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Locally thermal quantum systems may contradict traditional thermodynamics: heat can flow from a cold body
to a hotter one, if the two are highly entangled. We show that to recover thermodynamic laws, we must use a
stronger notion of thermalization: a system S is thermal relative to a reference R if S is both locally thermal
and uncorrelated with R. Considering a general quantum reference is particularly relevant for a thermodynamic
treatment of nanoscale quantum systems. We derive a technical condition for relative thermalization in terms of
conditional entropies. Established results on local thermalization, which implicitly assume a classical reference,
follow as special cases.
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I. MOTIVATION

The fundamental postulate of statistical physics is the
assumption that systems in contact with an environment
equilibrate to a thermal state of maximum entropy. Despite its
name, this equilibration is not a fundamental law of nature,
but rather an emerging characteristic of quantum systems
undergoing typical evolutions. More precisely, consider a
system S interacting with an environment E. The two systems
may be subject to a physical constraint, like energy conser-
vation. Our knowledge of that constraint is expressed by the
subspace � ⊆ S ⊗ E of allowed states (for instance, � could
be an energy shell). A naı̈ve reading of the postulate could
be that � equilibrates to the so-called microcanonical state,
π� := 1�/|�| (here, |�| denotes the dimension of Hilbert
space �). This is the state that maximizes the entropy of
�; in other words, a state of maximal ignorance. However,
such equilibration is forbidden by the reversibility of time
evolution, if S ⊗ E is treated as a closed system. For example,
an initially pure quantum state cannot evolve unitarily to a
more mixed state. Instead, we may look for local subsystem
thermalization: S might equilibrate to state πS = TrE(π�),
even though the global state of � is not equilibrated. In many
natural settings, for instance if the environment is large and the
Hamiltonian is fully interactive, local thermalization is typical,
in the sense that S will be approximately in state πS for most
of the time [1–4]. If some extra conditions are satisfied (like
weak coupling between S and E), πS approximates the familiar
Gibbs state [5]. Indeed, a small system S appears to thermalize
locally because typical evolutions leave it highly correlated
(entangled) with the environment, and so the reduced state of
S becomes very mixed|a thermal state. For reviews on quantum
thermalization, see [6,7].

But simply knowing that a system is thermalized does not
allow us to treat it as a heat bath towards any other system, as
the curious example of Fig. 1 illustrates. Consider two systems
H and C, each in a local thermal state (their reduced states
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are Gibbs states of different temperatures, πH and πC). If
we put the two systems in thermal contact, we would expect
heat to flow from the hotter bath, H , to the colder one, C.
However, if H and C are highly entangled, one can observe
an anomalous heat flow from C to H [8–10]. The clue to
understand this phenomenon is that H and C are not truly
heat baths relative to each other, because they are correlated.
Nevertheless, H can still act as a normal heat bath towards
a different reference system R, provided that they are not
initially correlated (ρHR = πH ⊗ ρR).

Clausius’ formulation of the second law of thermodynamics
states that heat cannot flow from cold to hot bodies [11]. When
this law was originally proposed, there was no microscopic
model to suggest the possibility of correlations between such
systems. Even today, although we have quantum models for
these physical bodies, and quantum correlations have been
extensively studied, Clausius’ law is implicitly interpreted
as “whenever two systems in local thermal states are put
in contact, heat cannot flow from the colder system to the
hotter one.” This reading, however, cannot be correct, given
the violation brought about by anomalous heat flows. In order
to clarify its meaning, Clausius’ law could be reformulated
as “whenever two systems which are thermal relative to each
other are put in contact, heat will not flow from the colder
to the hotter body.” Let us formalize what we mean by this
relative thermalization.

Add to the previous setting a third quantum system, the
reference R. The global state is ρ�R . We say that S is
thermalized relative to the reference R if ρSR := TrE(ρ�R) =
πS ⊗ ρR . Often we can only approximately estimate states, so
we may generalize this definition to say that S is δ-thermalized
relative to R if ρSR is δ-close to the above state, according to
the trace distance,

1
2 ‖ρSR − πS ⊗ ρR‖1 � δ.

Note in particular that the same system S may be thermalized
relative to a reference, but not another (see Fig. 2 for two
examples). This definition, stronger than the usual ones,
forces us to revisit the standard arguments that predict local
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FIG. 1. Anomalous heat flow. If two thermal bodies are put in
contact, heat normally flows from the hotter body to the colder one.
However, it could be that the two systems are correlated, while still
presenting local thermal states. If those correlations are strong enough
(for instance if they are highly entangled), heat may flow from the
colder to the hotter body. There is no contradiction with the second
law, if one formulates it in terms of relative thermalization, because
the two bodies are not thermal relative to each other.

thermalization: do they also lead to relative thermalization? In
other words, is relative thermalization a typical phenomenon
in nature, or an unattainable idealization? Our technical result
addresses this question, showing that if a system were to
thermalize locally, it is also very likely to thermalize relative
to a reference|unless that reference is very entangled with the
system and its environment.

II. RESULTS

Formally, we study conditions for relative thermalization
of S in the setting of Fig. 3(a). We want to know what kind
of initial states ρ�R and physical evolutions in � lead to the

environment

S: subsystem in contact with reference devices

SR R’

FIG. 2. Local and relative thermalization. The same system S

may be thermalized relative to a reference R′ but not another,
R. For instance, imagine that R and R′ are the memories of
two observers who measured S. In the case of state ρSRR′ =
(
∑|�|

i=1
1

|�| TrE |i〉〈i|� ⊗ |i〉〈i|R) ⊗ |0〉〈0|R′ , S is locally thermalized,
with ρS = πS . Here, the observer with memory R′ measured a few
macroscopic parameters of S ⊗ E, enough only to determine the
subspace �; the reduced state of S ⊗ R′ is precisely πS ⊗ ρR′ . A
second observer, with more precise measurement instruments, may
determine the exact state |i〉 of S ⊗ E, and write it down on the
memory R. Although S is locally thermalized, S and R are classically
correlated. In a more critical example, suppose that the global state
is ρSRR′ = TrE |�〉〈�|�R ⊗ ρR′ , where |ψ〉 is entangled between �

and R, |�〉�R = |�|− 1
2
∑|�|

i=1 |i〉� ⊗ |i〉R . Here again S is locally
thermalized, and also thermalized towards R′, but it is entangled
with R. This difference has actual physical consequences: in that
limit, a joint evolution of S and R′ will likely increase the entropy
of the reference R′, because πS is a very mixed state. On the other
hand, no global evolution of S and R can increase the entanglement
between the two, and therefore the entropy of R|not the typical effect
of a thermal bath. In other words, S acts as a source of random noise
towards R′, but not towards R.

RS
E

RS

S

?

all unitary
evolutions local
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physical

nondecoupling
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FIG. 3. Setting and nature of our results. A system S ⊗ E is
subject to a physical constraint �. This system may be correlated
with a reference R, in an arbitrary global state ρ�R . We let ρ�R

evolve under a unitary U� acting on �, and then ask if S is
(approximately) thermalized relative to the reference R (a). We
derive an entropic condition on ρ�R and �, (1), that guarantees
that most unitaries, according to the Haar measure, lead to relative
thermalization. This means that, under that condition, if all we know
about U� is that it is a unitary in �, it is highly likely, from our
point of view, that U� will thermalize S relative to R. Usually,
though, we know more about U�, for instance, that it is induced
by a given local Hamiltonian. As the set of all unitaries in � is
full of operators that are unrelated to our physical setting (like
nonlocal evolutions, ruled out by our knowledge), it is desirable to
obtain similar probabilistic statements about smaller sets that still
contain U�, like those generated by local interactions (b). This is
possible, because the decoupling approach [12–15] used to obtain
our results is very general, and can be applied to more physical
sets of unitaries, consisting of local two-body interactions [16–18],
or time-independent Hamiltonians [3,4,16,18–20]. See the Methods
Summary for further discussion.

thermalization of subsystem S relative to the reference R. We
show below that, if an entropic condition is satisfied, only an
exponentially small fraction of evolutions in � do not lead to
relative thermalization [Fig. 3(b)]. This formulation includes
the traditional case of a classical reference; in that special
case, we recover known results on local thermalization [1].
See Fig. 4 for an illustration of our results, applied to systems
of weakly interacting spins.

Theorem 1. Letρ�R be a quantum state in � ⊗ R, with
� ⊆ S ⊗ E, and let π� = 1�

|�| . Let ε,δ > 0. If

H 9ε(�|R)ρ � H 1−ε(S)π − Hε(E)π , (1)

then a unitary evolution U� of ρ will typically lead to δ-
thermalization of S relative to R.

More precisely, the fraction of unitary evolutions in � that
do not lead to δ-thermalization, according to the Haar measure,
is exponentially small in δ2 and in the dimension of �.

