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Secure Bit Commitment From Relativistic Constraints

Jedrzej Kaniewski, Marco Tomamichel, Esther Hinggi, and Stephanie Wehner

Abstract—We investigate two-party cryptographic protocols
that are secure under assumptions motivated by physics, namely
special relativity and quantum mechanics. In particular, we dis-
cuss the security of bit commitment in the so-called split models,
i.e., models in which at least one of the parties is not allowed to
communicate during certain phases of the protocol. We find the
minimal splits that are necessary to evade the Mayers-Lo-Chau
no-go argument and present protocols that achieve security in
these split models. Furthermore, we introduce the notion of local
versus global command, a subtle issue that arises when the split
committer is required to delegate noncommunicating agents
to open the commitment. We argue that classical protocols are
insecure under global command in the split model we consider.
On the other hand, we provide a rigorous security proof in the
global command model for Kent’s quantum protocol [1]. The
proof employs two fundamental principles of modern physics, the
no-signaling property of relativity and the uncertainty principle
of quantum mechanics.

Index Terms—Bit commitment,
relativity.

quantum theory, special

I. INTRODUCTION

HE goal of two-party cryptography is to enable two par-
ties, Alice and Bob, to solve a task in cooperation even
if they do not trust each other. An example of such a task is
the cryptographic primitive known as bit commitment. A bit
commitment protocol traditionally consists of two phases: in the
commit phase, Bob commits a bit to Alice!, who receives some
form of confirmation that a commitment has been made. In the
open phase, Bob reveals the bit to Alice. Security means that
Bob should not be able to reveal anything but the committed
bit, but nevertheless Alice cannot gain any information about
the bit before the open phase. While many two-party crypto-
graphic primitives have been defined, oblivious transfer and bit
commitment are undoubtedly among the most important ones
because they form essential building blocks for more complex
problems [2].
Ideally, we would like to have protocols for such primitives
that guarantee security without relying on any subjective (e.g.,
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Usually it is Alice who commits a bit to Bob. We decided to swap Alice
and Bob as it allows us to simplify the notation in the proof of our main result.
Throughout the paper, it is Bob who commits a bit to Alice.

that a safe is difficult to open) or computational (e.g., that fac-
toring a product of two large primes is difficult) assumptions.
Unfortunately, however, it turned out that this is impossible,
even if we allow quantum communication between Alice and
Bob [3]-[6]. Much work has thus been invested into deter-
mining what kind of assumptions allow us to obtain security.
Of particular interest to this paper are thereby assumptions of a
physical nature, leading to information-theoretic security. Clas-
sical examples of such assumptions are, for example, access to
some very special forms of shared randomness supplied in ad-
vance [7], access to a noisy communication channel?[8], [9] or
a limited amount of memory [10]. Similarly, it has been shown
that security is possible if the attacker’s quantum memory is
bounded [11]-[13] or more generally noisy [14]-[16].

Another assumption is that of noncommunication. More pre-
cisely, one imagines that each party is split up into multiple
agents who cannot communicate with each other for at least
some parts of the protocol. Intuitively, the use of noncommu-
nicating agents can evade the standard no-go argument because
while all agents in total have enough information to cheat, no
single agent can cheat on his own. On one hand, such noncom-
municating models have received considerable attention in clas-
sical cryptography, where such agents are often referred to as
servers [17] or provers [18]. For example, Ben-Or et al. [19]
considered a simple protocol for bit commitment that is secure
against classical attacks3 as long as the committer (Bob) is split
up into two agents, Bob and Brian, who are not allowed to
communicate throughout the protocol. This protocol can also
be modified to give security against quantum adversaries [18].
Similarly, many classical protocols for other tasks have been
proposed under the assumption of noncommunication, such as
distributed oblivious transfer [20], i.e., symmetric private in-
formation retrieval [17], [21], [22], or simple private informa-
tion retrieval [23]. In all such protocols it was assumed that the
agents of one party can never communicate during any point in
the protocol, or thereafter.

On the other hand, physicists have considered the so-called
relativistic assumptions for cryptography [1], [24]-[27]. In
essence, this takes the form of noncommunicating models
where the fact that a party’s agents cannot communicate is jus-
tified by their physical separation and the finite speed of light.
The key difference to classical noncommunicating models is
that in relativistic models the separation is generally only im-
posed during certain periods of the protocol, whereas classical
models generally assume a separation, i.e., noncommunication,
for all times. For example, relativistic protocols may only

2To be more specific what is needed is a channel with a guaranteed level of
noise. It is important that the noise is truly random and cannot be influenced by
either party.

3Throughout this paper, we will use the word classical to mean not quantum.
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demand a split into several noncommunicating agents after
the commit phase of a bit commitment protocol is over [1],
[27]. Another assumption based on relativity is the notion of
guaranteed message delivery times (see Appendix C) or the
assumption of an accelerated observer4[28].

Here, we will consider the security of bit commitment proto-
cols under the assumption that one (or both) parties Alice and
Bob, are forced to be split into noncommunicating agents. Moti-
vated by the relativistic protocols of [1], [27], we thereby do not
demand that the parties are split into noncommunicating agents
for all time, but merely during certain phases of the protocol.
A bit commitment protocol can be naturally divided into: the
commit phase, the wait phase, the open phase, and the verifica-
tion phase (see Section II-E). We thereby introduce the explicit
notion of the wait and verification phases, which are usually
only implicitly defined, in order to precisely divide the overall
interaction between Alice and Bob into time frames. Our first
contribution is

* A classification of noncommunicating models into sub-

classes which are characterized by the phases in which
Alice or Bob is split into noncommunicating agents. We
find that we can reduce our considerations to two minimal
models, namely the one in which Alice is split during the
commit and wait phases («-split) and the one in which Bob
is split during the wait and open phases ((3-split). Either of
these two models allows to evade the no-go theorem be-
cause the operations required for cheating are forbidden by
the split.
It turns out that in certain split models a new, subtle issue needs
to be addressed. If a cheating Bob is split into two agents, Bob
and Brian, during the open phase of the commitment, who
decides which bit should be opened? In standard bit commit-
ment protocols this question does not arise, as there is only
one cheating party. Bob will simply announce to Alice that he
wishes to unveil a particular bit, and try to provide a matching
proof. However, in a model of several distinct agents, Bob and
Brian could conceivably base the decision about which bit to
unveil on some external input. For example, depending on the
latest stockmarket news they both decide to open a 0 or a 1,
even though they themselves cannot communicate. Intuitively,
we would like a bit commitment scheme to be secure in the
latter setting, analogous to the case of a single party which can
of course also base its decision on external events. To capture
this subtlety, we introduce an external verifier, Victor, who
dictates which bit should be unveiled. We thereby speak of
local command if Victor only issues a command to one of the
two agents, Bob. We speak of global command if Victor issues
a matching command to both Bob and Brian. Note that Victor
should be thought of as an external verifier invoked solely to
quantify Bob’s cheating power and that he plays absolutely
no role when both Alice and Bob are honest. The local and
global command models will be defined in purely mathematical

