a ∧ b∣∣ < n
}
. (C55)

We can partition Γabort as follows:

Γabort =
⊔

(nx,nz)∈Iabort

Γ(nx, nz) , (C56)

where the “square cup” t stands for disjoint union (the union of disjoint sets) and where

Iabort = {(nx, nz) ∈ {0, . . . ,m} × {0, . . . ,m} | nx + nz ≤ m, (nx < n or nz < k)} , (C57)

Γ(nx, nz) =
{

(a, b) ∈ {0, 1}m × {0, 1}m
∣∣ |a ∧ b| = nx,

∣∣a ∧ b∣∣ = nz
}
. (C58)

Hence,

PUV (⊥,⊥) =
∑

(nx,nz)∈Iabort

∑
(a,b)∈Γ(nx,nz)

p2m−|a|−|b|
x p|a|+|b|z (C59)

The set Γ(nx, nz) consists of all (a, b) ∈ {0, 1}m×{0, 1}m with exactly nx X-agreements and exactly nz Z-agreements.
For these strings,

∀(a, b) ∈ Γ(nx, nz) : p2m−|a|−|b|
x p|a|+|b|z = p2nx

x p2nz
z (pxpz)

m−nx−nz (C60)

= pm+nx−nz
x pm−nz+nx

z , (C61)

so equation (C59) simplifies to

PUV (⊥,⊥) =
∑

(nx,nz)∈Iabort

|Γ(nx, nz)| pm+nx−nz
x pm−nz+nx

z (C62)
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The number |Γ(nx, nz)| of elements of Γ(nx, nz) is given by

|Γ(nx, nz)| =
(
m

nx

)(
m− nx
nz

)
2m−nx−nz . (C63)

This can be seen as follows:
(
m
nx

)
is the number of possible distributions of the nx X-agreements over the m rounds,

and
(
m−nx
nx

)
is the number of possible distributions of the nz Z-agreements over the remaining m − nx rounds. For

the rounds where the strings have basis agreement, they are fully determined, but for i in the remaining m− nx − nz
rounds, we can have that either ai = 0 and bi = 1 for a basis disagreement or ai = 1 and bi = 0. Thus, there are
two possibilities for every disagreement, which explains the factor 2m−nx−nz . Combining equations (C62) and (C63)
yields

PUV (⊥,⊥) =
∑

(nx,nz)∈Iabort

(
m

nx

)(
m− nx
nz

)
2m−nx−nzpm+nx−nz

x pm−nz+nx
z (C64)

=

 n−1∑
nx=0

m−nx∑
nz=0

+

m∑
nx=n

min(m−nx,k−1)∑
nz=0

(m
nx

)(
m− nx
nz

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z , (C65)

where the last equation follows from splitting up Iabort into the two respective sets. This shows (i).
We proceed with showing (ii). We get from equation (C48) that

∀(u, v) ∈ {0, 1}mn × {0, 1}mk : (C66)

PUV (u, v) =
∑

(a,b)∈{0,1}m×{0,1}m
p2m−|a|−|b|
x p|a|+|b|z χ(u 6=⊥, v 6=⊥,

∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l)

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1

(C67)

=
∑

(a,b)∈Φ(u,v)

p2m−|a|−|b|
x p|a|+|b|z

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1

, (C68)

where

Φ(u, v) = {(a, b) ∈ {0, 1}m × {0, 1}m |
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l} (C69)

In analogy to the way we split up Γabort above, we now split up Φ(u, v):

Φ(u, v) =
⊔

(nx,nz)∈Ipass

Φ(u, v, nx, nz) , (C70)

where

Ipass = {(nx, nz) ∈ {0, . . . ,m} × {0, . . . ,m} | nx + nz ≤ m,nx ≥ n, nz ≥ k} , (C71)

Φ(u, v, nx, nz) = {(a, b) ∈ {0, 1}m × {0, 1}m |
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l,

∣∣a ∧ b∣∣ = nx, |a ∧ b| = nz} . (C72)

This gives us

∀(u, v) ∈ {0, 1}mn × {0, 1}mk : PUV (u, v) =
∑

(nx,nz)∈Ipass

∑
(a,b)∈Φ(u,v,nx,nz)

p2m−|a|−|b|
x p|a|+|b|z

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1

(C73)

Again, in analogy to our calculation of PUV (u, v), the sets Φ(u, v, nx, nz) are sets on which the summand in equation
(C73) is constant. More precisely, for every (a, b, u, v) ∈ {0, 1}m × {0, 1}m × Ipass, it holds that