Before we give a physical interpretation to the theorem,
let us introduce its protagonist: the smooth conditional
entropyHε(�|R)ρ , which is a generalization of Boltzmann’s
entropy for single-shot quantum settings [21]. Smooth en-
tropy measures are widely used in the context of quantum
information processing; they measure our ignorance about the
exact state of �, given access to side information stored in a
reference R, which may be correlated with � in state ρ�R .
The smoothing parameter ε ∈ [0,1] accounts for our error
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FIG. 4. Application to spin systems. Consider a system of N

weakly interacting spins, subject to the Hamiltonian Ĥ = Ĥ0 + V̂ ,
where Ĥ0 = J

∑
i |↑〉〈↑|i and V̂ is a random nearest-neighbor

perturbation that conserves the total spin (with |V̂ | 
 |Ĥ0|); this
system is also studied in the preprint version of Ref. [1]. We select α N

of those spins to be our subsystem S, while the remaining (1 − α)N
spins are called the environment E. In addition, the spins of S ⊗ E

may be correlated with a reference spin system R. We want to study
thermalization of S relative to R, for an arbitrary initial state ρSER .
Note that the energy subspaces of S ⊗ E are invariant under time
evolution ruled by Ĥ ; therefore we will look at states that lie in
one of these invariant subspaces. For mixtures and superpositions
over different subspaces, the results follow by linearity. Each energy
shell {�k} is generated by states with a fixed number k of spins up,
�k = span{|�〉SE : Ĥ0 |�〉 = k J |�〉}. The initial state is ρSER , with
ρSE ∈ End(�k) for some k. We apply the weaker condition for relative
thermalization, Hε(�|R)ρ > log2 |S| − log2 |�|. The dimension of S

is 2αN , while |�k| = (N
k

). For large N , log2(N
k

) ≈ N h(k/N ), where

h(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy of p.
We obtain the following result: if Hε(�|R)ρ > N [2α − h(k/N )],
then S will be δ-thermalized relative to R after most evolutions.
Conversely, if Hε(�|R)ρ < −H 1(E)π , then no evolution in �k

leads to relative thermalization of S (Theorem 2; here H 1(E)π =
log2[Supp [HypergeometricDistribution[αN,kN,N ]]]).

tolerance|that is, our willingness to ignore highly unlikely
events, like the spontaneous repair of a shattered glass. In
many natural scenarios, we want ε to be small but nonzero
(see details in Appendix A). To give an idea of the values
that Hε takes, consider the limit ε → 0. Then, Hε(�|R)ρ is
at most log2 |�|, which is achieved for the decoupled state
ρ�R = π� ⊗ ρR , is zero if ρ� is pure, and becomes negative
if � and R are entangled, with a minimum at − log2 |�| for
maximally entangled states.

We may now analyze the meaning of Theorem 1. The
right-hand side of (1), H 1−ε(S)π − Hε(E)π , depends only
on the canonical state π�. That is, these entropies are
determined by the structure of the physical constraint �, given
by factors like the Hamiltonian of S ⊗ E and the relative
dimensions of those systems. In fact, the whole right-hand
side can be approximately replaced by 2 log2 |S| − log2 |�|
(see Corollary C.6 in Appendix C). On the left-hand side of (1),
we have H 9ε(�|R)ρ , which depends on the global initial state.
This term gives us an information-theoretical condition for
relative thermalization: if the reference is not highly correlated
with S ⊗ E, then a typical evolution in � is likely to “sweep”
correlations with S to the environment, leaving S thermalized
relative to R.

Sometimes, the reference is so correlated with S ⊗ E

that no evolution in � can decouple S from it (intuitively,
the correlations cannot all be “moved” to the environment).
Theorem 2 characterizes states that can never achieve relative
thermalization.

Theorem 2. Letρ�R be a quantum state in � ⊗ R, with
� ⊆ S ⊗ E, and let π� = 1�

|�| . Let δ,ε > 0. If

Hε(�|R)ρ � −H 1(E)π , (2)

then no unitary evolution of ρ in � can lead to δ-thermalization
of S relative to R.

Note that (2) is close to a converse of the direct bound (1),
in the thermodynamic limit of a large environment E and
small subsystem S, when it is reasonable to neglect a term of
the order log2 |S|. In other words, the conditions for relative
thermalization are tight in this typical setting.

Technically, our results rely on decoupling [12–15] and
smooth entropy measures [21–23], tools that have been
recently developed in the field of quantum information theory,
and have powerful applications in quantum cryptography,
error correction, and thermodynamics [13,15,24]. Smooth
conditional entropies, which quantify the size of subsystems
likely to decouple from a reference, are defined in Appendix A
and further characterized in Appendix D. Decoupling is
introduced in Appendix B, and a technical and stronger version
of our results and proofs lie in Appendix C. In particular, we
show that for most unitaries U�, the bound of Theorem 1 is
tight even when S is large compared to the environment.

III. DISCUSSION

Two factors make the study of relative thermalization
particularly relevant today. One is that, unlike previous ap-
proaches, it does not assume any classicality of the reference.
For classical references, we can describe the global state as
a quantum-classical density matrix, ρ�R = ∑

x px |x〉〈x|R ⊗
ρx

�. Crucially, this means that for each fixed value x in the
reference, we assign a “conditional” density matrix ρx

� to �.
We could then read the state |x〉 of the reference and study
local thermalization of a subsystem S for the initial state ρx

�.
Clearly, if S thermalizes, it is also uncorrelated with R. In
fact, this is implicitly done in the current literature, when the
“initial knowledge” about � is mentioned [2]. However, we
cannot define these “conditional states” when the reference is
itself a quantum system, a more general and natural setting
than imposing classicality on the reference|R may be simply a
system that has interacted with �, and became entangled with
it. In order to study the evolution of � with respect to R in
this general framework, we need to consider their joint density
matrix.

There is also a question of scale. Traditionally, thermo-
dynamics deals with large objects, and quantum correlations
between systems can be neglected. This is because most
degrees of freedom are irrelevant for the macroscopic behavior
of a system, or the performance of a heat engine: we are
only interested in the average energy of a gas or the position
of a piston, while correlations are typically encoded in finer
details of the particles’ wave functions. However, as modern
technologies miniaturize to the nanoscale, a comprehensive
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understanding of the thermodynamics of small quantum
systems is essential to identify and harness their power. As
the number of degrees of freedom decreases, correlations
become more likely to influence the relevant parameters of
an experiment, and can no longer be neglected.

For example, correlations between heat baths have been
shown to affect the performance of three-qubit heat en-
gines [25]. These engines only behave like traditional Carnot
machines if the baths involved are thermalized relative to each
other. Relative thermalization was also found to be crucial to
prove Landauer’s principle, which quantifies the work cost of
information-processing tasks in physical systems [24,26,27].
For Landauer’s bound to apply, it is necessary that the system of
interest be decoupled from a thermal bath|otherwise we could
exploit correlations with this “bath” to extract extra work.

Our results can be naturally applied to settings where
conservation laws demand that more than one quantity be
preserved [28–31], for example total energy and spin. In this
case, we simply take � to reflect those global constraints: for
example, it can be the subspace of fixed total quantities {〈Ai〉}i .
In the case where the preserved quantities are local (e.g.,
noninteracting particles with local Hamiltonian and spin), it
was shown that the microcanonical state π� locally looks like
a generalized Gibbs state, πS ∝ e

∑
i βiAi , with a different notion

of inverted temperature βi for each quantity [31]. These states
are also shown to be completely passive under the respective
conservation laws, and are therefore a generalization of the
usual Gibbs state [28–31]. Our results immediately give
conditions for typical relative thermalization towards the
generalized Gibbs state πS .

A natural direction of research now is to approach other
aspects of relative thermalization [6,7]. An example is the
study of time scales for thermalization of systems with fixed
Hamiltonians [4,5], which can be generalized to a setting
with an explicit quantum reference. Another example is the
apparent thermalization of isolated quantum systems under
realistic observables [32,33]—there we may ask whether we
can distinguish the actual state of a system � from π� after
a measurement, if in addition we hold a quantum reference
correlated with �.

Thermalization results can be strengthened by restricting
the class of unitary evolutions to smaller sets, thereby exclud-
ing obviously unphysical, nonlocal evolutions [Fig. 3(b)]. One
option is given by random local circuits. These model systems
like a chain of atoms or a particle gas, where neighboring
particles undergo successive two-body unitary evolutions.
Local quantum circuits typically achieve decoupling after
an initial equilibration period [12,15,16,18–20,34]. Since our
results are based on decoupling, it is straightforward to apply
them to systems described by local interactions [15,19].
More generally, relative thermalization motivates the search
for restricted and physical classes of unitaries that achieve
decoupling.