4The authors consider two inertial participants sharing a noiseless quantum
channel in the presence of a uniformly accelerated eavesdropper. They show
that any information the eavesdropper manages to acquire is inherently noisy
which allows the two honest participants to communicate securely. It is well
known in cryptography that most cryptographic primitives can be implemented
securely as long as an external source of guaranteed noise is present.
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terms and the only reason to introduce Victor is to give these
mathematical definitions some intuitive meaning. Note that a
related concept has recently been introduced independently
in [29] under the name of the oracle input model. In a model
without separated agents, the local and global command models
are equivalent but we will see that they differ in a relativistic
setting. More precisely, our second contribution is to

* Introduce the distinction between local and global com-

mand in the models based on the -split. We show that
there is a simple classical protocol that is secure under the
local command. However, we proceed to show that there
exists no classical protocol that is secure under global com-
mand in the class of (3-split models.
The latter naturally leads to the question, whether there is a
quantum protocol that is secure even when Victor issues a global
command. A quantum protocol that is likely to be secure under
global command was given in [27]. Another quantum [3-split
protocol was proposed by Kent [1], which has the very ap-
pealing feature that it can be implemented by the honest par-
ties using only single qubit measurements in BB84 [30] bases,
without the use of any quantum memory. Yet, no explicit secu-
rity bounds were provided in [1]. Our final contribution is to

* Provide a formal security proof and security bounds for the

protocol proposed in [1] in the global command model.
We want to stress that a sketch of a security proof was given
in [1] already; however, we were unable to derive explicit secu-
rity bounds from the arguments provided there. We thus devised
an alternative proof, which allows us to find these parameters
explicitly.

Our proof requires two ingredients: first, we make use of the
fact that the two agents cannot communicate. Second, we em-
ploy an uncertainty relation in terms of min- and max-entropies
[31]. This relation was previously used to prove the security of
quantum key distribution [32] and our result illustrates its power
to prove security of other cryptographic primitives.

A. Outline

The paper is structured as follows. Section II contains some
basic definitions and technical tools essential for the proof. We
also remind the reader what a bit commitment protocol is and
what conditions it should satisfy. In Section III, we introduce the
concept of split models and, by examining the standard no-go ar-
gument, we find the minimal split requirements that might give
us security and for these we state generalized security require-
ments. We also show how certain splits arise from special rel-
ativity if we require certain parts of the protocol to take place
at space-like separated points. Section IV presents simple proto-
cols that achieve security in the minimal split models. Section V
is entirely dedicated to the bit commitment protocol proposed
by Kent [1]: first we describe the protocol and then we analyze
its security to obtain explicit security bounds.

II. PRELIMINARIES

A. Hamming Distance

Let [n] = {1,2,...,n} and let = be an n-bit string, = €
{0, 1}", and denote the kth bit of 2z by xy. Define the Hamming
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distance between two strings x,y € {0,1}" to be the number
of positions at which they differ

da(z,y) = {k € [n]: 21 D yr = 1}|.

B. Probability Distributions

Let X be a random variable taking values in X and dis-
tributed according to Px. The Rényi entropy of order o« €
Ry \ {0,1,20} is defined as [33]

1 i > log (Z PX(J‘)“) .

zeX

Ho(X) =

The special cases « € {0, 1, o0} are defined as limits H, (X ) =
limg .o Hg(X). Note that Hyo(X) = log [{z € & : Px(z) >
0}| and that the Rényi entropies exhibit monotonicity

H,(X) > Hg(X) < a<g.
For |X| = 2 and @ = 1, we obtain the binary entropy

h(q) == —qlogq — (1 — q)log(1 — q).

Let Pxy|yyv be a joint conditional probability distribution.
Pxy iy satisfies no-signaling if for all v € U,z € A the
value of the sum

Z Pyyjpv(X =2.Y =ylU =u,V =)
yey

does not depend on a particular choice of v € V.

C. Quantum Notation

Let p be a quantum state on a Hilbert space H, i.e., a positive
semidefinite operator with tr p = 1 acting on H. Let S(H) be
the set of all states on H. We say that px 4 is a classical-quantum
(cq) state if it can be written in the form

pxa =Y Px(z)x)(x

ceX

X ®prv

where Py is a probability distribution and p,, € S(H.4). Then,
we define the probability of guessing X given access to the
quantum system A as

I'u(‘quA:: < P’Z‘t“]\/fo,
e (X14) 5= prax 3 Pr(o)tr(Mop.),

Tl rex

where the maximization is taken over all positive oper-
ator-valued measurements (POVMs) on H 4. The min-entropy
of X is defined as Hpin(X) := Hoo(X). The min-entropy of
X conditioned on A is defined as

Hanin (X |A4) 1= — 10g pyucss (X]A).

We say that pxy is a classical—classical (cc) state if it can be
written in the form

> Pxv(@myla)e

reX,yey

PXY = x @ lyXyly-
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The max-entropy of X is defined as Hyax (X)) := H1(X). The

max-entropy of X conditioned on Y is defined as ’

Hypax (X]Y) := log Z Pr[Y =y] - Hmax (X[V=y)
yey

D. Uncertainty Relation

Let papc be any tripartite state and let {M.}.cz and
{N,}.cx be two POVMs on the A subsystem whose mea-
surement results are represented by classical random variables
Z and X. The following cq-states arise from performing the
measurements mentioned aboves:

pzB =Y |2)(2]z @ trac(M.pasc) and
zCZ

pxc = |5)(#lx @trap(Nopapc).
reX

Theorem II.1 [31]: For any tripartite state papc the fol-
lowing uncertainty relation holds:

1
Hlnax(Z|B) + Hmin(X|C) 2 IOg ) (1)
C

where the entropies are evaluated for pzp and px¢, respec-
tively, and ¢ := max. , |V M.V N,|%.

E. Bit Commitment

Bit commitment is a primitive that allows Bob to commit a
bit b to Alice in a way that is both binding (Bob cannot later
convince Alice that he actually committed to 1 — b) and hiding
(Alice cannot figure out what b is before Bob decides to un-
veil it). In this section, we discuss how to describe a bit com-
mitment protocol® and how to formalize the desired security
requirements.

Any action taken by Alice or Bob can be described by a com-
pletely positive, trace-preserving (CPTP) map and the entire
protocol can be defined by specifying these maps. In this paper,
we will denote maps performed by Alice and Bob by A and &,
respectively. The subscript X — Y means that the map acts
on (reads and/or modifies) the existing register X and creates a
new register Y. Moreover, identity is assumed on any subsys-
tems not explicitly mentioned within the map: Ax .y (pxyz)
stands for (Ax .y ® idz)(pxyz).

The usual description of a bit commitment protocol divides it
into two phases: commit and open. However, as our scenarios
rely on timing and communication constraints, it is useful to be
more explicit about the structure of the protocol. We divide the
protocol into four phases: commit, wait, open, and verify. The
commit and open phases are the essence of the protocol: they are
the only phases during which Alice and Bob interact. The wait
phase acts merely as a separator (this is when the commitment
is valid), while in the verify phase Alice uses the information

5To simplify the notation, we will omit all the subsystems on which the pro-
jector equals identity. Hence, in our shorthand notation M. p .45 stands for
(M. 2 1pc)pasc.

®Note that we do not consider the most general class of protocols as we as-
sume that the open phase involves one-way communication from Bob to Alice
only.
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collected in the previous phases to verify the commitment and
decide whether to accept or reject it.