∀(a, b) ∈ Φ(u, v, nx, nz) : p2m−|a|−|b|
x p|a|+|b|z

(∣∣a ∧ b∣∣
n

)−1(|a ∧ b|
k

)−1

= p2nx
x p2nz

z (pxpz)
m−nx−nz

(
nx
n

)(
nz
k

)
(C74)

= pm+nx−nz
x pm−nz+nz

z

(
nx
n

)(
nz
k

)
(C75)
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This leads us to determining the size of Φ(u, v, nx, nz). In words, this set contains all pairs (a, b) ∈ {0, 1}m × {0, 1}m
with nx X-agreements and nz Z-agreements such that n X-agreements are located where ui = 1 and k Z-agreements
are located where vi = 1. The size of this set is

|Φ(u, v, nx, nz)| = χ(|u ∧ v| = 0)

(
m− l
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nz . (C76)

This can be seen as follows. If |u ∧ v| 6= 0, there cannot be any (a, b) ∈ {0, 1}m × {0, 1}m such that
∣∣a ∧ b ∧ u∣∣ +

|a ∧ b ∧ v| = l, and hence the set must be empty in that case. This explains the factor χ(|u ∧ v| = 0). For those
(u, v) ∈ {0, 1}mn × {0, 1}mk for which |u ∧ v| = 0, the strings (a, b) ∈ Φ(u, v, nx, nz) are determined on n + k = l
positions by u and v. On the remaining m − l rounds are partitioned into nx − n rounds of X-agreements, nz − k
Z-agreements and m− nx − nz disagreements. There are

(
m−l
nx−n

)(
m−k−nx
nz−k

)
such partitions. Finally, on each position

of the m−nx−nz disagreements, we have the two possibilities (ai, bi) = (0, 1) and (ai, bi) = (1, 0), which contributes
the factor 2m−nx−nz . Taking equations (C75) and (C76) together, we get

∀(u, v) ∈ {0, 1}mn × {0, 1}mk :

PUV (u, v) =
∑

(nx,nz)∈Ipass

χ(|u ∧ v| = 0)

(
m− l
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nz+nz
z

(
nx
n

)(
nz
k

)
(C77)

= χ(|u ∧ v| = 0)

m−k∑
nx=n

m−nx∑
nz=k

(
m− l
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nz+nz
z

(
nx
n

)(
nz
k

)
. (C78)

This shows (ii).
The remaining case (iii) is easily shown. It follows directly from (C48), because

∀(u, v) ∈
(
{⊥} × {0, 1}mk

)
∪
(
{0, 1}mn × {⊥}

)
: χ(u = v =⊥) = χ(u 6=⊥, v 6=⊥,

∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| = l) = 0 .

(C79)

This shows (iii) and therefore completes the proof.

4. Formalization of Θ and derivation of PΘ

We have derived the probability space (ΩUV , PUV ) as demanded in Appendix C 1. Now we are left to define the
random variable

Θ : ΩUV → co(Θ)

(u, v) 7→

{
h(u, v) if (u, v) ∈ {(u, v) ∈ {0, 1}mn × {0, 1}mk | |u ∧ v| = 0} ,
⊥ otherwise .

(C80)

and to derive an expression for

PΘ : co(Θ) → [0, 1]

ϑ 7→
∑

(u,v)∈Θ−1(ϑ)

PUV (u, v) . (C81)

The range co(Θ) of Θ is given by

co(Θ) = {0, 1}lk ∪ {⊥} , (C82)

where an element of {0, 1}lk is a sifted basis choice string as in LCA sifting and where we set θ =⊥ in the case where
Alice and Bob abort the protocol.

To derive the random variable Θ, assume that Alice and Bob arrived at strings (u, v) ∈ U × V. How do these two
strings determine the sifted basis choice string ϑ? Let us first assume the case where (u, v) ∈ {0, 1}mn × {0, 1}mk such
that |u ∧ v| = 0. The relevant set of indices in this case is the set of round indices r for which ur = 1 or vr = 1:

α(u, v) := {r ∈ {0, 1}m | ur = 1 or vr = 1} . (C83)
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Note that |α(u, v)| = n+ k = l. For i ∈ [l], we define

αi(u, v) := the i-th element of α(u, v) . (C84)