We have seen that relative thermalization of physical
systems is necessary to apply traditional thermodynamics;
indeed it is the very foundation of resource theories for
quantum thermodynamics, used to derive concepts like the free
energy and the efficiency of heat engines. The next step is to
ask whether some thermodynamic statements can be recovered
from independence conditions that are strictly weaker than

relative thermalization. These conditions may be studied under
general frameworks for resource theories [35].
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APPENDIX A: INTRODUCTION TO SMOOTH ENTROPY
MEASURES

A word on notation. We useS(A) to denote the set of density
matrices acting on Hilbert space A, i.e.,

S(A) = {ρ ∈ End(A) : ρ � 0, Tr ρ = 1},
where End(A) denotes endomorphisms on A. Similarly, the
set of subnormalized positive semidefinite operators (ρ � 0,
Tr ρ � 1) is denoted byS�(A). For instance, ρAB ∈ S(A ⊗ B)
is the (possibly mixed) state of a bipartite quantum system,
consisting of subsystems A and B.

The identity operator on Hilbert space A is denoted by
1A ∈ End(A), while the identity map acting on operators of A

is denoted by IA ∈ End ( End(A)).
For simplicity, we use UA · ρAB to denote [UA ⊗

1B] ρAB [U †
A ⊗ 1B].

Our results rely on decoupling [12–14], which is tightly
characterized by smooth entropies, a natural class of en-
tropies quantifying correlations between quantum systems in
single-shot settings. From this class, we choose a particular
conditional entropy, sometimes called the hypothesis-testing
entropy [21], to express our final results, and we use smooth
min- and max entropies [22,23,36–38] throughout the proofs.
In this section, we define and characterize these entropy
measures.

1. Smooth min and max entropies

Most of our technical proofs use conditional smooth min
and max entropies [22,23,36–38]. These have convenient
properties, used to derive the final form of our results (for
example, duality; see (A15)). For a comprehensive discussion
of these entropies, their properties, and applications, we refer
to [23].

a. Purified distance

The purified distance [39] is used to smooth the min and
max entropies, and is defined for subnormalized states ρ,σ ∈
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S�(A). Let us first recall the definition of fidelity,

F (ρ,σ ) := ‖√ρ
√

σ‖1, (A1)

where ‖ · ‖1 is the L1 norm. The generalized fidelity is defined
for subnormalized states as

F̄ (ρ,σ ) := F (ρ,σ ) +
√

(1 − Tr ρ)(1 − Tr σ ). (A2)

Note that if at least one of the two states is normalized,
we recover the usual fidelity. Finally, the purified distance
is defined in terms of the generalized fidelity,

d(ρ,σ ) :=
√

1 − F̄ (ρ,σ )2. (A3)

The purified distance is a metric, is invariant under purifica-
tions and extensions, and can only decrease under physical
operations and projections [39]. It relates to the trace distance
as [39]

1
2‖ρ − σ‖1 + 1

2 | Tr ρ − Tr σ | � d(ρ,σ )

�
√

‖ρ − σ‖1 + | Tr ρ − Tr σ |. (A4)

The ε ball around a positive operator ρ ∈ S�(A) is defined
as usually,

Bε(ρ) := {ρ̃ ∈ S�(A) : d(ρ,σ ) � ε}.

b. Smooth min entropy

The conditional smooth min entropy Hε
min(A|B)ρ can be

used to quantify the size of a subsystem of A that can be
decoupled from B [14]. In classical cryptography, it is applied
to privacy amplification, giving us the length of a secret key that
can be securely extracted from A such that it is inaccessible to
an adversary that controls system B. The nonsmooth version
of the min entropy is defined as

Hmin(A|B)ρ := sup
σB∈S(B)

sup
λ∈R

{λ : 2−λ1A ⊗ σB � ρAB}. (A5)

In the particular case where the two systems are independent,
ρAB = ρA ⊗ ρB , the min entropy is simply − log2 ‖ρA‖∞,
where ‖ρA‖∞ is the maximum eigenvalue of ρA.

Smoothing is made by optimizing the min entropy over a
small neighborhood of ρ, according to the purified distance,

Hε
min(A|B)ρ := sup

ρ̃∈Bε(ρ)
Hmin(A|B)ρ̃ . (A6)

The smoothness parameter ε � 0 is usually chosen to be small
but nonzero. In most contexts, it corresponds to a small error
probability.

c. Smooth max entropy

The smooth conditional max entropy Hε
max(A|B)ρ can be

used to quantify the number of bits necessary to reconstruct
the state of system A, given quantum side information B. In
thermodynamics, it characterizes the work cost of erasure of
A, given access to B [24]. In classical information theory, the
nonconditional max entropy quantifies the compression rate of
a random source A. The nonsmooth conditional max entropy
can be defined as

Hmax(A|B)ρ := sup
σB∈S(B)

log2 F (ρAB,1A ⊗ σB)2, (A7)

where F is the fidelity [Eq. (A1)]. We smooth the max entropy
as we did with the min entropy,

Hε
max(A|B)ρ := inf

ρ̃∈Bε(ρ)
Hmax(A|B)ρ̃ . (A8)

2. Generalized smooth entropy

Our final results are expressed in terms of a generalized
smooth entropy, introduced in [21]. For ε > 0, it is defined as

Hε(A|B)ρ := −Dε
H (ρAB ||1A ⊗ ρB), (A9)

where Dε
H is the hypothesis-testing relative entropy, defined

as

2−Dε
H (ρ||σ ) := 1

ε
inf
Q

{Tr(Qσ ) : 0 � Q � 1 ∧ Tr(Qρ) � ε}.
(A10)

This corresponds precisely to the setting of hypothesis testing:
we are given one of two states ρ and σ at random, and we want
to distinguish them with a single measurement, trying to be
right on ρ with probability at least ε. We start from the set of all
POVMs with two outcomes, {Q,1 − Q}: our guessing strategy
is to say that the state is ρ if we obtain Q and σ if we obtain
1 − Q. First we restrict the set to those POVMs such that the
probability of guessing correctly ρ if the outcome is Q is at
least ε. To further optimize our overall guessing probability,
we pick the POVM that minimizes the probability of obtaining
Q when measuring σ .

Further operational interpretations of the generalized
smooth entropy come from its relation to the smooth min and
max entropies, given below. In short, for small ε it behaves
like the smooth min entropy, and for large ε it approximates
the smooth max entropy.

3. Basic properties

(a) Trivial bounds. For any state ρAB , the three entropy
measures are lower bounded by − min {log2 |A|, log2 |B|}, and
upper bounded by log2 |A|.

(b) Examples. For ε → 0, all three smooth entropies are 0
if ρA is pure, log2 |A| if ρAB = 1

|A|1A ⊗ ρB , and − log2 |A| if
ρAB is maximally entangled.

(c) Pure bipartite states. The nonconditional versions of our
entropies only depend on the spectrum of the reduced state, so,
if ρAB is pure, we have Hε(A) = Hε(B), Hε

min(A) = Hε
min(B)

and Hε
max(A) = Hε

max(B) (by Schmidt decomposition).
(d) Conditioning on classical information. [23, Prop. 4.6]

For quantum-classical states of the form ρABC = ∑
k pk τ k

AB ⊗
|k〉〈k|C , the conditional min and max entropies have the form

Hmin(A|BC)ρ = − log2

(∑
k

pk2−Hmin(A|B)τk

)
, (A11)

Hmax(A|BC)ρ = log2

(∑
k

pk2Hmax(A|B)τk

)
. (A12)

(e) Product states. The conditional entropy equals the
nonconditional entropy for product states,

Hε(A|B)ρA⊗ρB
= Hε(A)ρA

. (A13)
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Equation (A13) also applies to the smooth min and max
entropies.

(f) Data-processing inequality. The entropy of A condi-
tioned on B cannot decrease if information is locally processed
at B. Formally,

Hε(A|B)ρ � Hε(A|B ′)[I⊗E](ρ), (A14)

where [I ⊗ E](ρ) is the state obtained from ρAB after applying
a trace-preserving completely positive map E on system B.
Smooth entropies are invariant under local unitaries UA ⊗ UB .
This relation also holds for the smooth min and max entropies.

4. Chain rules

The hypothesis-testing entropy satisfies a chain rule.
Lemma A.1 (Corollary 1 from [21]). LetρABC ∈ End(A ⊗

B ⊗ C) be an arbitrary normalized state, and ε,ε′ > 0. Then,

Hε+√
8ε′

(AB|C)ρ � Hε(A|BC)ρ + Hε′
(B|C)ρ

− log2
ε + √

8ε′

ε
.

Smooth entropies satisfy several chain rules, for different
combinations of min and max entropies [40]. Here we present
those needed for our proofs.