Let papc be the state that Alice and Bob share at the end of
the commit phase if they are both honest.” The subsystems A
and B are controlled by Alice and Bob, respectively, while sub-
system C' is a classical register in Bob’s possession indicating
which bit Bob has (honestly) committed to. Let 35", , be the
quantum operation that Bob applies in the open phase and it
should be thought of as extracting a proof of his commitment
from the subsystems B and C and storing it in the (possibly
quantum) subsystem P38

_ zopen
pasrc = ®5c p(paBc).

In the last step of the open phase, Bob passes the subsystems
P and C to Alice. Note that as ' is a classical register Alice
is automatically assumed to read it and, hence, she finds out
what Bob claims to have committed to. Let A% ne_ . be the
quantum operation that Alice applies in the verify phase, which
creates a classical binary register (flag), F’, indicating whether
the commitment is accepted or rejected

Avcrify

pappcr = Aypc_p(papro),

and let us denote a (classical) basis of the subsystem F' by
{]accept), [reject) }. Describing the honest protocol suffices to
define correctness.

Definition II.1: A bit commitment protocol is perfectly cor-
rect if popc satisfies

(accept| trappe A pd_ p (PR b(pape))|accept) = 1.

If one of the parties is dishonest and does not follow the pro-
tocol then the state shared between Alice and Bob is no longer
well defined. We will use ¢ to denote such a dishonest state?
to distinguish them from the honest states denoted by p. Secu-
rity guarantee for honest Bob states that Alice finds it difficult
to guess the value of his commitment before the open phase.
If Alice is dishonest and does not follow the protocol then the
state shared at the end of the commit phase, 7 45¢, does not
necessarily equal p4pc. However, it is important to note that
the classical register C is still well defined since Bob is honest.
Let K 4 be the set of all tripartite states that Alice might enforce
at the end of the commit phase. Informally, a bit commitment is
&-hiding if for any cheating strategy the probability that Alice
guesses the committed bit correctly before the open phase is up-
perbounded by % + 4.

Definition I1.2: A bit commitment protocol is 6-hiding if all
ogapc € K4 satisfy

1
pglless(C‘A) S 5 + 5

Similarly, if Bob is dishonest then different states may be
reached at the end of the commit phase and let K3 be the set of

7Any private or shared randomness is included in the description of the state,
hence, given a protocol we can extract a unique p 4 ¢ -

8The honest opening map will simply read the value of the classical register
(", hence, its state will not be affected.

9We make no assumptions on what the dishonest party stores in their part of
the state. In particular, it might contain some ancillary systems to be used later.
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all states that he might enforce at the end of the commit phase.
Note that the classical register C' is no longer well defined so
we will simply talk about bipartite states c 45 € Kg. In order
to cheat successfully Bob must be able to produce valid proofs
for both values of C', which implies that there are two distinct
dishonest opening maps: Bob applies @;jlij‘;f’c if he chooses to
open 0 and ®%'°*%:1, if he chooses to open 1. The cheating map
(D“Bhf}bc extracts the proof of having committed to b from the
subsystem B, stores it in the subsystem P and stores & in the

newly created register C
otpp ® b)(ble = 2F < pe(0aB).

In the last step, Bob gives P and C to Alice, who verifies the
commitment using the honest map. Let p, be the probability that
Alice accepts Bob’s unveiling of b

Ap p (25 e (0.48)) laccept).

2
The security conditions on py and p; depend on whether we are
in the classical or quantum framework. Classically, we require
that at the end of the commit phase at least one of {pg, p1} is
small. However, this requirement turns out to be too strong in
the quantum world as explained in [34] and a weaker security
condition is proposed in the same paper.

Definition I1.3: A bit commitment protocol is e-weakly
binding if for all oo € Kp and for all cheating maps
{‘I‘glf;ﬁbc}be{og} we have pg +p1 < 1 +e¢.

Unfortunately, this definition does not give us composability
(see Appendix B-A for a counter-example). On the other hand,
the usual composable definition used for quantum protocols in-
troduced in [12] turns out to be too stringent for the scenarios
considered in this paper (see Appendix B-B for details). Hence,
throughout the paper we will stick to the weaker, noncompos-
able definition.

Py = (accept|trAch

III. RELATIVISTIC MODELS

Before considering relativistic models, let us briefly examine
the original no-go argument (for the full version please refer
to [3], [4]) to see how it might be circumvented by imposing
certain communication constraints.

A. Original No-Go Argument and the Split Models

First note that we can restrict ourselves to protocols in which
the state shared between Alice and Bob is pure at all times.!10
Let |¢% ) be the state at the end of the commit phase if Bob
has decided to commit to 5. We require that Alice should not be
able to distinguish the two cases just by looking at her subsystem
which implies that p*, = pl|, where p4 = trp [¢% 5)(¢% 5. By
Uhlmann’s theorem [35], there exists a unitary Up acting on
the subsystem 13 alone such that Up|¢% 5) = |6 5). Hence,
if the states corresponding to both commitments are the same
on Alice’s side then Bob can cheat perfectly. This argument can
be extended to the case in which p% and p!; are close in trace
distance (which means that they are difficult to distinguish) and
then one can show that Bob can still cheat with high probability

10We assume that Alice and Bob start in a pure state and then all the actions
can be performed coherently.



KANIEWSKI et al.: SECURE BIT COMMITMENT FROM RELATIVISTIC CONSTRAINTS

(for the exact tradeoff based on this idea refer to [36]; for the
optimal bounds on quantum bit commitment see [37]).

What is a split model? Informally, a split model is a model in
which at least one party is required to delegate multiple agents
to perform certain parts of the protocol in a noncommunicating
fashion. In this paper, we only consider models in which we
require a party to delegate at most two agents. The basic rule
of two-party cryptography is that there are no third parties: the
world is split between Alice and Bob only, anything that does
not belong to Alice is fully controlled by Bob. Now suppose that
the split model requires that there are two agents of Bob (Bob
and Brian). It is still true that Bob and Brian fogether control
everything that does not belong to Alice. However, the class of
operations they can perform in a noncommunicating fashion is
now restricted, which might give us security. It is clear that the
only way to achieve security is to split Alice during the period
for which security for Bob should hold or vice versa. Therefore,
we arrive at two relevant splits.

» -split: Alice is split during the commit and wait phases.

» [3-split: Bob is split during the wait and open phases.

The standard no-go does not apply to the a-split model be-
cause while p% might be globally fully distinguishable from
pYy they might locally look the same for both Alice and Amy
(her agent). The 3-split evades the no-go because the global
unitary Uz might be impossible to perform by Bob and Brian
without communication. Note that whenever we say that a party
is split during two (or more) consecutive phases of the protocol
we mean one long split throughout the whole period rather than
a sequence of short ones (the agents are not allowed to get to-
gether in between).