With this notation at hand, we can determine ϑ from u and v as follows: for i ∈ [l], we have that ϑi = 0 if uαi(u,v) = 1
and ϑi = 1 if vαi(u,v) = 1. (Note that for i ∈ [l], it always holds either uαi(u,v) = 1 or vαi(u,v) = 1, but never both, so
this is well-defined.) We can write this in terms of a helper function h as

h : {(u, v) ∈ {0, 1}mn × {0, 1}mk | |u ∧ v| = 0} → {0, 1}lk
(u, v) 7→ (hi(u, v))li=1 ,

(C85)

where

hi(u, v) =

{
0 if uαi(u,v) = 1 ,

1 if vαi(u,v) = 1 .
(C86)

This determines Θ for all (u, v) ∈ {0, 1}mn × {0, 1}mk such that |u ∧ v| = 0. However, since these are the only pairs
(u, v) for which a sifted basis choice string ϑ ∈ {0, 1}lk is generated, we just let Θ send all other pairs (u, v) to ⊥:

Θ : U × V → co(Θ)

(u, v) 7→

{
h(u, v) if (u, v) ∈ {(u, v) ∈ {0, 1}mn × {0, 1}mk | |u ∧ v| = 0} ,
⊥ otherwise .

(C87)

This way, pairs (u, v) are mapped to ⊥ which cannot occur in the protocol (e.g. (⊥, b) with b ∈ {0, 1}lk). This is
unproblematic, because for these pairs, PUV (u, v) = 0, so according to equation (C81), they do not contribute to PΘ.
Definition 7: We define the sifted basis choice string random variable Θ on ΩUV by equation (C87). Its associated
probability mass function PΘ is given by (C81).

We are ready to state the result.
Proposition 8: For LCA sifting (Protocol III), we have that

pabort = PΘ(⊥) =

 n−1∑
nx=0

m−nx∑
nz=0

+

m∑
nx=n

min(m−nx,k−1)∑
nz=0

(m
nx

)(
m− nx
nz

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z , (C88)

∀ϑ ∈ {0, 1}lk : PΘ(ϑ) =

(
m

n+ k

) m−k∑
nx=n

m−nx∑
nz=k

(
m− n− k
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z

(
nx
n

)−1(
nz
k

)−1

.

(C89)

Before we prove 8, let us point out its importance. Equation (C88) is the probability that the sifting protocol
aborts because Alice and Bob did not reach the quota on the X- and Z-agreements, and is therefore a performance
parameter of the protocol. Equation (C89) is the sampling probability for each ϑ ∈ {0, 1}lk. Since (C89) is independent
of ϑ ∈ {0, 1}lk, we get uniform sampling as a corollary of 8.
Corollary: The combination of LCA sifting (Protocol III) and SBPE (Protocol II) samples uniformly. In other
words, the LCA sifting protocol satisfies

PΘ(ϑ) = PΘ(ϑ′) ∀ϑ, ϑ′ ∈ {0, 1}lk . (C90)

This proves 2. It leads us to proposing the protocol as a secure alternative to the insecure iterative sifting protocol.
Now we proceed to the proof of 8.

Proof of 8. We first show equation (C88). By definition, it holds that

PΘ(⊥) =
∑

(u,v)∈Θ−1(⊥)

PUV (u, v) , (C91)

where

Θ−1(⊥) =
(
{⊥} × {0, 1}mk

)
∪
(
{0, 1}mn ∪ {⊥}

)
∪ {(⊥,⊥)} ∪ {(u, v) ∈ {0, 1}mn × {0, 1}mk | |u ∧ v| 6= 0} (C92)
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We know from 6 that

∀(u, v) ∈
(
{⊥} × {0, 1}mk

)
∪
(
{0, 1}mn ∪ {⊥}

)
: PUV (u, v) = 0 . (C93)

Since

∀(a, b, u, v) ∈ {0, 1}m × {0, 1}m × {0, 1}mn × {0, 1}mk : |u ∧ v| 6= 0 =⇒
∣∣a ∧ b ∧ u∣∣+ |a ∧ b ∧ v| 6= 0 , (C94)

we also have

∀(u, v) ∈ {(u′, v′) ∈ {0, 1}mn × {0, 1}mk | |u′ ∧ v′| 6= 0} : PUV (u, v) = 0 . (C95)

Thus,

PΘ(⊥) = PUV (⊥,⊥) (C96)