Lemma A.2 (Lemma A.7 from [14]). Letε > 0 and ε′,ε′′ �
0. Then

Hε′
min(A|BC)ρ � Hε+2ε′+ε′′

min (AB|C)ρ − Hε′′
min(B|C)ρ

+ log2
1

1 − √
1 − ε2

.

Lemma A.3 (Dual of Theorem 15 from [40]). Letε > 0 and
ε′,ε′′ � 0. Then

H 2ε+ε′+2ε′′
max (A|BC)ρ � Hε′

max(AB|C)ρ − Hε′′
min(B|C)ρ

+ 3 log2
1

1 − √
1 − ε2

.

Lemma A.4 (Theorem 14 from [40]). Letε > 0 and ε′,ε′′ �
0. Then

Hε+ε′+ε′′
min (A|BC)ρ � Hε′

min(AB|C)ρ − Hε′′
max(B|C)ρ

− 2 log2
1

1 − √
1 − ε2

.

Lemma A.5 (Dual of Lemma A.2). Letε > 0 and ε′,ε′′ �
0. Then

Hε′′
max(A|BC)ρ � Hε+2ε′+ε′′

max (AB|C)ρ − Hε′
max(B|C)ρ

− log2
1

1 − √
1 − ε2

.

5. Relations between the different smooth entropies

a. Duality between smooth min and max entropies

For any tripartite pure state ρABC , we have [37,39]

Hε
min(A|C)ρ = −Hε

max(A|B)ρ. (A15)

b. Hypothesis-testing entropy interpolates between smooth min
and max entropies

(a) Hε and Hε′
min. For small ε, Hε behaves approximately

like the smooth min entropy,

Hε2/2(A|B)ρ � Hε
min(A|B)ρ � H 11

√
ε(A|B)ρ

+ 5

2
log2

(
3

ε

)
+ log2

(
2

1 − ε

)
. (A16)

The lower bound comes from [21, Prop. 4.1]. The upper bound
is proved in Lemma D.8.

(b) Hε and Hε′
max. [21, Prop. 8] For large ε, the the

hypothesis-testing entropy behaves approximately like max
entropy,

Hmax(A|B)ρ + log2
1

ε2
� H 1−ε(A|B)ρ. (A17)

There is also a known bound for the nonconditional smooth
max entropy,

H 1−ε(A)ρ � H
√

2ε
max (A)ρ + log2

1

(1 − ε)
. (A18)

c. Smooth entropies and von Neumann entropy

For a bipartite quantum state ρAB , the von Neumann
entropy of A conditioned on B is defined as H (A|B)ρ =
H (AB)ρ − H (B)ρ , where H (X)σ = − Tr(σX log2 σX) is the
usual (nonconditional) von Neumann entropy of σX. The
conditional von Neumann entropy is always bounded by the
smooth min and max entropies in the limit of small ε [41],

lim
ε→0

Hε
min(A|B)ρ � H (A|B)ρ � lim

ε→0
Hε

max(A|B)ρ. (A19)

In particular, if the smooth min and max entropies coincide,
they are automatically equal to the von Neumann entropy.

Asymptotic equipartition property. Smooth entropy mea-
sures converge to the von Neumann entropy in the limit
of many identical and independently distributed systems,
when the global state has the form ρA⊗nB⊗n = σAB

⊗n [21,41].
Formally, for any 0 < ε < 1,

lim
n→∞

1

n
Hε(A⊗n|B⊗n)σ⊗n = lim

n→∞
1

n
Hε

max(A⊗n|B⊗n)σ⊗n

= lim
n→∞

1

n
Hε

min(A⊗n|B⊗n)σ⊗n

= H (A|B)σ . (A20)

In information theory, this limit is applied to many
sequential uses of the same resources, or repetitions of an
experiment—which is why the von Neumann entropy is used
to characterize the success rate of information-processing
tasks. In thermodynamics, we do not always have the luxury
of arbitrarily repeating experiments (like letting a cup of
coffee thermalize several times), and are usually interested
in predictions for a single instance of an event (“what is the
probability that this cup of coffee cools down now?”). The
same limit emerges, however, in the treatment of large systems
made out of many uncorrelated subsystems, like an ideal gas.

APPENDIX B: DECOUPLING THEOREMS

Decoupling theorems [13–15] capture the idea that, given
two quantum systems A and R not perfectly correlated,
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most (random) subsystems of A up to a certain size are
decoupled from R. The maximal size of decoupled subsystems
depends on correlations between A and R, as measured by
conditional entropies. This result has powerful applications in
quantum cryptography, error correction, and thermodynam-
ics [13,15,24].

Theorem B.1 (Decoupling [adapted from Theorem 3.1
of [14]]). LetρAR ∈ S(A ⊗ R). Let TA→B be a trace nonin-
creasing, completely positive map from End(A) to End(B).
Let τ be the Choi-Jamiołkowski representation of T ,

τA′B = [IA′ ⊗ TA→B] (|�〉〈�|A′A),

where |�〉A′A = |A|−1/2 ∑|A|
i |i〉A|i〉A′ is maximally entangled

between A′ and a virtual system A. Finally, let ε,�,δ > 0.
If the entropic relation

Hε
min(A|R)ρ + Hε

min(A′|B)τ � 2 log2
1

� − 12ε

holds, then the fraction (over the set of all unitaries {UA} acting
on A, according to the Haar measure) of unitaries such that

‖[T ⊗ IR](UA · ρAR) − τB ⊗ ρR‖1 � � + δ

is at most 2 e−(|A|/16)δ2
.

Note that δ, �, and ε do not scale with the size of the
systems involved, whereas the entropies do.

The converse theorem gives us tightness of the bound above
for trace-preserving maps.

Theorem B.2 (Converse). LetρAR ∈ S(A ⊗ R). Let TA→B

be a trace-preserving completely positive map from End(A) to
End(B). Let

ρ̃BA′ := [TA→B ⊗ IA′](ρAA′),

where ρAA′ is a purification of ρA = TrR(ρAR) on a virtual
system A′. For any ε′ > 0 and any ε,ε′′ � 0, if

H 2
√

2ε+6ε′′+2
√

ε′+ε′′
min (A|R)ρ + Hε′′

max(A′|B)ρ̃ < − log2
1

ε′ ,

(B1)

then

‖[T ⊗ IR](ρAR) − T (ρA) ⊗ ρR‖ > ε.

The following corollary is useful to compare the final state
with the canonical state.

Corollary B.3. In the setting of Theorem B.2, if condi-
tion (B1) holds, then

‖[T ⊗ IR](ρAR) − T (σA) ⊗ ρR‖ >
ε

2
,

for any normalized density operator σA on A.
Proof. First we use the fact that the trace distance cannot

decrease under trace-preserving completely positive maps, like
the partial trace, to show

‖[T ⊗ IR](ρAR) − T (σA) ⊗ ρR‖
� ‖T (ρA) − T (σA)‖
= ‖T (ρA) ⊗ ρR − T (σA) ⊗ ρR‖.

Using the triangle inequality for the trace distance, we obtain

ε < ‖[T ⊗ IR](ρAR) − T (ρA) ⊗ ρR‖
< ‖[T ⊗ IR](ρAR) − T (σA) ⊗ ρR‖

+‖T (σA) ⊗ ρR − T (ρA) ⊗ ρR‖
< 2 ‖[T ⊗ IR](ρAR) − T (σA) ⊗ ρR‖.

�

APPENDIX C: DETAILED RESULTS AND PROOFS

1. Thermalization of typical subsystems

In this section we prove our main result on thermalization
after a random evolution (or thermalization of random sub-
systems), Theorem 1. The first step is to apply the decoupling
theorem (Theorem B.1), setting A = �, B = S, and T�→S =
TrE .

Lemma C.1. LetρSER ∈ S(� ⊗ R), with � ⊆ S ⊗ E. For
any ε̃ � 0, and any � > 0, if

Hε̃
min(�|R)ρ + Hε̃

min(�′|S)τ � −2 log2(� − 12ε̃) (C1)

holds, then, for any δ > 0, the fraction of unitaries {U�} acting
on � such that

‖ TrE(U� · ρ�R) − πS ⊗ ρR‖1 � � + δ

is at most 2 e−(|�|/16)δ2
, according to the Haar measure.

In the above, τ�′S = TrE(|�〉〈�|�′�), for the maximally
entangled state |�〉�′�. Note that the reduced state in S is the
canonical state, τS = Tr�′ TrE(|�〉〈�|�′�) = πS .

Now we are ready to state our main theorem in terms of
the smooth min and max- entropies. A final reformulation in
terms of Hε follows (Corollary C.3).