We treat the splits as a resource. Hence, we are interested in
the minimal splits that give security and we will show that «
and J are such minimal splits. What about models that impose
strictly more restrictions than those? On one hand, any protocol
secure in the minimal split will remain secure in the more split
model, we only need to ensure it is still feasible. For example,
the protocol from [1] was originally proposed in the model in
which both Alice and Bob are split during the wait and open
phases, while our analysis applies to the 3-split model (strictly
less split). Therefore, our proof automatically extends to the
original setting. On the other hand, imposing more split might
allow for new, simpler protocols. For example, for the case of
Bob being split at all times there exists a number of protocols
[18], [19], [24], [25].

The number of possible split models is rather large and
examining all of them case-by-case is unlikely to give any
valuable insight. Hence, in this paper we only focus on the
minimal splits: « and (. It is clear that a split imposed on
Alice will only affect her cheating power (not Bob’s) and it
is only the security guarantee for honest Bob that needs to be
generalized. In the «-split, Bob commits to a bit by talking
to Alice and Amy (subsystems A and A’, respectively) and a
natural generalization of the hiding condition is to require that
neither of them acquires significant knowledge about the value
of C. In analogy to the nonsplit case, let X4 4+ be the set of
states that dishonest Alice and Amy can enforce at the end of
the commit phase. Then the split counterpart of Definition I1.2
can be written as follows.
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Definition III.1: An «-split bit commitment protocol is
(5—hiding ifall c44:c € Kaar satisfy

1
Pauess(C]X) < 5+ §for X = {A, A"}

Similarly, in the 3-split let g5 be the set of states that dis-
honest Bob and Brian can enforce at the end of the commit
phase. In the Section I, we mentioned the concept of an external
verifier Victor who challenges Bob to open a particular bit and
this is how we quantify Bob’s cheating power. In the case of
Bob and Brian performing two openings separately, we need to
specify whether Victor only tells Bob what to unveil or both
Bob and Brian receive the message. We call these two scenarios
the local and global command models, respectively. The first
variant corresponds to the situation in which Bob makes the de-
cision while Brian intends to behave consistently. If b is the bit
that Bob intends to unveil then the cheating maps in the local
command model take the form

cheat,local,b cheat,b
P =&

cheat
B —rrce = Pp_pc @ P

B'—DP'C’
i.e., Bob’s actions depend on b but Brian’s behavior is indepen-
dent of it.

The natural motivation for the second scenario is a situation
in which the agents are not allowed to communicate with each
other but they might receive information from the outside world,
hence, they both know 4. The cheating maps in the global com-
mand model take the form

(bcheat.global,b

_ (I)cheat,b
BB'—=PP'CC' —

B—PC ® (I‘Cél’itj—?’(?’;

i.e., both opening maps depend on the value of b. Using the def-
inition of py, the probability of successfully opening b, intro-
duced in (2) we can state the security condition in the J-split
model.

Definition II.2: A [-split bit commitment protocol is
e-weakly binding in the local (global) command model if for all
oapp € Kpp' and all the cheating maps allowed in the local
(global) command model we have pg + p1 < 1 + .

The two variations of the F-split model turn out to be rather
different from the security point of view: there exist simple clas-
sical protocols secure in the local command model, while no
classical protocol can be secure in the global command model
(for details please refer to Section IV-B). Hence, to satisfy this
stronger security requirement one needs to resort to quantum
protocols and we investigate one of them in Section V.

B. Relativistic Motivation

Special relativity states that information cannot travel faster
than the speed of light. Hence, if we are guaranteed that sites
X and Y are at some well-defined distance we can calculate
the minimum time it takes for a message to travel from X to
Y (or vice versa). This motivates guaranteed message delivery
time models, in which transmitting messages between certain
parties takes a finite amount of time. To the best of our knowl-
edge, these were the first models in which relativistic bit com-
mitment was proposed [24], [25] (please refer to Appendix C
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| ‘ Brian ‘ ‘ Bob ‘ ‘ Brian
(a) (b)
Fig. 1. If Bob is required to perform two separate openings it becomes impor-

tant whether the command which bit he is supposed to unveil is transmitted to
just one or both agents. (a) Local command. (b) Global command.

‘ 1. commit ‘ 2. wait ‘ 3. open ‘ 4. verify
| a : Alice is split |
| B : Bob is split |
Fig. 2. Two relevant types of separations: a and 3.
t
1 T
I
|
i R
1F----- - - - - - - — - ————— === -
1 I |
1 I |
I I |
i | |
Il I |
Op====77 . & :
If I |
-1 0 1 z

Fig.3. Light gray regions represent the light cones of ¢ and 1, while dark gray
corresponds to the common past or future. P is the latest point of the common
past, while 1" is the earliest point of the common future.

for a brief summary of what is known about these models). Spe-
cial relativity can also motivate certain split models as explained
below.

We consider the model proposed by Kent [1], [27]. Take the
speed of light to be 1, let (x, #) be the coordinates for Minkowski
space and define the following three points: P = (0,0), Q =
(-1,1), R = (1,1). It is clear that P is the latest point that
belongs to the common past of () and F (see Fig. 3). Hence, no
signal emitted after £ = 0 (regardless of where it was emitted
from) can reach both ¢} and 2. Kent’s bit commitment pro-
tocols take advantage of this scenario by assuming that each
party has an agent at P, ¢}, and R and they are allowed to send
information at the speed of light. The commit phase happens
at P while the open phase happens at ¢} and 2. The resulting
communication constraints are illustrated in Fig. 4. It is clear
that the communication constraints following from this con-
figuration in space-time are strictly stronger than those of the
[-split. This serves as a proof of principle that at least certain
split models can be physically realized by requiring different
parts of the protocol to take place at different, space-like sepa-
rated points.
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Commit phase Wait phase Open phase
| atice | | Aliee | | | Amy | | Aliee | | | Amy |
‘ Bob ‘ ‘ Bob ‘ ‘ Brian ‘ ’ Bob ‘ ‘ Brian ‘

Fig. 4. Effective communication constraints imposed by Kent’s model [1],
[27].

IV. BIT COMMITMENT PROTOCOLS FOR THE MINIMAL SPLITS

In Section I1I-A, we argued that either « or 3-split needs to
be imposed for security to be possible. In this section, we give
explicit examples of protocols which are secure in each of the
two cases.

A. Protocols Based on «o-Split

The «-split allows for a simple bit commitment protocol
based on secret sharing. Such protocols will have the feature
that once the commit phase is over, the combined systems of
Alice and Amy determine the committed bit and the commit-
ment only lasts as long as the separation is maintained. This
is similar to the distributed oblivious transfer scenarios [20] in
which security disappears as soon as the agents are allowed to
communicate.

Protocol 1 Bit commitment from secret sharing

1) (commit) Bob commits to b € {0, 1} by generating a
random bit  and sending b & r to Alice and r to Amy.
2) (open) Alice and Amy calculate b = (b @® r) @ r.

Security against classical adversaries follows directly from
the properties of secret-sharing. It is also secure against quantum
adversaries (see Appendix D-B for details). As there exists a
classical protocol that is perfectly secure (even against quantum
adversaries) in this scenario quantum mechanics gives us no
advantage for the purpose of bit commitment.

B. Protocols Based on (3-Split

In contrast to the «-split case commitments based on the
B-split can be made permanent—Bob and Brian can always
refuse to participate in the open phase and Alice will learn
nothing about their commitment. As discussed in Section I1I-A,
we need to distinguish between the local and global command
models.