=

 n−1∑
nx=0

m−nx∑
nz=0

+

m∑
nx=n

min(m−nx,k−1)∑
nz=0

(m
nx

)(
m− nx
nz

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z , (C97)

where the last equality follows form 6. This shows equation (C88).
We proceed with showing equation (C89). We have that

∀ϑ ∈ {0, 1}lk : PΘ(ϑ) =
∑

(u,v)∈Θ−1(ϑ)

PUV (u, v) (C98)

=
∑

(u,v)∈h−1(ϑ)

PUV (u, v) , (C99)

where

h−1(ϑ) =

(u, v) ∈ {0, 1}mn × {0, 1}mk

∣∣∣∣∣∣∣
|u ∧ v| = 0 ,

ϑi = 0 =⇒ uαi(u,v) = 1 ,

ϑi = 1 =⇒ vαi(u,v) = 1

 . (C100)

Since |u ∧ v| = 0 for all (u, v) ∈ h−1(ϑ), we know from 6 that

∀(u, v) ∈ (u, v) ∈ h−1(ϑ) :

PUV (u, v) =

m−k∑
nx=n

m−nx∑
nz=k

(
m− l
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z

(
nx
n

)−1(
nz
k

)−1

. (C101)

Thus,

∀ϑ ∈ {0, 1}lk :

PΘ(ϑ) =
∣∣h−1(ϑ)

∣∣ m−k∑
nx=n

m−nx∑
nz=k

(
m− l
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z

(
nx
n

)−1(
nz
k

)−1

. (C102)

For every ϑ ∈ {0, 1}lk, the set h−1(ϑ) is the set of all pairs (u, v) ∈ {0, 1}mn × {0, 1}mk such that the following two
properties are satisfied:

• |u ∧ v| = 0,

• for the set α(u, v) as in equation (C84), it holds for every i ∈ [m] that uαi(u,v) = 1 if ϑi = 0 and vαi(u,v) = 1 if
ϑi = 1.

Now note that the only thing that matters is the question which l = n + k elements of [m] form the subset
αi(u, v) ⊆ [m]: for every subset α ⊆ [m] of size l, there is exactly one pair (u, v) which satisfies the above two
properties such that α = αi(u, v). Hence, counting the elements of h−1(ϑ) is the same as counting the l-element
subsets of [m], and therefore ∣∣h−1(ϑ)

∣∣ =

(
m

n+ k

)
. (C103)
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This reduces equation (C102) to

∀ϑ ∈ {0, 1}lk : PΘ(ϑ) =

(
m

n+ k

) m−k∑
nx=n

m−nx∑
nz=k

(
m− n− k
nx − n

)(
m− k − nx
nz − k

)
2m−nx−nzpm+nx−nz

x pm−nx+nz
z

(
nx
n

)−1(
nz
k

)−1

,

(C104)

which is what we wanted to show.
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Appendix D: Efficiency calculation

Here we compare the efficiencies of iterative sifting and LCA sifting. Recall from Equation (22) that we define the
efficiency η of a sifting protocol as

η =
R

M
, (D1)

where R is the random variable of the number of rounds that are kept after sifting and M is the random variable of
the total number of rounds performed in the loop phase of the protocol. The efficiency η depends on the particular
history of the protocol: different runs of the protocol may have different efficiencies. Therefore, η is a random variable.
In the following, RI and MI denote the random variables R and M for the iterative sifting protocol, and RL and ML

denote the corresponding random variables for the LCA protocol. Whereas in the case of iterative sifting, the number
RI is fixed and the numberMI is a random variable, the opposite is true for the LCA sifting protocol, whereML = m
is fixed but but RL is a random variable. (Note that the LCA sifting protocol may abort, in which case RL = 0).

To compare the efficiencies of the two protocols, we calculate the expected value of η in each case. We first do this
for the case of iterative sifting. Recall that Ar, Br is the random variable of Alice’s and Bob’s basis choice in round
r, respectively, and that Nd is the number of basis disagreements. Then we have:
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〉
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1
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∞∑
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∞∑
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.
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For the case of the LCA sifting protocol, we have:

〈ηL〉 =
RL
ML

(D9)

=
1

m
〈RL〉 (D10)