Theorem C.2. Let ρSER ∈ S(� ⊗ R), with � ⊆ S ⊗ E.
For any ε2,ε3 � 0, any ε1 > ε2 + ε3, and any � > 0, if the
entropic relation

Hε1
min(SE|R)ρ + Hε2

min(E)π − Hε3
max(S)π

� 2 log2
1(

1 −
√

1 − (ε1 − ε2 − ε3)2
)

(� − 12ε1)

holds, then, for any δ > 0, the fraction of unitaries {U�} acting
on � such that

‖ TrE(U� · ρ�R) − πS ⊗ ρR‖1 � � + δ

is at most 2 e−(|�|/16)δ2
, according to the Haar measure.

Proof. We start from Lemma C.1, and break down the
left-hand side of condition (C1). First off, we observe that
Hε̃

min(�|R)ρ = Hε̃
min(SE|R)ρ . We use the chain rule from

Lemma A.4 to bound the other entropy. Setting ε̃ = ε1 + ε2 +
ε3, we have

Hε1+ε2+ε3
min (�′|S)τ � Hε2

min(�′S)τ − Hε3
max(S)τ

+ 2 log2

(
1 −

√
1 − ε2

1

)
.

Since |�〉�′SE is a pure state, we have that Hε2
min(�′S)τ =

Hε2
min(E)π . Condition (C1) becomes

Hε1+ε2+ε3
min (SE|R)ρ + Hε2

min(E)π − Hε3
max(S)π

+ 2 log2

(
1 −

√
1 − ε2

1

)
� − 2 log2(� − ε1 − ε2 − ε3).

To clean up, we take ε1 + ε2 + ε3 → ε1. �
We may now write this result in terms of the hypothesis-

testing entropy, and simplify the ε terms at the cost of little
generality.
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Corollary C.3. Let ρSER ∈ S(� ⊗ R), with � ⊆ S ⊗ E.
Let ε,� > 0.

If the entropic relation

H 9ε(SE|R)ρ + Hε(E)π − H 1−ε(S)π

� 2 log2
1

(1 − √
1 − 2 ε)(� − 36

√
2ε)

− log2
1

1 − ε
(C2)

holds, then, for any δ > 0, the fraction of unitaries {U�} acting
on � such that

‖ TrE(U� · ρ�R) − πS ⊗ ρR‖1 � � + δ

is at most 2 e−(|�|/16)δ2
, according to the Haar measure.

Proof. Starting from

Hε1
min(SE|R)ρ + Hε2

min(E)π − Hε3
max(S)π

� 2 log2
1

(1 −
√

1 − (ε1 − ε2 − ε3)2)(� − 12ε1)
, (C3)

we use relations (A16) and (A18) to obtain

Hε1
min(SE|R)ρ � Hε1

2/2(SE|R)ρ,

Hε2
min(E)π � Hε2

2/2(E)π ,

−Hε3
max(S)π � −H 1−ε3

2/2(S)π + log2
1

1 − ε3
2/2

.

Applying these bounds to (C3), we get

Hε1
2/2(SE|R)ρ + Hε2

2/2(E)π − H 1−ε3
2/2(S)π

� 2 log2
1

(1 −
√

1 − (ε1 − ε2 − ε3)2)(� − 12ε1)

− log2
1

1 − ε3
2/2

.

To simplify, we consider the special case ε̃ = ε1
3 = ε2 = ε3.

This gives us

H 9ε̃2/2(SE|R)ρ + Hε̃2/2(E)π − H 1−ε̃2/2(S)π

� 2 log2
1

(1 − √
1 − ε̃2)(� − 36 ε̃)

− log2
1

1 − ε̃2/2
.

Finally, we take ε = ε̃2

2 to obtain the statement of the
corollary. �

We may simplify it further by taking � = δ.
Since we are usually interested in the limit of small ε, it

might at first appear that the right-hand side of (C2) diverges
in that limit. However, the divergence is only logarithmic in
ε, and does not depend on the size of the systems involved.
The entropic terms, on the other hand, grow with the size of
the systems. In the thermodynamic limit of large systems, the
logarithmic divergence is negligible.

2. Converse

The converse bound follows. A friendlier, if weaker, bound
can be found in Corollary C.5.

Theorem C.4 (Tightness). LetρSER ∈ S(�⊗R), with � ⊆
S⊗E. Let δ,ε1,ε2 > 0 and ε3,ε4 � 0.

For readability, we set ε̃ = 2
√

δ + 3(ε2 + ε3 + ε4) + ε1 +
ε2 + ε3 + ε4.

If

H 2ε̃
min(�|R)ρ + max

σ∈S(�)

[
H 2ε3

max(E)σ − Hε4
min(S)σ

]
< − log2

1

ε1
2

− 3 log2
1

1 −
√

1 − ε2
2
, (C4)

then

‖ TrE(U� · ρAR) − πS ⊗ ρR‖ > δ,

for any unitary U� acting on �.
Proof. We start from Corollary B.3, setting A = �, B = S,

T (·) = TrE(U�·), and σA = π�. This gives us the condition

H
2
√

2ε1+6ε2+2
√

ε3+ε2
min (�|R)ρ + Hε2

max(�′|S)ρ̃ < − log2
1

ε3
,(C5)

which implies

‖ TrE(U� · ρAR) − TrE(π�) ⊗ ρR‖ >
ε1

2
.

Here, ρ̃ = U� · ρ��′ , where ρ��′ is a purification of ρ�.
We will look for an upper bound for Hε2

max(�′|S)ρ̃ , as we
might not know which unitary U� was applied. We will use a
little of brute force, maximizing the conditional entropy over
all states σ� in S(�), with purification σ��′ (this is stronger
than maximizing over all unitaries U�). Also, in order to use
a chain rule, let us set ε2 = 2ε4 + ε5 + 2ε6. We have

H 2ε4+ε5+2ε6
max (�′|S)ρ̃ � max

σ∈S(�)
H 2ε4+ε5+2ε6

max (�′|S)σ��′

� max
σ∈S(�)

[
Hε5

max(S�′)σ − Hε6
min(S)σ

]
+ 3 log2

1

1 −
√

1 − ε2
4

[Lemma A.3]

= max
σ∈S(�)

[
Hε5

max(E)σ − Hε6
min(S)σ

]
+ 3 log2

1

1 −
√

1 − ε2
4

[σSE�′ pure].

Condition (C5) becomes

H
2
√

2ε1+6(2ε4+ε5+2ε6)+2
√

ε3+(2ε4+ε5+2ε6)
min (�|R)ρ

+ max
σ∈S(�)

[
Hε5

max(E)σ − Hε6
min(S)σ

]
< − log2

1

ε3
− 3 log2

1

1 −
√

1 − ε2
4

,

which we cannot hope to make much more readable without
losing generality (we do simplify it in the corollary ahead).
For now, let us just relabel

ε1 → 2δ, ε3 → ε2
1, ε4 → ε2, ε5 → 2ε3, ε6 → ε4,

to obtain the beauty

H
2(2

√
δ+3(ε2+ε3+ε4)+ε1+ε2+ε3+ε4)

min (�|R)ρ

+ max
σ∈S(�)

[
H 2ε3

max(E)σ − Hε4
min(S)σ

]
< − log2

1

ε1
2

− 3 log2
1

1 −
√

1 − ε2
2
.

�
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In the following corollary we simplify some of the terms.
In particular, we neglect a term with the smooth min entropy
of S, for an optimal state. In the typical case where S is much
smaller than E, this is only a small loss.

Corollary C.5. Let ρSER ∈ S(� ⊗ R), with � ⊆ S ⊗ E.
Let δ > 0 and let ε > 4

√
δ. We define f (ε,δ) := 1

16 (6 + ε −
2
√

9 + 3 ε + 4δ)2.
If

H 11
√

ε(�|R)ρ + H 1(E)π < − log2
1

f (ε,δ)

− 3 log2
1

1 − √
1 − f (ε,δ)

− 5

2
log2

(
3

ε

)
− log2

(
2

1 − ε

)
,

(C6)

then

‖ TrE(U� · ρAR) − πS ⊗ ρR‖ > δ,

for any unitary U� acting on �.
Proof. We start from the condition of Theorem C.4,

H
2(2

√
δ+3(ε2+ε3+ε4)+ε1+ε2+ε3+ε4)

min (�|R)ρ

+ max
σ∈S(�)

[
H 2ε3

max(E)σ − Hε4
min(S)σ

]
< − log2

1

ε1
2

− 3 log2
1

1 −
√

1 − ε2
2
.

We are looking for a simpler, tighter condition, i.e., an upper
bound to the left-hand side of the inequality and a lower bound
to the right-hand side.1 First we neglect the term with the
nonconditional entropy of S, as

max
σ∈S(�)

[
Hε3

max(E)σ − Hε4
min(S)σ

]
� maxσ∈S(�) Hε3

max(E)σ .