1) Security in the Local Command Model: Tt turns out that in
the 3-split model under the local command there exists a simple
classical protocol that achieves security.

Protocol 2 Bit commitment in the local command model

1) (commit) Bob chooses a bit b and shares it with Brian.

2) (open) Bob and Brian independently send to Alice a bit
they claim to have committed to (denote these bits by
and y, respectively).

3) (verify) Alice accepts the commitment of b if b = & = 3,
else she rejects.
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It is easy to convince ourselves that the protocol is secure
(according to the weakly binding definition). The problem that
Bob and Brian face is to correlate the bits they are trying to
unveil. In order to do that they either have to agree on the bit in
advance (which corresponds to an honest commitment) or they
would have to violate no-signaling. For a more detailed security
analysis, we refer to Appendix D-C (see also the independent
discussion of this and related points in [29]).

2) Security in the Global Command Model: We have seen
that in the local command model there exists a very simple bit
commitment protocol that achieves security. Unfortunately, as
soon as we switch to the global command the protocol becomes
insecure—Bob and Brian can cheat perfectly. Let us consider
what is and what is not possible in the 3-split model under the
global command.

1) Classically: Classically, it is not possible to achieve se-
curity in the @-split model under the global command and the
informal argument goes as follows. As the protocol needs to be
correct Bob and Brian must be able to honestly commit to either
bit, i.e., they must be able to agree on unveiling strategies!! that
will make Alice accept either bit even without any further com-
munication between Bob and Brian. Since the protocol is hiding
the interaction during the commit phase cannot give away any
information about the committed bit and, therefore, both strate-
gies remain valid until the beginning of the open phase. Hence,
whichever bit Bob and Brian are told to unveil they can always
succeed.

2) Quantum Mechanically: The informal argument pre-
sented above does not apply in the quantum world due to
the no-cloning principle. The opening strategy may rely on
some quantum system that is available to Bob right before the
split—but cannot be shared with Brian without loss. The first
protocols in the J-split model were proposed by Kent [1], [27]
and Section V focuses on one of them.

V. BIT COMMITMENT BY TRANSMITTING
MEASUREMENT OUTCOMES

We introduce a variant of the bit commitment protocol by
Kent [1] and then present a security proof that leads to explicit
security bounds.

A. Protocol

The original protocol presented in [1] uses BB84 states. How-
ever, for the purpose of the proof we analyze its purified analog
(which is equivalent from the security point of view). Denote
the computational basis by By = {|0}, |1}} and the Hadamard
basis by By = {|+),]—)}.

Note also that the original scenario described by Kent makes
strictly more assumptions (because it requires both parties to be
split rather than just one). However, we will see that whether
Alice is split or does not affect the security. Hence, the security
proof for the 3-split model presented here automatically applies
to the setup originally proposed by Kent.

11Bob and Brian agree on unveiling strategies during the commit phase, which
they are allowed in the 3-split model. This argument might not apply in the case
of stronger splits (e.g., Bob and Brian split at all times).
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Protocol 3 Bit commitment by transmitting measurement
outcomes

1) Alice creates 2n EPR pairs and sends one half of each
pair to Bob.

2) (commit) Bob commits to a bit b by measuring every
qubit he receives in B;,. Denote the outcomes by 7' (a
classical bit string of length 2n).

3) (end of commit) Bob splits up into two agents: Bob
and Brian. Each of them holds a copy of T'. No more
communication is allowed between Bob and Brian until
the end of the protocol.

4) (open) Bob opens the commitment by sending b and 7" to
Alice. Brian does the same.

5) Alice picks a random subset Z C [2n] of size n and
let X' := [2n] \ Z. She measures the qubits from Z in
the computational basis and the qubits from A" in the
Hadamard basis. Denote her measurement outcomes by
S (a classical bit string of length 2n).

6) (verify) Alice performs three checks:
 Alice checks whether the values of b submitted by Bob

and Brian are the same.

* Alice checks whether the strings submitted by Bob and
Brian are the same.

* Alice checks whether the strings submitted are
consistent with S (consistency check on qubits she
measured in B, only).

If all three checks pass then the opening is accepted.

As mentioned in Section II-E, a secure bit commitment pro-
tocol should satisfy three conditions. If Bob is honest he will
choose a bit b, perform the correct measurement to obtain the
(classical) string T'. After the split Bob and Brian will both pos-
sess identical copies of b and T', which they send to Alice during
the open phase. Hence, the first two checks clearly go through.
The third check goes through because honest Alice prepared
perfect EPR pairs, measured them to obtain string S and so
strings .S and T’ must be perfectly correlated on the qubits mea-
sured in the same basis. Hence, the protocol is perfectly correct.
Security for honest Bob is also easy to see. Alice does not re-
ceive any information before the open phase, hence, she cannot
learn anything about Bob’s commitment by no-signaling and the
protocol is 4-hiding for § = 0. Therefore, we only analyze se-
curity for honest Alice, i.e., show the following result.

Theorem V.1: Protocol 3 in the 3-split model under the global
command is e-weakly binding, where

, s 1 .
e= inf 2! "(-R@) 4 2 exp (——an) ,
5¢(0,%) 2

where h(-) is the binary entropy function as defined in
Section II-B.

Note that not only does & vanish in the limit n — oo but also
the rate of decay is exponential in n (n is the number of rounds
played, hence, the resources necessary to execute the protocol
grow linearly in n). The fact that ¢ decays exponentially would
be a great advantage if the protocol were to be implemented
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experimentally and shows that the protocol might be of practical
interest.

B. Security for Honest Alice

1) Notation: Letus denote the state of the system at the end
of the commit phase by o 4 g’ , where subsystems A, B, and B’
belong to Alice, Bob, and Brian, respectively. Alice is honest so
we know the exact state of her subsystem—it contains 27 qubits,
which have already been partitioned into sets Z and &X’. This
justifies a natural partition of the subsystem A into subsystems
Az and Ay, each containing exactly n qubits. Let quantum
operation AL, for G € {Az, Ay}, b € {0,1} correspond to
measuring all qubits from the subsystem ( in the basis B;. The
relevant projectors can be formally defined as

P = Y1) sla O, G)

where s € {0,1}". Denote the environment by ¥ and the sub-
system used to store the measurement outcomes by F’. Then AL,
is defined as

(s]F @ trg (P3°poE).

Z B

The three relevant measurements are A% _, AL A%

first two are actually performed in the honest protocol, while
the third one is a virtual measurement, required for the proof
only. Bob and Brian are expected to extract a string from
their respective quantum systems. Let us simplify the notation
introduced in Section II-E and denote Bob’s map intending to
open b and producing string 7' as the output by ®%. Similarly,
for Brian denote the map intending to open ¥’ by @”é, and the
output string by 7". Observe that &Y, (@%,) is restricted to op-
erate on the subsystem B (B') only. The string T corresponds
to measuring all 2n qubits. Once Alice has chosen the partition
into Z and X we can naturally split it into two substrings
T = {Tz,Tx}, which correspond to the outcomes obtained
from the qubits from sets Z and X, respectively. Splitting 7'
into two substrings is useful because when Alice has to decide
whether to accept or reject the commitment she will only look
at one of the substrings (the one measured in the same basis).
Clearly, analogous partition applies to 77 = {7T%, 7% }.