=
1

m
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=
1

m
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The calculation of the expected efficiencies (D8) and (D14) requires a lot of computational power. We wrote programs
that compute numerical lower bounds on 〈ηI〉 and 〈ηL〉 for the case where the probabilities are symmetric (px = pz =
1/2) and where the quotas coincide (n = k). A plot of these lower bounds is shown in Figure 3. In order to plot the
lower bound on 〈ηL〉, a choice for m had to be made for each value of n = k. Our program choses an m which is
likely to maximize the expected efficiency for the given value of n = k. Note that 1/2, being the expected fraction of
basis agreements, is an upper bound on the expected efficiencies. Hence, Figure 3 indicates that the difference in the
expected efficiencies becomes insignificant for practically relevant values of the block length n + k. This means that
replacing iterative sifting by LCA sifting is unlikely to have a significant effect on the key rate of a QKD protocol.
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Appendix E: Proof of the sufficiency of the formal criteria

In this appendix, we prove that the two formal criteria for good sifting, (1) and (2), are sufficient for good sifting in
the sense that the relevant statistical inequality, (6), follows from these two conditions. In other words, we prove 3.

Proof of 3. According to Bayes’ Theorem, we have that

ptail = P [Λkey ≥ Λtest + µ | Λtest ≤ qtol] (E1)

=
P [Λtest ≤ qtol | Λkey ≥ Λtest + µ]P [Λkey ≥ Λtest + µ]

P [Λtest ≤ qtol]
(E2)

≤ P [Λkey ≥ Λtest + µ]

ppass
. (E3)

We define the total error rate Λtot as the random variable

Λtot : ΩZZ′Θ → [0, 1]

(z, z′, ϑ) 7→ 1

l

l∑
i=1

z ⊕ z′ .
(E4)

For all (z, z′, ϑ) ∈ ΩZZ′Θ, it holds that
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⇐⇒ Λkey(z, z, ϑ) ≥ Λtot(z, z, ϑ) +
k

l
µ . (E10)

We express the error rates Λkey, Λtest and Λtot in terms of the error numbers Σkey, Σtest and Σtot,

Σkey = nΛkey , Σtest = kΛtest , Σtot = lΛtot . (E11)

This gives us
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k

l
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l
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Therefore,
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and hence
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where the sum over j ranges over all possible values of Σkey that are larger or equal to the according value, i.e.

j =

⌈
n

(
σtot

l
+
l − n
l

µ

)⌉
,

⌈
n

(
σtot

l
+
l − n
l

µ

)⌉
+ 1, . . . , n , (E17)

where d · e denotes the ceiling function.

h(σtot, l, n, j) := P [Σkey = j |Σtot = σtot] (E18)

=
P [Σkey = j ∧ Σtot = σtot]

P [Σtot = σtot]
(E19)

=
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P [Ωσtot ]
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where

Ωjσtot = {(z, z′, ϑ) ∈ ΩZZ′Θ | Σkey(z, z′, ϑ) = j ∧ Σtot(z, z
′, ϑ) = σtot} , (E22)

Ωσtot = {(z, z′, ϑ) ∈ ΩZZ′Θ | Σtot(z, z
′, ϑ) = σtot} . (E23)

It holds for all (z, z′, ϑ) ∈ ΩZZ′Θ that

PZZ′Θ(z, z′, ϑ) = PZZ′(z, z
′)PΘ(ϑ) (E24)

= PZZ′(z, z
′)c , (E25)

where PZZ′ and PΘ are the according marginal distributions of PZZ′Θ. Equation (E24) follows from (2), and Equa-
tion (E25) follows from Equation (1). This implies
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where

Γσtot =

{
(z, z′) ∈ {0, 1}l × {0, 1}l
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}
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Equation (E29) means that h(σtot, l, n, j) is a hypergeometric distribution. We are interested in the tail of this
distribution,

H(σtot, l, n, d) :=

n∑
j=d

h(σtot, l, n, j) , (E31)

because according to Equations (E16) and (E17),
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There are several well-known bounds on the tail of a hypergeometric distribution [24]. For our case, Serfling’s bound
is a suitable one [25]. The appropriate special case of Serfling’s bound for this case reads

H(σtot, l, n, d) ≤ exp

(
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l

l − n
l − n+ 1
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)
(E34)

= exp
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k + 1
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)
. (E35)

(Instead of Serfling’s bound, one may use Hoeffding’s bound [26]. That bound is weaker than Serfling’s bound in this
case, but it has the advantage that it has been formulated directly in terms of hypergeometric distributions [27, 28],
so these references are easier to understand in our context.) Inequalities (E32) and (E35) together imply
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∑
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ppass
(E36)

≤
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2
)
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which completes the proof.