Now we apply the upper bound for the max entropy given by
Lemma D.2,

max
σ∈S(�)

Hε3
max(E)σ � max

σ∈S(�)
H 1(E)σ = max

σ∈S(�)
log2 |supp σE|.

(C7)
Finally, we show that for all states σ ∈ S(�), it stands that
supp σE ⊆ supp πE , and therefore (C7) is upper bounded by
H 1(E)π . For every σ ∈ S(�), there exists a basis {|k〉}k of �

that diagonalizes it,

σ =
|�|∑
k

pk|k〉〈k|�.

Since � is a subspace of S ⊗ E, we can expand each element
|k〉� in any basis of S ⊗ E; in particular, we can choose a
product basis {|i〉S ⊗ |j 〉E}i,j , such that

|k〉� =
|S|∑
i

|E|∑
j

ck
ij |i〉S ⊗ |j 〉E,

∑
i,j

∣∣ck
ij

∣∣2 = 1, ∀ k.

1In other words, we start from an inequality like A < B, and search
for suitable Ā and B̄ such that A � Ā and B̄ � B. Therefore, Ā < B̄

implies the original condition A < B.

We may now expand σ in this basis,

σ� =
|�|∑
k

pk

|S|∑
i,i ′

|E|∑
j,j ′

ck
ij

(
ck
i ′j ′

)∗ |i〉〈i ′|S ⊗ |j 〉〈j ′|E,

σE = TrS σ̄� =
|�|∑
k

pk

|S|∑
i

|E|∑
j,j ′

ck
ij

(
ck
ij ′

)∗ |j 〉〈j ′|E.

Note that the canonical state is given by

π� =
|�|∑
k

1

|�| |k〉〈k|

=
|�|∑
k

1

|�|
|S|∑
i,i ′

|E|∑
j,j ′

ck
ij

(
ck
i ′j ′

)∗ |i〉〈i ′|S ⊗ |j 〉〈j ′|E,

πE =
|�|∑
k

1

|�|
|S|∑
i

|E|∑
j,j ′

ck
ij

(
ck
ij ′

)∗ |j 〉〈j ′|E,

so clearly supp σE ⊆ supp πE .
Let us see where we stand. We may set ε3 = ε4 = 0, and

ε1 = ε2 =: ε̃. Our condition becomes

H
4(

√
δ+3ε̃ +ε̃)

min (�|R)ρ + H 1(E)π < − log2
1

ε̃2

− 3 log2
1

1 − √
1 − ε̃2

.

We may also bound the term with the smooth min entropy
using Eq. (A16). We set ε := 4(

√
δ + 3ε̃ + ε̃), and have

Hε
min(�|R)ρ � H 11

√
ε(�|R)ρ − 5

2
log2

(ε

3

)
+ log2

(
2

1 − ε

)
.

This leaves us with the condition

H 11
√

ε(�|R)ρ + H 1(E)π < − log2
1

ε̃2
− 3 log2

1

1 − √
1 − ε̃2

−5

2
log2

(
3

ε

)
− log2

(
2

1 − ε

)
.

Now we should make the dependence in δ a little more explicit.
In order to keep the above expression only moderately foul, we
bound the logarithmic terms on the right-hand side. [We used
ε̃2 = 1

16 (6 + ε − 2
√

9 + 3 ε + 4δ)2 and applied the expansion

1 − √
1 − x2 � x2

2 twice.] The new bound is

H 11
√

ε(�|R)ρ + H 1(E)π < −4 log2
6 + ε

4
(

ε2

16 − δ
)2

−5

2
log2

(
3

ε

)
− log2

(
16

1 − ε

)
.

�

3. Dimension bounds

To give an intuitive idea of the magnitude of the entropic
terms in our results, we present a coarser version of our direct
bounds.

Corollary C.6. Let ρSER ∈ End(� ⊗ R) be a normalized
density operator, with � ⊆ S ⊗ E. For any ε � 0, and any
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� > 0, if

Hε(�|R)ρ + log2 |�| − 2 log2 |S| � 2 log2

(
1

δ − √
2 ε

)
(C8)

holds, then, for any δ > 0, the fraction of unitaries {U�} acting
on � such that

1
2 ‖ TrE(U� · ρ�R) − πS ⊗ ρR‖1 � δ

is at most 2 e−(|�|/16)δ2
, according to the Haar measure.

This corollary follows directly from Lemma C.1, combined
with Lemma D.3, and the relation between the smooth min
entropy and the hypothesis-testing entropy. We also set � = δ.

APPENDIX D: EXTRA TECHNICAL RESULTS FOR
SMOOTH ENTROPIES

In order to present our physical results, we had to prove
some of the properties of smooth entropies stated in Ap-
pendix A. This appendix is a collection of technical lemmas,
mostly adaptations of similar results for other entropy mea-
sures. Please have no expectations of elegance or originality
as you read through.

The highlights of the appendix are Lemma D.7, where we
show that Hε is continuous on the quantum state (in a way that
does not depend on the dimension of the quantum systems
involved; in other words, it is “smooth”), and Lemma D.8,
where we give a bound for Hε in terms of the conditional
smooth min entropy.

1. A few more definitions

a. Hypothesis-testing relative entropy as a semi-definite program

We can write the hypothesis-testing relative entropy as a
semidefinite program (SDP) [21,42,43]. The primal and dual
SDPs for 2−Dε(ρ||σ ) are

primal dual

minimize 1
ε

Tr(Qσ ) maximize μ − Tr X

ε
subject to Tr(Qρ) � ε, subject to μρ � σ + X,

0 � Q � 1 X,μ � 0.

In the above, it is required that ρ and σ be Hermitian operators.
Remember that the generalized conditional smooth entropy is
defined as Hε(A|B)ρ = −Dε(ρAB ||1A ⊗ ρB).

b. Alternative smooth min entropy

Ĥ ε
min is an alternative entropy measure similar to the smooth

min entropy, except that we do not optimize over the choice of
the marginal σB [22],

Ĥ ε
min(A|B)ρ := max

ρ̃AB∈Bε(ρ)
sup
λ∈R

{λ : 2−λ1A ⊗ ρ̃B � ρ̃AB}.

The optimization is made over the set of subnormalized states
that are ε-close to ρAB , according to the purified distance.

2. A couple of trivial bounds for the smooth entropies

Lemma D.1. Let ρ ∈ S(A). Then we have H 1(A)ρ =
log2 |supp ρ|.

Proof. To show that H 1(A)ρ � log2 |supp ρ|, we look at
the primal program for H 1(A)ρ ,

2H 1(A)ρ = min Tr(QA 1A),

Tr(QA ρA) � 1, 0 � QA � 1A.

We take as a candidate the projector onto the support of ρ, Q =
�ρ . We have Tr(�ρ ρ) = 1, so �ρ is a feasible candidate for
the minimization. Therefore we have 2H 1(A)ρ � Tr(�ρ 1A) =
|supp ρ|.

Now we show that H 1(A)ρ � log2 |supp ρ|. The dual
program for the generalized smooth entropy H 1(A)ρ is, in
the nonconditional case,

2H 1(A)ρ = max μ − Tr X,

μρ � 1 + X, μ,X � 0.

Let us take the candidate X = μρ − �ρ . We have

1 + X = 1 + μρ − �ρ � μρ,

so X is a feasible candidate for the dual SDP. This gives us

2H 1(A)ρ � μ − Tr X = μ − Tr(μρ − �ρ)

= μ − μ Tr ρ + Tr(�ρ) = |supp ρ|.
�

Lemma D.2. Let ρ ∈ S(A). The nonconditional max en-
tropy is upper bounded as

Hε
max(A)ρ � H 1(A)ρ.

Proof. LetρA = ∑
k pk |k〉〈k|A, for some basis {|k〉}k of

the support of ρ in A. We note that Hε
max(A)ρ � H 0

max(A)ρ =
log2 F (ρA,1A)2, and

F (ρA,1A)2 = Tr (|√ρA

√
1A|)2 =

|supp ρ|∑
k,�

√
pk

√
p�

�
|supp ρ|∑

k,�

pk + p�

2
[inequality of arithmetic

and geometric means]

= |suppρA|.
Combining this with Lemma D.1, we obtain Hε

max(A)ρ �
H 1(A)ρ . �

The following lemma is used to bound our condition for
relative thermalization in terms of system dimensions (see
Appendix C 3).

Lemma D.3. Let ρAB ∈ S(A ⊗ B) be a quantum state with
a fully mixed marginal in A, ρA = 1A

|A| . Then, for any ε � 0,

Hε
min(A|B)ρ � log2 |A| − 2 log2 |B|.