2) No-Signaling Constraints: Letus think of Alice as talking
to Bob and Brian separately and making a separate decision
(whether to accept or not) for each of them. We can see that
this gives rise to a joint probability distribution with two in-
puts and two outputs: the inputs are the bits that Bob and Brian
were asked by Victor!2 to unveil (b and &', respectively), while
the outputs are Alice’s binary ({accept, reject}) outcomes (one
on each side). We have already defined the maps that Bob and
Brian will apply so now we just need to specify what the tests on
Alice’s side are. As described in the protocol, Alice will check
whether the relevant substring (determined by the partition into
Z and X&) is identical to her measurement outcomes and these

PFE ‘= AG PGE)

12We are in the global command model so both Bob and Brian know what
they are trying to unveil.
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TABLE I
JOINT PROBABILITY DISTRIBUTION DESCRIBING THE
TWO SPACE-LIKE SEPARATED OPENINGS

Alice and Brian
¥=0 =1
accept | reject H reject | accept

b=0 accept Do a2 . «

. - reject a a a a
Alice and Bob J 21 22 23 2
b=1 re]ect . . . as4
accept - . . D1

checks can be expressed as projectors. For example, if Bob tries
to open b = 0 (b = 1) Alice will apply I1% (I1},), where

1 = 3 o)
1_IB —Z| |S\

To check Brian’s opening she would apply I1%, or I1L,, which
can be obtained from the projectors above by replacing 7" with
T’. Note that the opening maps performed by Bob and Brian and
the tests performed by Alice allow us to evaluate the joint proba-
bility distribution, which is represented in Table I.13 As Bob and
Brian act on disjoint quantum systems and the tests performed
by Alice are classical the probability distribution must satisfy
no-signaling. Note that we replaced certain fields (a1 and a44)
by the probability of successfully opening 0 and 1 (pg and p1),
respectively. This follows from the definition of py in the global
command model

S|Sz ® |S><S|TZ’

s)(s

T+

pq := Prlaccept, accept|b = d, b’ = d]. @)

Also, we have replaced a14 by « because it turns out to be the
quantity we will bound in the second part of the proof. The fol-
lowing lemma uses the no-signaling principle to find an upper
bound on the sum of py and p;.

Lemma V.1: No-signaling between Bob and Brian implies
that po + p1 < 1 4 .

Proof: Consider the following no-signaling constraints:

&+ as4 = az4 + p1 and az1 + aze = as3 + as4. Moreover, we
know that each quarter adds up to 1 so pp+ @12+ a21 +ase = 1.
Combining the two conditions gives

po+p1=1—a12 —a21 — 022 + o+ aoy — a3y

=1—a1o—ao3+a—ass <14 a.

]

Hence, it is enough to show that as the number of rounds =

increases o can be made arbitrarily small, which is the focus of
the next section.

3) Impossibility of Guessing Both Strings: The probability «

corresponds to Bob trying to unveil b = 0, Brian trying to unveil

b = 1 and both openings being accepted. Let ps. s, 1= 172 T,

13The variables that do not appear in our argument have been replaced with
placeholders.
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be the state after all three parties have performed their measure-
ments (note that this state is purely classical)

psssatararir, = (A, @ Ay, ® O ® ®p)pazacnn.

As « is the probability that ps . 5,7 1, 7, 7/, passes the relevant
tests it can be written as
a = tr(U3T g ps. 5, 1o T T, T, )- (5)
As operators acting on disjoint subsystems commute, we can
change the order slightly
o= tr(H%HlB’psszTszT'ZTfy)

= tr(H%Hg/(A%Z ® A‘14x ® ‘I)% b2y (I)}')’/)PAZA,VBB’)

= tr(MBME (AL, © Pp ) (A%, © PR)pa-aynn)

= tr (I} (A%, ® ) [H(AS, ® ®%)pazann]).

Define
pi=tr (LAY, ® ©%)paaep ).
ass 1
PZJ;,TA,B/ = ]_trS' =Tz [HO (AO & iy )p<AZA21’BB/:|'

It is easy to see that p is the probability that Bob passes his test
pass

and p; 7, g/ 18 the normalized state conditioned on passing.
Hence, «¢ can be written as

a=tr (g (AL, ® @}B,)pp‘f:}% 5D ©)

This way of writing « allows us to apply Theorem II.1 to the
tripartite state 'y’ 5.
Lemma V.2: For any strategy adopted by dishonest Bob

1 .
a < inf 207 nARO) 4 9exp (—inﬁz). @)

6€(0,3)

Proof: The trace on the right-hand side of (6) corresponds
to the probability that Brian guesses Sy correctly by applying
his opening map on his subsystem conditioned on Alice ac-
cepting Bob’s opening. The guessing probability using a fixed
map ®1,, is upperbounded by the optimal guessing probability
[38] which can be written in terms of the min-entropy. Hence,

Ué
p

pass

(HB/(Al ®(I)1’)prT;(B’) <2- nun(SYlB) (8)

where the min-entropy is evaluated on the state pg,.p =
trr, AL (P57, 5)- To use the uncertainty relation (1), we
also need to consider pg . := tre: A% (p5°7 p), which
would be obtained if Alice decided to make the third (virtual)
measurement in a complementary basis. Combining (1) with
(8) gives

&< ZHMX(SY\T,Y)*”« )

p
where Hmax(é',ﬂTX) is evaluated on pg 5 . Note that now
we just need to bound the classical conditional max-entropy be-
tween two classical random variables (the state pg . is purely
classical). It turns out that it is enough to show that the Hamming
distance between S’X and T’y is small with high probability. To

get such a bound, we need to examine the (fully classical) state
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PSsBaTsTy = trg/ [(AO ®A0 ® (I) ® idB/)pABB/] The
fact that Z ‘and X are random subsets of [2n] allows us to derive
the following inequality from the Hoeffding bound [39] (details
in Appendix A)

) 1
Pr [dH(S,y,T,y) > 6n Adu(Sz.Ts) = 0} < exp (-577,52)
(10)

=lE&.

We can also write it as conditional probability
Pr [dH(S'X,TA’) > on|du(Sz,T=) = 0} < i-,
p

because di(Sz,Tz) = 0 is equivalent to Bob passing the test
(and happens with probability p as defined in (Section V-B.3)).
LetO < b < % and define a binary event, I', such that

F::{O
1

IfI' = 0 then for any particular value of Ty = ¢4 the Rényi
entropy!4 of order 0 can be bounded by

it du(Sy,Ty) < bn,
if dH(S‘y, Tx) Z 6’/L.