Proof. We start by going to the nonsmooth version of the
min entropy,

∀ε � 0, Hε
min(A|B)ρ � Hmin(A|B)ρ.

022104-10



RELATIVE THERMALIZATION PHYSICAL REVIEW E 94, 022104 (2016)

It is convenient to formulate the min entropy as an SDP. The
primal SDP for 2−Hmin(A|B)ρ is

minimize γ

subject to ρAB � γ 1A ⊗ σB,

σB ∈ S(B),

γ � 0.

We want to show that γ = |B|2
|A| is a feasible candidate for

the optimization problem, so that Hmin(A|B)ρ � log2
|A|
|B|2 . We

apply [23, Lemma A.2], which says that for positive operators
ρ ∈ End(A ⊗ B), it holds that ρAB � |B| ρA ⊗ 1B . This gives
us

ρAB � |B| ρA ⊗ 1B = |B| 1A

|A| ⊗ 1B = |B|2
|A| 1A ⊗ 1B

|B|︸︷︷︸
=:σB

.

�

3. Three recycled lemmas

The following lemmas come from [41, Lemma 15]. We
need them to prove smoothness of Hε, so we repeat them here
for completeness.

Lemma D.4. Let σ,� ∈ S�(A). The operator

G := σ 1/2(σ + �)−1/2

is a contraction, i.e., G � 0 and ‖G‖∞ � 1. In particular,
conjugating any positive operator X with G can only decrease
the trace: Tr(GX G†) � Tr(X).

Proof. We conjugate the following with (σ + �)−1/2:

σ � σ + �,

(σ + �)−1/2σ (σ + �)−1/2 � (σ + �)−1/2(σ + �)(σ + �)−1/2,

G†G � 1.

Now we use the fact that, for the operator norm, ⇒
‖G‖∞2 = ‖G†G‖∞ � ‖1‖∞ = 1. The second claim comes
from Tr(GXG†) = Tr(X G† G) � Tr(X 1). �

Lemma D.5. Let ρAB ∈ S(A ⊗ B), and σB,�B ∈ S�(B),
such that ρB � σB + �B . Let GB = σ 1/2(σ + �)−1/2. Then,

‖ρAB − (1A ⊗ GB)ρAB(1A ⊗ G
†
B)‖1 � 2

√
2 Tr �.

Proof. First we work with the fidelity between the two
states, and later we relate it to the trace distance. Using
Uhlmann’s theorem, we bound the fidelity using a purification
of ρAB . Note that if |ψ〉RAB purifies ρAB , then (1RA ⊗ GB)|ψ〉
purifies (1A ⊗ GB)ρAB(1 ⊗ G

†
B), and in particular it purifies

GBρBG
†
B . We have

F (ρAB,(1A ⊗ GB)ρAB(1A ⊗ G
†
B))

� F (|ψ〉,(1RA ⊗ GB)|ψ〉)
= |〈ψ |(1RA ⊗ GB)|ψ〉|
= |Tr ((1RA ⊗ GB)|ψ〉〈ψ |)|
= |Tr(GB ρB)| [real and imaginary parts]

=
√
R[Tr(GB ρB)]2 + I[Tr(GB ρB)]2

� R[Tr(GB ρB)]

= Tr
(

1
2 (GB + G

†
B)ρB

)
.

From Lemma D.4 we know that G is a contraction. Note
that 1

2 (G + G†) is also a contraction, as ‖ 1
2 (G + G†)‖∞ �

1
2‖G‖∞ + 1

2‖G†‖∞ � 1. We omit the subscript B in most of
the following. We have

1 − Tr

(
1

2
(G + G†)ρB

)

= Tr

⎛
⎜⎜⎝[

1B − 1

2
(G + G†)

]
︸ ︷︷ ︸

�0

ρB

⎞
⎟⎟⎠

� Tr

([
1B − 1

2
(G + G†)

]
(σ + �)

)

= Tr(σ + �) − 1

2
Tr[(G + G†)(σ + �)]

= Tr(σ + �) − 1

2
Tr[σ 1/2(σ + �)−1/2(σ + �)]

−1

2
Tr[(σ + �)−1/2σ 1/2(σ + �)]

= Tr(σ + �) − Tr[σ 1/2(σ + �)1/2]

� Tr(σ + �) − Tr(σ )

= Tr(�),

so F (ρAB,(1A ⊗ GB)ρAB(1A ⊗ G
†
B)) � 1 − Tr(�). From the

relation between trace distance and fidelity, we have

‖ρAB − (1A ⊗ GB)ρAB(1A ⊗ G
†
B)‖1

� 2
√

1 − F (ρAB,(1A ⊗ GB)ρAB(1A ⊗ G
†
B))2

� 2
√

1 − [1 − Tr(�)]2

= 2
√

1 − 1 + 2 Tr(�) − Tr(�)2

� 2
√

2 Tr(�).

�
The following lemma is simply an adaptation of [23,

Lemma 5.2] for the alternative smooth min entropy. The proof
is identical.

Lemma D.6. Let ρ ∈ S(A ⊗ B),ε � 0. Then, there is an
embedding from A to A ⊕ Ā and a normalized state ρ̂ ∈
S[(A ⊕ Ā) ⊗ B] such that

Ĥ ε
min(A|B)ρ = Ĥmin(A ⊕ Ā|B)ρ̂ ,

with ρ̂ ∈ Bε(ρ) (according to the purified distance), and |Ā| =
�ε 2Ĥ ε

min(A|B)ρ �.
Proof. Let us choose the subnormalized state ρ̃AB ∈

S�(A ⊗ B) that achieves the maximum in the definition of
the entropy, i.e.,

λ = Ĥ ε
min(A|B)ρ,

ρ̃AB � 2−λ 1A ⊗ ρ̃B .

Now we construct the direct sum space A ⊕ Ā, where Ā is a
Hilbert space of dimension |Ā| � ε 2λ. In that space, we write
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a normalized extension of ρ̃,

ρ̂ = ρ̃AB ⊕
(

(1 − Tr ρ̃)
1Ā∣∣Ā∣∣ ⊗ ρ̃B

)
∈ S[(A ⊕ Ā) ⊗ B].

Note that ρ̂B ∝ ρ̃B . We have

ρ̂ = ρ̃AB︸︷︷︸
�2−λ 1A⊗ρ̃B

⊕
⎛
⎝(1 − Tr ρ̃)︸ ︷︷ ︸

�ε

1Ā∣∣Ā∣∣ ⊗ ρ̃B

⎞
⎠

� (2−λ 1A ⊗ ρ̃B) ⊕
( ε

ε 2λ
1Ā ⊗ ρ̃B

)
= 2−λ(1A ⊕ 1Ā) ⊗ ρ̃B .

This tells us that λ is a feasible candidate for the primal SDP
of the entropy of ρ̂, and therefore

Ĥmin(A ⊕ Ā|B)ρ̂ � λ = Ĥ ε
min(A|B)ρ.

Now we show that ρ̂ ∈ Bε(ρ), according to the purified
distance. It suffices to show that F (ρ,ρ̂) = F (ρ,ρ̃). The
fidelity is linear under direct sums, i.e., for two states σ =
σ1 ⊕ σ2 and τ = τ1 ⊕ τ2, we have

F (σ,τ ) = ‖√σ
√

τ‖1 = ‖√σ1
√

τ1‖1 + ‖√σ2
√

τ2‖1.

In our case, we have ρ = ρAB ⊕ 0ĀB and ρ̂ = ρ̃AB ⊕ ((1 −
Tr ρ̃) 1Ā

|Ā| ⊗ ρ̃B), so

F (ρ,ρ̂) = ‖√ρ
√

ρ̂‖1

= ‖√ρAB

√
ρ̃AB‖1

+‖
√

0ĀB

√√√√(
(1 − Tr ρ̃)

1Ā∣∣Ā∣∣ ⊗ ρ̃B

)
‖1

= F (ρ,ρ̃) + 0,

which implies ρ̂ ∈ Bε(ρ). Therefore we have, by definition of
the smooth entropy,

Ĥmin(A ⊕ Ā|B)ρ̂ � Ĥ ε
min(A|B)ρ,

and the equality follows. �

4. Smoothness of the hypothesis-testing entropy and relation to
the smooth min entropy

The next lemma proves that the generalized smooth entropy
Hε is actually “smooth,” i.e., if two states ρ and σ are close
according to the trace distance, then their generalized smooth
entropies are also close.

Lemma D.7. Let ρAB,σAB ∈ S(A ⊗ B) be two positive,
normalized density operators, such that ‖ρAB − σAB‖1 � δ.
Then, for any ε > 0,

Hε(A|B)ρ � Hε+δ+2
√

2δ(A|B)σ + log2
ε + δ + 2

√
2δ

ε
.