[né]
. n
Ho(Sx|Ty = tx,I = 0) < log ZU (l) < nh(8),
where the last inequality comes from a well-known bound (see
e.g., in [40, Lemma 16.19]). The monotonicity of classical
Rényi entropies implies that

Hyax (Sx [Ty = ty, T = 0) < Ho(Sy|Ty = ty,T = 0).
(11)
IfT = 1 then we have no bound better than the maximal value
Huux(Sx|Txy = ty, ' = 1) < n. It can be shown (see, e.g.,
[41, Sec. 4.3.2]) that the conditional max-entropy for classical
states reduces to

Hmax(Z|Y log Z PI‘[Y = y nnx(ZlY 1/)

yey

As neither of our bounds depends on the particular value of
Ty = ty,they will not be affected by averaging over all strings
tv. Hence, we only need to average over I'
2Hn)ax(‘§X‘TA"7F) — PI‘[F — ()] . 2Hnmx(sx\Tx,F:0)
+Pr'=1]- 9Hmax(Sx [T T=1)

< (1 o i)znh(é) + i2n < 2nh(é) 4 2'_5
p p

P
12)
One bit of information cannot decrease the entropy by more than
1 bit (see, e.g., [41, Proposition 5.10]), hence

Hunax (S| Tx) < Hupax (S [T, T) + 1. (13)

Hence, from (9), (12), and (13) we obtain
a<2p |: —n(l- h(b))+ :| <21—n(1—h(6)) + 2cxp (—17162)
2 3

which directly implies our claim. |

14A11 entropies are evaluated on p g T » €xcept for Huin (Sx |B”) which is

evaluated on pg . g/ .
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Commit phase Wait phase Open phase

‘ Alice ‘ | ‘ Amy ‘ ‘ Alice ‘ I ‘ Amy ‘ ‘Alice‘

NS NS

Fig. 5. a-split model: Alice is required to be split during the commit and wait
phases.

Commit phase

‘Bob‘

Wait phase Open phase

Fig. 6. 3-split model: Bob is required to be split during the wait and open
phases.

Finally, Theorem V.1 follows directly from Lemmas V.1 and
V.2.

VI. CONCLUSIONS AND OPEN QUESTIONS

Our interest in bit commitment protocols based on the rel-
ativistic constraint was sparked by recent papers by Kent [1],
[27]. While the author gave an intuition for the security of the
protocol based on BB84 states, no explicit security bounds were
given. Once we had proven the security of the protocol and cal-
culated such bounds, we became interested in other split models:
which of them can give us security and in which of them are
quantum protocols more powerful than classical ones? We have
investigated the minimal split assumptions that might allow for
secure bit commitment and we have shown that they are indeed
sufficient. We have found that in the (3-split under the global
command quantum protocols are more powerful than classical
ones.

We have proven security of bit commitment with respect to
the weakly binding definition, which is noncomposable. We
also know that the usual stronger definition (which would imply
composability) is not achievable. We cannot hope for universal
composability but maybe it is possible to prove some weaker
form of composability. For example, is it possible to combine
n bit commitment protocols [1] to obtain a secure string com-
mitment scheme? If it is not secure one might investigate if
there are some extra constraints (e.g., that the commit phases
are executed sequentially or that the unveilings happen simul-
taneously at space-like separated points) that would guarantee
composability.

One might also wonder whether these models allow us to con-
struct other cryptographic primitives. Probably the most natural
one to look at would be oblivious transfer [42], [43]. Unfortu-
nately, the primitive of oblivious transfer requires the security
to last forever. This would only be possible if certain parties re-
mained split forever, which cannot be motivated by relativistic
assumptions. Moreover, if certain parties were to remain split
forever then oblivious transfer can be implemented even clas-
sically [20]. It is possible, however, that some weaker form of
oblivious transfer (in which the security does not last forever)
can be proven secure in relativistic models.
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APPENDIX A
HOEFFDING BOUND

In Lemma 7, we need to bound the probability that sampling
a small, random substring gives rise to the statistics which is
very different from the true statistics of the entire string. The
Hoeffding bound is exactly the tool we need. Suppose that we
have a string of length 2n which contains n.,, errors and let
A= "2 denote the error fraction in the whole string. Let us
take a random sample of the string of size & and denote the error
fraction in the sample by A. Then, the Hoeffding bound [39]
states that

— b} 1
Pr {A > A+ —] < exp (—k&Q) .
2 2
Adding an extra event cannot increase the probability
_ § 1
Pr [Az A+ 5/\/\:0} < exp (—5k52> .

The expression inside the square bracket can be rewritten,
giving us

1
Prne: > dnAX=0] <exp (§k62> .

This is exactly the bound we use in (10).

APPENDIX B
COMPOSABILITY ISSUES

For the sake of completeness, we state some observations
concerning composability. On one hand, we show that the weak
bindingness definition is not composable (by giving an explicit
counter-example). On the other hand, we argue that the usual
stronger definition [12] cannot be satisfied in the split setting.

A) Counter-Example to the Composability of the Weakly
Binding Definition: In Section II-E, we explained what it means
that a bit commitment protocol is weakly binding and we also
said that the definition does not guarantee composability, e.g.,
executing the protocol » times does not necessarily give a se-
cure string commitment (string commitment is an extension of
bit commitment in which we are allowed to commit to a bit-
string of length n rather than just a single bit). Let us explain
what the source of the problem is. Consider a bit commitment
protocol which is binding in the sense that with probability %
Bob can unveil either bit successfully and with probability % he
will fail regardless of his intentions. Clearly, we would not call
this protocol secure. However, as pg = p1 = % it satisfies the
e-weakly binding definition for e = 0. To expose the problem
even further, consider the task of string commitment. Analo-
gous to the bit commitment case suppose that at the end of the
commit phase Alice and Bob share a state pa. Let g.(pap) be
the probability that Bob successfully unveils string s. Then it
is natural to say that a string commitment protocol is 6-weakly
binding if for all states p 4 it satisfies

> qulpan) < 1+6.

Now consider a string commitment protocol such that Alice
with probability % accepts anything while with probability %
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rejects everything. It is clear that this is not a secure string com-
mitment box as 3, ¢s(pap) = 52" = 2" 1. However, if we
look at each bit separately we will find that pg = p1 = % and so
each bit commitment is weakly binding. This shows that com-
bining n weakly binding bit commitments does not imply that
the resulting string commitment is secure.

B) Impossibility of Satisfying the Stronger Definition:

Definition B.1 [12]: A bit commitment protocol is
e-binding if the fact that Alice is honest ensures that for any
state at the beginning of the open phase, p4pg, there exists an
extension of the form

pasp = Pp(0)0){0p @ phz + Pp(1)|1){1|p ® plp,

where D is a classical register and Pp is a probability distribu-
tion, for which the conditioned states satisfy p1 5 (p’% ) < € for
b e {0,1}.

While this definition has proven useful in the bounded and
noisy storage models [11], [14] we argue that it is generally
inapplicable outside of these scenarios. The security in these
models results from the fact that Alice and Bob cannot purify
the protocol, as there is a subsystem, referred to as the envi-
ronment, ¥, which they do not have access to. In other words
pAp is not pure because we trace out the environment ¥, e.g.,
a pure state |¢) apg leads to pap = trg |9){¢|apr. The fol-
lowing argument shows that if the model does not prevent the
parties from purifying the protocol then Definition B.1 can only
be satisfied for ¢ > % Suppose that Bob commits to an equal
superposition of 0 and 1 (as explained above). If Alice and Bob
start in a pure state and execute a purified version of the protocol
(i.e., implement all operations as unitaries, generate coherent
randomness and keep all the measurements quantum) then the
state at the beginning of the open phase is pure. One possible
opening strategy for Bob is to measure the control qubit, which
collapses the state. The collapsed state is exactly as if Bob had
generated a random bit b at the very beginning of the protocol
and honestly committed to it. Such a strategy gives us a lower
bound on how well Bob can open each bit, namely pp(pap) > %
forb € {0,1}. As the overall state is pure at the beginning of
the open phase, any classical register D must necessarily be
independent, which means that p% 5 = pL; = pap. Then
p1(p%5) = pi(pan) > % so Definition B.1 can only hold for
€> % This argument shows that Definition B.1 cannot be sat-
isfied by protocols that do not assume the presence of some ex-
ternal system inaccessible to either party.

APPENDIX C
GUARANTEED MESSAGE DELIVERY TIME MODELS

Suppose that Bob, based on Earth, exchanges messages with
Alice, who is on the Moon. Special relativity states that no mes-
sage can travel faster than the speed of light, hence the min-
imum delivery time equals about 1.26 s. This scenario motivates
the study of models in which there are two separated sites and
while intrasite communication can be instantaneous, any inter-
site message takes at least At to be delivered. We also assume
that the intersite (classical or quantum) channels are perfectly
secure (neither party can read or alter anything that is on the
wire).
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At

Bob Alice

Fig. 7. Simplest guaranteed message delivery time model: one agent per site.

A) One Agent Per Site: The simplest model (illustrated in
Fig. 7) assumes that each party controls one site. Clearly, if Bob
sends a bit b to Alice he is committed to it. The commitment is
perfect because at time ¢ = 0 Bob is fully committed (he cannot
alter his commitment at any later time), while at the same time
until time ¢+ = At Alice is fully ignorant about the commitment.
The drawback of such a scheme is the fact that the commitment
only lasts for At and then automatically opens. Such schemes
have been studied before [44] but in a slightly different context.
The conclusion is that for certain applications (e.g., constructing
a strong coin flip, signing contracts) such timed commitments
are good enough, while for others (e.g., Yao’s construction of
OT using quantum communication [43], [45]) they are not. To
illustrate the limitations of this model, let us consider if it is
possible to construct a commitment that lasts for longer than
At. Classically, this is not possible and the intuitive argument
is simple. In the absence of noise classical protocols are fully
deterministic and no probabilities can arise. For each of the bits
Bob either can (p, = 1) or cannot (pr, = 0) unveil it. Hence,
the distinction between being and not being committed is sharp
(either pg + p1 = 2 or po + p1 = 1). Bob being committed
implies that the information beyond his control determines the
bit. As Alice will have received all the messages in transit after
time at most A¢ she will be able to learn the committed bit.
Therefore, no commitment can be made longer than A#. In the
quantum world, the situation is more complicated due to two
things. First of all, quantum mechanics is a probabilistic theory
so there is no sharp distinction between being and not being
committed—Bob can be partially committed. The second com-
plication is the no-cloning theorem. Suppose that at some point
Bob becomes, to some extent, committed, which means that the
information on Alice’s side combined with the messages on the
wire give away some information about his commitment. Now,
assume that Alice waits until the messages arrive (at most At)
and does some measurements to learn something about Bob’s
commitment. Clearly, the standard hiding—binding tradeoff ap-
plies. However, the honest protocol might require Alice to return
some states to Bob before the messages arrive and so by keeping
them she takes a risk of being caught cheating. It is an open
question if this time-constrained scenario gives us some advan-
tage over the standard scenario for constructing cheat-sensitive
bit commitments. It is clear, however, that no secure (hiding)
bit commitment can last longer than Af. Hence, for this specific
purpose quantum and classical protocols are equally powerful.

B) Two Agents Per Site: A slighty more complicated
model (illustrated in Fig. 8) assumes that each party has a
trusted agent at each site (Bob trusts his agent Brian and Alice
trusts her agent Amy). Protocols implementing bit commitment
in such a scenario, in which the commitment can be sustained
indefinitely as long as messages are exchanged at each site
have been presented in [24] and [25]. After the exchange stops
the commitment remains valid for A¢ and then expires. These



4698

At

Alice Amy

Bob Brian

Fig. 8. More complicated guaranteed message delivery time model: two agents
per site.

protocols have been shown to be secure against classical attacks
and are conjectured to be secure against any quantum attack.

APPENDIX D
CLASSICAL PROTOCOLS AGAINST QUANTUM ADVERSARIES

Some of the protocols we present are purely classical but in
order to determine whether they are secure against quantum ad-
versaries we need to translate them into the quantum formalism.
This section describes briefly how this can be achieved and an-
alyzes the security of these protocols in the quantum setting.
While the actual security proofs may appear trivial, we have
decided to include them for completeness.

A) Classical Protocol in the Quantum Formalism:
Sending a classical bitb € {0, 1} is equivalent to encoding it in
the computational basis and sending the resulting state |b) to the
other party. Receiving a classical bit corresponds to receiving a
qubit and immediately measuring it in the computational basis.

B) Bit Commitment From Secret Sharing: Here we analyze
Protocol 1 from Section IV-A. If Alice and Amy are honest they
will measure the qubits they receive immediately in the com-
putational basis. Once the measurement outcomes are known
Bob’s commitment is well-defined and he will not be able to
cheat. If Bob is honest  will be a truly random bit. Then, what
Alice and Amy receive can be described by the following den-
sity matrix:

phar = 1001 @ [ dlar + [1)(1]a @ |1 — (1 — ]

It is easy to convince ourselves that while p% ,, and pl, ,, are
perfectly distinguishable the reduced states are fully mixed,
% =pk=0p%=p = % Hence, Alice and Amy remain
perfectly ignorant about Bob’s commitment as long as they are
separated.

C) Bit Commitment in the Local Command: Here we an-
alyze Protocol 2 from Section IV-B1. Clearly, the protocol is
perfectly hiding because Alice does not receive any messages
until the beginning of the open phase. To show that it is also
weakly binding we need to employ no-signaling between Bob
and Brian.

Lemma D.1: Protocol 2 is weakly binding with ¢ = 0.

Proof: Suppose that Bob and Brian want to cheat. At the
beginning of the open phase each of them picks an opening
strategy from sets 1?2 and S, respectively. Note that this has to be
done independently because they are not allowed to communi-
cate. Bob receives the command so his distribution will in gen-
eral depend on the command and if the command is b denote the
probability of picking » € I by p4 (7). For the second player,
the distribution has to be fixed and the probability of picking
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s € S equals pg(s), regardless of what the value of b is. Recall
from Section II-E that p; is the probability that Alice accepts
the commitment if the command is . Hence, we can write

=33 palrips(s)p(e = by = bir, s)

reER s€S

Z ZP??,(”‘)PS(S)p(y =b

rERseS

IA

T, 8).

By no-signaling, we know that p(y = b|r, s) does not depend
on r so we can write p(y = b|s) instead. Then, we obtain

Po+ 1
<> Z [p%(r)ps(S)p(zFOIS) +pr(r)ps(s)ply= 1|8)]
= ps(s) [P(TJ =0ls) +ply = 1IS)} =1

]

One might also wonder whether the protocol satisfies the

stronger binding requirement (Definition B.1). However, a sim-

ilar argument to the one sketched out in Section V-B shows that
the stronger definition cannot hold.
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