Proof. This proof is made of two parts. First we will relate
Hε(A|B)ρ to −Dε(ρAB − �′||1A ⊗ σB), where �′ is a positive
operator with trace at most 2

√
2δ. Later we bound −Dε(ρAB −

�′||1A ⊗ σB) in terms of Hε+δ+2
√

2δ(A|B)σ .
We have

‖ρB − σB‖1 � ‖ρAB − σAB‖1 � δ,

and therefore there exist positive operators �+ and �− such
that

ρB − σB = �+ − �−, �+,�− � 0,

Tr(�+), Tr(�−) � δ.

ρB � σB + �+.

Consider the pair (μ,X) that forms the optimal solution of
the dual SDP for Hε(A|B)ρ ,

2Hε(A|B)ρ = μ − Tr
X

ε
, μ ρAB � 1A ⊗ ρB + XAB.

We can define the operator

G = σ
1
2

B (σB + �+)−1/2.

We conjugate the feasibility condition for the dual program
with 1A ⊗ G),

μ ρAB � 1A ⊗ ρB + XAB, μ (1 ⊗ G) ρAB (1 ⊗ G†)

� 1A ⊗ G ρB G† + (1 ⊗ G)XAB(1 ⊗ G†).

On the right-hand side, we have

G ρB G† � G (σB + �+)G†

= σ
1/2
B (σB + �+)−1/2(σB + �+)(σB + �+)−1/2σ

1/2
B

= σB.

Note also that G is a contraction (see Lemma D.4), and
therefore Tr[(1 ⊗ G)XAB(1 ⊗ G†)] � Tr(XAB). On the left-
hand side, we apply Lemma D.5,

‖ρAB − (1A ⊗ GB)ρAB(1A ⊗ G
†
B)‖1 � 2

√
2 Tr �+

⇒ ∃�′ : ρAB − �′ � (1A ⊗ GB)ρAB(1A ⊗ G
†
B),

�′ � 0, Tr(�′) � 2
√

2 Tr �+ � 2
√

2δ.

This gives us

μ (ρAB − �′) � 1A ⊗ σB + (1 ⊗ G)XAB(1 ⊗ G†)︸ ︷︷ ︸
=:X′�0

.

The above inequality tells us that (μ,X′) form a candidate
pair for the dual SDP of Dε(ρAB − �′||1A ⊗ σB). Note that
ρAB − �′ is Hermitian (as both ρAB and �′ are positive
operators, and therefore Hermitian), so both primal and dual
SDPs for Dε(ρAB − �′||1A ⊗ σB) are well defined. Since the
dual program is a maximization over all feasible pairs, we have

2−Dε(ρAB−�′||1A⊗σB ) � μ − Tr X′

ε

= μ − Tr[(1 ⊗ G)XAB(1 ⊗ G†)]

ε

� μ − Tr(XAB)

ε

= 2Hε(A|B)ρ .

This gives us the bound

− Dε(ρAB − �′||1A ⊗ σB) � Hε(A|B)ρ. (D1)

Now we just need to relate Dε(ρAB − �′||1A ⊗ σB) to the
smooth conditional entropy of σ , Hε′

(A|B)σ (which, as we
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will see, might have a different smoothing parameter, ε′). First
we observe that the operator ρAB − �′ is close to σ ,

‖(ρAB − �′) − σAB‖1 � δ + Tr �′

� δ + 2
√

2δ︸ ︷︷ ︸
=:δ′

.

To shorten notation, it is convenient to define δ′ := δ + 2
√

2δ.
The trace distance gives us an upper bound for the proba-
bility of distinguishing two states by applying any POVM
{Q,1 − Q},

max
0�Q�1

| Tr(Q [ρAB − �′]) − Tr(Q σAB)| � δ′. (D2)

We start by writing down the primal SDP for 2Hε+δ′ (A|B)σ ,

minimize
1

ε + δ′ Tr(Q 1A ⊗ σB), subject to Tr(Q σAB)

� ε + δ′,0 � Q � 1.

We take the operator Q that achieves the minimum, and
show that Q is a feasible candidate for the primal SDP of
2−Dε(ρAB−�′ ||1A⊗σB ). To make that clear, let us first write this
SDP,

minimize
1

ε
Tr(P 1A ⊗ σB),

subject to Tr(P [ρAB − �′]) � ε,

0 � P � 1.

We may relate the feasibility conditions of the two SDPs
using inequality (D2), which gives us

Tr(Q [ρAB − �′]) � Tr(Q σAB) − δ′

� ε + δ′ − δ′ = ε.

Therefore we can bound 2−Dε(ρAB−�′||1A⊗σB ) as

2−Dε(ρAB−�′||1A⊗σB ) � 1

ε
Tr(Q 1A ⊗ σB)

= 1

ε
(ε + δ′)2Hε+δ′ (A|B)σ.

Taking the logarithm and using δ′ = δ + 2
√

2δ, we obtain

Hε+δ+2
√

2δ(A|B)σ � −Dε
H (ρAB − �′||1A ⊗ σB)

− log2
ε + δ + 2

√
2δ

ε

� Hε(A|B)ρ − log2
ε + δ + 2

√
2δ

ε
.

�
where we used Eq. (D1) in the last step. In the following
lemma, we find a lower bound for Hε in terms of the smooth
min entropy. An upper bound is given in [21, Prop. 4.1].

Lemma D.8. Letρ ∈ S(A ⊗ B), and let ε ∈]0, 1
2 ]. Then,

Hε
min(A|B)ρ � H 11

√
ε(A|B)ρ − 5

2
log2

(
3

ε

)
+ log2

(
2

1 − ε

)
.

FIG. 5. Proof steps for Lemma D.8. We start from Hε
min(A|B)ρ

and bound it successively until we end up with the generalized smooth
entropy for the same state. Along the way we need to extend our state
ρ to a larger Hilbert space (below).

Proof. See Fig. 5 for a schematic representation of the
different steps of this proof.

From [44, Lemma 19] we have that

∀ρ ∈ S(A ⊗ B), ∀ε,ε′ ∈ ]0,1], Hε
min(A|B)ρ

� Ĥ ε+ε′
min (A|B)ρ + log2

(
2

ε′2 + 1

1 − ε

)
.

Now we use Lemma D.6 to find a normalized state ρ̂ ∈
Bε+ε′

(ρ) in a larger Hilbert space (A ⊕ Ā) ⊗ B that attains
the optimization. This gives us

Hε
min(A|B)ρ � Ĥ ε+ε′

min (A|B)ρ + log2

(
2

ε′2 + 1

1 − ε

)

= Ĥmin(A ⊕ Ā|B)ρ̂ + log2

(
2

ε′2 + 1

1 − ε

)
.

It follows from the definition of Ĥmin that [21, Prop. 4.1]

∀ ε′′ ∈ ]0,1] : Ĥmin(A ⊕ Ā|B)ρ̂ � Hε′′
(A ⊕ Ā|B)ρ̂ ,

which leaves us with

Hε
min(A|B)ρ � Hε′′

(A ⊕ Ā|B)ρ̂ + log2

(
2

ε′2 + 1

1 − ε

)
.

Now we only need to relate Hε′′
(A ⊕ Ā|B)ρ̂ back to the smooth

entropy of ρ. Since the two states ρ,ρ̂ are normalized, we have
‖ρ − ρ̂‖1 � 2(ε + ε′). We can use Lemma D.7 to obtain

Hε′′
(A ⊕ Ā|B)ρ̂ � Hε′′+2ε+2ε′+4

√
ε+ε′

(A ⊕ Ā|B)ρ

+ log2
ε′′ + 2ε + 2ε′ + 4

√
ε + ε′

ε′′ .

Now we observe that ρ has no support on Ā, therefore, for any
smoothing factor ε̃ ∈ [0,1],

Hε̃(A ⊕ Ā|B)ρ = Hε̃(A|B)ρ.

All in all, we have

Hε
min(A|B)ρ � Hε′′+2ε+2ε′+4

√
ε+ε′

(A|B)ρ

+ log2

(
ε′′ + 2ε + 2ε′+4

√
ε+ε′

ε′′

)
+ log2

(
2

ε′2 + 1

1 − ε

)
.
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To clean up, we consider the special case ε = ε′ = ε′′, which
gives us

Hε
min(A|B)ρ � H 5ε+4

√
2 ε(A|B)ρ + log2

(
5 + 4

√
2√
ε

)

+ log2

(
2

ε2
+ 1

1 − ε

)
,

and finally we upper bound the additive terms and smoothing
factors with simpler terms (the factors were found numeri-
cally). We obtain

Hε
min(A|B)ρ � H 11

√
ε(A|B)ρ − 5

2
log2

(ε

3

)
+ log2

(
2

1 − ε

)
.

�
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